

Stato studi acceleratore Muon Collider

Manuela Boscolo (LNF-INFN) for the team

RD_FA Collaboration Meeting, Bologna, 3 luglio 2017

Outline

- e⁺ ring with target
- Multi-turn simulations
- Conclusion and Perspectives

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

<u>Goal:</u>

@T ≈ $10^{11} \mu/s$ Efficiency ≈ 10^{-7} (with Be 3mm)→ $10^{18} e^{+}/s$ needed @T → e^{+} stored beam with T

need the largest possible lifetime to minimize positron source rate

LHeC like e+ source required rate with lifetime(e+) \approx 250 turns [i.e. 25% momentum aperture] \rightarrow n(µ)/n(e⁺ source) \approx 10⁻⁵

M. Boscolo, RD_FA meeting, Bologna,03/07/17

Preliminary scheme for low emittance μ beam production

Preliminary scheme for low emittance μ beam production

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

e+ ring parameter	unit	
Circumference	km	6.3
Energy	GeV	45
bunches	#	100
e⁺ bunch spacing = T _{rev} (AR)	ns	200
Beam current	mA	240
N(e⁺)/bunch	#	$3\cdot10^{11}$
U ₀	GeV	0.51
SR power	MW	120

(also 28 km foreseen to be studied as an option)

Key topics for this scheme

- Low emittance and high momentum acceptance 45 GeV e⁺ ring
- O(100 kW) class target in the e⁺ ring for $\mu^+ \mu^-$ production
- High rate positron source
- High momentum acceptance muon accumulator rings

Low emittance 45 GeV positron ring

MAD-X PTC MAD-X

80

100

s [m]

60

120

140

160

0

-2

-4 -6

-8

0

20

40

circumference 6.3 km: 197 m x 32 cells (no injection section yet) Table e+ ring narameters

Tuble et ting parameters				
Parameter	Units			
Energy	GeV	45		
Circumference	m	6300		
Coupling(full current)	%	1		
Emittance x	m	5.73×10^{-9}		
Emittance y	m	5.73×10^{-12}		
Bunch length	mm	3		
Beam current	mA	240		
RF frequency	MHz	500		
RF voltage	GV	1.15		
Harmonic number	#	10508		
Number of bunches	#	100		
N. particles/bunch	#	3.15×10^{11}		
Synchrotron tune		0.068		
Transverse damping time	turns	175		
Longitudinal damping time	turns	87.5		
Energy loss/turn	GeV	0.511		
Momentum compaction		1.1×10^{-4}		
RF acceptance	%	± 7.2		
Energy spread	dE/E	1×10^{-3}		
SR power	MW	120		

Physical aperture=5 cm constant

no errors

Good agreement between MADX PTC / Accelerator Toolbox, both used for particle tracking in our studies 189. Boscolo, RD FA meeting,

Bologna,03/07/17

Multi-turn simulations

- 1. Initial 6D distribution from the equilibrium emittances
- 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. tracking through the target (with Geant4beamline and FLUKA and GEANT4)
- 4. back to tracking code

At each pass through the muon target the e+ beam

- gets an angular kick due to the multiple Coulomb scattering, so at each pass changes e⁺ beam divergence and size, resulting in an emittance increase.
- undergoes bremsstrahlung energy loss: to minimize the beam degradation due to this effect, D_x=0 at target
- in addition there is natural radiation damping (it prevents an indefinite beam growth)

Preliminary low- β IR for muon target insertion

- @target location:
 - $D_x \approx 0$
 - **low**-β
- Further optimizations are underway:
 - match the transverse minimum beam size with constraints of target thermo-mechanical stress
 - match with other contributions to muon emittance (production, accumulation)
 - dynamic and momentum aperture can be optimized

e+ lifetime with Be target

e+ ring with target: beam evolution in the 6D phase space

e+ beam with 3 mm BeMargetalorg their ing (not at //R7 center in this example)

Evolution of e+ beam size and divergence

bremsstrahlung and multiple scattering artificially separated by considering alternatively effects in longitudinal (dominated by **bremsstrahlung**) and transverse (dominated by **multiple scattering**) phase space due to target; in **blue** the combination of both effects (realistic target)

