

Low Emittance Muon Accelerator: stato e prospettive

M. Antonelli (LNF-INFN) for the LEMMA Team

RD_FA meeting, Bologna, 3-4 July 2017

Low EMittance Muon Accelerator team

- M. Antonelli, M. Biagini, M. Boscolo, S Dabagov, M. Dreucci, A. Ghigo, S. Guiducci, L. Pellegrino, M. Rotondo, A.Variola, O.R. Blanco-Garcia, O. Frasciello (INFN-LNF)
- M. Ricci (Uni. Marconi, INFN-LNF)
- M. lafrati (INFN-LNF, ENEA Frascati, & Uni. Pd)
- F.Bedeschi, F. Cervelli, R.Tenchini (INFN-Pi), G.Tonelli (Univ.& INFN-Pi)
- A. Bacci (INFN-Mi)
- A. Bertolin, U. Dosselli, L. Sestini, M. Morandin (INFN-Pd)
- D. Lucchesi, A. Wulzer, M. Zanetti (Univ.& INFN-Pd)
- F. Anulli, G. Cavoto, F. Collamati, L. Palumbo (INFN-Roma1)
- E. Bagli, V. Guidi, A. Mazzolari, L. Bandiera (INFN-Fe)
- M. Prest, E. Vallazza (Uni-Insubria&INFN)
- P. Raimondi, S. Liuzzo, N. Carmignani (ESRF)
- R. Di Nardo, P. Sievers, M. Calviani, S. Gilardoni (CERN)
- I. Chaikovska, R. Chehab (LAL-Orsay)
- L. Keller, T. Markiewicz (SLAC)

Collaboration in ARIES for WP 6 (improving Accelerator PErformance and new Concepts), WP 17 (PowerMat)

Outline

- Introduction: Muons case
- Proposal for a novel technique for muon production
- 2017 activities and directions:
 - Accelerator (e+ ring M. Boscolo and e+ source)
 - Experimental (H4 Test beam F. Anulli, M. Zanetti)
- 2018 activities proposal

Muon based Colliders

- A $\mu^+\mu^-$ collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range:
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e⁺e⁻ linear colliders)
 - but muon lifetime is 2.2 μ s (at rest)
- Best performances in terms of luminosity and power consumption
- Great potentiality if the technology proves its feasibility:
 - Muon source
 - Fast muon cooling
 - Fast acceleration
 - $-\mu$ Collider
 - Radiation Safety (muon decay in accelerator and detector)

Idea for low emittance μ beam

Conventional production: from proton on target

 π , K decays from proton on target have typical **P**_µ~ **100 MeV/c** (π , K rest frame)

whatever is the boost, P_T will stay in Lab frame \rightarrow very high emittance at μ production point \rightarrow cooling needed!

Novel proposal: **direct** μ **pair production:** $e^+e^- \rightarrow \mu^+\mu^-$

just above the $\mu^+\mu^-$ production threshold ($\sqrt{s} \approx 0.212$ GeV) with minimal muon energy spread, with direct annihilation of ≈ 45 GeV e⁺ with atomic e⁻ in a thin target O(0.01 radiation length)

very small emittance at μ production point \rightarrow **no cooling** needed!

Advantages:

- **1.** Low emittance possible: $\theta\mu$ is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^ \theta\mu$ can be very small close to the $\mu^+\mu^-$ threshold
- 2. Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3.** Reduced losses from decay: muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: muon energy spread also small at threshold, it gets larger as \sqrt{s} increases

Disadvantages:

• Rate: much smaller cross section wrt protons (\approx mb)

 $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 1 \ \mu b$ at most

Criteria for target design

minimize emittance maximize rate \rightarrow thin target

 \rightarrow maximize density (high Z)

minimize positron loss (brem.) \rightarrow low Z

Heavy materials, thin target

- to minimize ε_{μ} : thin target ($\varepsilon_{\mu} \propto \text{length}$) with high density ρ Copper: MS and $\mu^{+}\mu^{-}$ production give about same contribution to ε_{μ} BUT high e⁺ loss (Bremsstrahlung is dominant) so $\sigma(e^{+}\text{loss}) \approx \sigma(\text{Brem+bhabha}) \approx (Z+1)\sigma(\text{Bhabha}) \rightarrow$ low maximimal $\mu^{+}\mu^{-}$ production efficiency (infinite length target) Eff_{max} $\approx \sigma_{\mu}/[(Z+1)\sigma(\text{Bhabha})] \sim 10^{-7}$

• Very light materials, thick target

- maximize $\mu^+\mu^-$ production efficiency ~10⁻⁵ (enters quad) \rightarrow H₂ Even for liquid targets O(1m) needed $\rightarrow \epsilon_{\mu}$ increase

- Not too heavy materials (Be, C, Li)
 - Allow low ϵ_{μ} with small e^+ loss $\text{Eff}_{\text{max}}\approx 10^{\text{-6}}$

not too heavy and thin in combination with stored positron beam to reduce the requests on positron source

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

Goal:

@T $\approx 10^{11} \,\mu/s$ Efficiency $\approx 10^{-7}$ (with Be 3mm) \rightarrow $10^{18} \,e^+/s$ needed @T \rightarrow e⁺ stored beam with T

need the largest possible lifetime to minimize positron source rate

LHeC like e+ source required rate with lifetime(e+) \approx 250 turns [i.e. 25% momentum aperture] \rightarrow n(µ)/n(e⁺ source) \approx 10⁻⁵

Preliminary scheme for low emittance μ beam production

Preliminary scheme for low emittance μ beam production

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

e+ ring parameter	unit			
Circumference	km	6.3		
Energy	GeV	45		
bunches	#	100		
e ⁺ bunch spacing = T _{rev} (AR)	ns	200		
Beam current	mA	240		
N(e⁺)/bunch	#	$3\cdot10^{11}$		
U ₀	GeV	0.51		
SR power	MW	120		

(also 28 km foreseen to be studied as an option)

			LEMC-6TeV
(Ta)/aallidan	Parameter	Units	
b lev u collider	LUMINOSITY/IP	cm⁻² s⁻¹	5.09E+34
	Beam Energy	GeV	3000
duaft Dava waatawa	Hourglass reduction factor		1.000
draft Parameters	Muon mass	GeV	0.10566
	Lifetime @ prod	sec	2.20E-06
no lattice yet	Lifetime	sec	0.06
•	c*tau @ prod	m	658.00
		m	1.87E+07
		HZ	1.60E+01
$\mu^{\mu}\mu^{\mu}$ rate = 9 10 ⁻⁶ HZ [NIM A 807	Circumterence Rending Field	m T	6000 1E
$\varepsilon_{\rm N} = 40 \rm nm$	Bending reduc	m	15
if the Clike of source	Magnetic rigidity	Tm	10000
IT: LHEC like e' source	Gamma Lorentz factor	1 111	28392.96
with 25% mom, accept, e ⁺ ring	N turns before decay		3113 76
		m	0.0002
and ϵ dominated by μ production		m	0.0002
	Beta ratio		1.0
	Coupling (full current)	%	100
thanks to verv small	Normalised Emittance x	m	4.00E-08
anittanaa (and lawar bata*)	Emittance x	m	1.41E-12
emittance (and lower beta [*])	Emittance y	m	1.41E-12
comparable luminosity with	Emittance ratio		1.0
lower Nµ/bunch	Bunch length (zero current)	mm	0.1
$(\rightarrow lower background)$	Bunch length (full current)	mm	0.1
	Beam current	mA	0.048
	Revolution frequency	Hz	5.00E+04
	Revolution period	S	2.00E-05
	Number of bunches	#	1
Of course a design study	N. Particle/bunch	#	6.00E+09
	Number of IP	.#	1.00
is needed to have a	σx @ IP	micron	1.68E-02
reliable estimate of	ิ ช _ั พ เห	micron	
nerformances	ס _{x'} שור 	rad	0.39E-U3
performances	ש _{y'} ש ור	rad	0.39E-05