Some bremsstrahlung contribution due to residual dispersion at target multiple scattering contribution in line with expectation: $\sigma_{MS} = \frac{1}{2} \sqrt{n_D} \sigma'_{MS} \beta$ one pass contribution due to the target: $\sigma'_{MS} = 25 \mu rad$

M. Boscolo, RD_FA meeting, Bologna,03/07177 number of damping turns

Muon emittance

 $\epsilon(\mu) = \epsilon(e^+) \oplus \epsilon(MS) \oplus \epsilon(rad) \oplus \epsilon(prod) \oplus \epsilon(AR)$

	would like all contributions of same size
 ε(e⁺) = e⁺ emittance ε(MS) = multiple scattering contribution ε(rad) = energy loss (brem.) contributio ε(prod) = muon production contribution ε(AR) = accumulator ring contribution 	knobs: n $\beta_x \beta_y$ @target & target material n $\beta_x \beta_y D_x$ @target & target material E(e ⁺) & target thickness AR optics & target with constraints from target survival

now: $\epsilon(\mu)$ dominated by $\epsilon(MS) \oplus \epsilon(rad) \rightarrow lower dispersion & lower <math>\beta$ -functions at target with beam spot at the limit of the target survival

also test different material

- crystals in channeling better: $\varepsilon(MS)$, $\varepsilon(rad)$, $\varepsilon(prod)$ (also gain in lifetime)
- light liquid jet target better: $\varepsilon(MS)$, $\varepsilon(rad)$

(also gain in lifetime & target thermo-mechanical characteristics)

Preliminary consideration on e+ production

The target represented on the figure is a conventional one.

It would be also possible to have an *hybrid positron source* using a crystal providing channeling radiation and an amorphous converter for photon conversion into e+epairs

[L.Rinolfi et al. NIM B **309** (2013)50-55]

Flux concentrated used for the Adiabatic Matching Device M. Bos(from T:Kamitanio & GWS-2014, Belgrade)

Bologna,03/07/17

Geant4 simulation

Total flux

Conclusion and Perspectives

- First design of low emittance e⁺ ring with preliminary studies of beam dynamics
- Optimization requires other issues to be preliminary addressed:
 - target material & characteristics
 - e⁺ accelerator complex

muon accumulator rings design

Preliminary studies for a low emittance muon source are promising We will continue to optimize all the parameters, lattices, targets, etc. in order to assess the ultimate performances of a muon collider based on this concept M. Boscolo, RD_FA meeting, Bologna,03/07/17

Back-up

M. Boscolo, RD_FA meeting, Bologna,03/07/17

Luminosity of $\mu^+\mu^-$ Collider vs e⁺ beam energy

Parametric behaviours

Is there an optimal value for the positron beam energy?

M. Palmer

↑ North

Muon Collider Parameters

Muon Collider Parameters							
			<u>Multi-TeV</u>				
Fermilab Site					Accounts for		
		Production			Site Radiation		
Parameter	Units	Operation			Mitigation		
CoM Energy	TeV	0.126	1.5	3.0	6.0		
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25	4.4	12		
Beam Energy Spread	%	0.004	0.1	0.1	0.1		
Higgs Production/10 ⁷ sec		13,500	37,500	200,000	820,000		
Circumference	km	0.3	2.5	4.5	6		
No. of IPs		1	2	2	2		
Repetition Rate	Hz	15	15	12	6		
β*	cm	1.7	1 (0.5-2)	0.5 (0.3-3)	0.25		
No. muons/bunch	10 ¹²	4	2	2	2		
Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.2	0.025	0.025	0.025		
Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1.5	70	70	70		
Bunch Length, σ_{s}	cm	6.3	1	0.5	0.2		
Proton Driver Power	MW	4	4	4	1.6		
Wall Plug Power	MW	200	216	230	270		
Exquisite Energy Resolution Success of advanced cooling concepts ⇒ several ∠ 10 ³² [Rubbia proposal: 5∠10 ³²]							

M. Boscolo, RD_FA mentings Width na,03/07/17

Fermilab