Radiological hazard due to neutrinos from a muon collider

Colin Johnson, Gigi Rolandi and Marco Silari

Key topics for this scheme

- Low emittance and high momentum acceptance 45 GeV e⁺ ring (M. Boscolo talk)
- O(100 kW) class target in the e⁺ ring for $\mu^+ \mu^-$ production
- High rate positron source (M. Boscolo talk)
- High momentum acceptance muon accumulator rings
- Validate with experimental test (F. Anulli, M. Zanetti talk)

Target considerations

Beam size as small as possible (matching various emittance contribution), but

- constraints for power removal (200 kW) and temperature rise
- to contrast the temperature rise move target (for free with liquid jet) and e⁺ beam bump every 1 bunch muon accumulation
- Solid target: simpler and better wrt temperature rise
 - Be, C

[Kavin Ammigan 6th High Power Targetry Workshop]

- Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 μm, N=1.7x10¹¹ p/bunch, up to 288 bunches in one shot
- Liquid target: better wrt power removal (200kW)
 - Li, difficult to handle lighter materials (H, He)
 - LLi jets examples from neutron production, Tokamak divertor

(200 kW beam power removal seems feasible), minimum beam size to be understood

Solid Moving target

- **Rotating disc**
 - 24000 rpm
- Bunch spacing of $\Delta T=200$ ns
 - Bunch separation on target L = 50 μ m
 - 12500 bunches in 1 turn

Single bunch T rise

in Hi-Rad-MAT

Experimental test 2D axisymmetric model showing effective total strain 4.9 x 10¹³ protons, $\sigma = 0.3$ mm, $\Delta T \sim 1025$ °C, 0.25 mm thick window

> End of beam pulse t = 7.2 μ s, T_{max} ~ 1050 °C, ϵ_{max} ~ 3.6 %

- Scale 4.9 x 10¹³ protons, $\sigma = 0.3$ mm
- for our number of $e + b = 3 \times 10^{11}$
- $\sigma^2 = (300 \mu m)^2 / 200 = (21 \mu m)^2$

μ Accumulator Rings considerations

isochronous optics with high momentum acceptance ($\delta \ge 10\%$) optics to be designed

Parametric behaviours

2018 possible activities

- Experiments in H4: 1 week assigned out of <u>2 requested</u> for 2017
 - **High intensity** (up to 5 x 10⁶ /spill) with amorphous targets
 - measure muon production rate and muons kinematic properties
 - Low intensity
 - measure beam degradation (emittance energy spectrum)
 - measure produced photons flux and spectrum
- Priority to High intensity (see next talk)
- Request 1-(2) weeks in 2018 for:
 - Complete original program of the 2017 experiment
 - Attempt muon production on crystals (depending on beam quality..... see this year)

2018 possible activities

- Target termo-mechanical stresses:
 - Design and construction of target prototipe
- Test at small spot size ~20 μm (T rise):
 - 20 μ m 10¹¹ e+ /bunch 100 hz at FACET (check if it is available)
 - Sps extracted beam Hi-RadMat
- Power dissipation test
 - Would need accumulator
 - Check with Dafne linac

Funding requests

- **Missioni:**
 - Test beam H4 20 Keuro
 - Contatti per disegno targhette 2 Keuro
 - Riunioni e conf. **3 Keuro** x sezione
 - Test tenuta targhette 10 Keuro (SJ)
- **Consumo:** •
 - Targhetta (indicativo) 10 Keuro
 - Cristalli. (indicativo) 10 Keuro (SJ)

Conclusion

- Heavy activity on 2017:
 - Accelerator
 - Accelerator complex idea
 - preliminary e+ ring design and multiturn tracking
 - First e+ source study
 - Target and mu accumulation investigations
 - Experiments
 - Detailed study of experiment layout
 - Muon production experiment ready
- Many ideas for 2018...
 - H4 test beam run-2
 - Attempt to test target termo-mechanical stresses