Fast Simulation for Future collider Experiments

Michele Selvaggi

CERN

RDFA meeting — 04/07/2017 — Bologna

Introductory remarks

2

Courtesy of J. Lingemann

Introductory remarks

Introductory remarks

Why fast parametric detector simulation?

- Easily scan detector parameters
- Reverse engineer detector that maximises performance
- Preliminary sensitivity studies for key physics benchmarks

Delphes (at FCC-hh) PAPAS (at FCC-ee)

Delphes

github.com/delphes

What is Delphes ?

- Delphes is a modular framework that simulates of the response of a multipurpose detector in a parameterized fashion
- Includes:
 - pile-up
 - charged particle **propagation** in magnetic field
 - electromagnetic and hadronic calorimeters
 - particle flow
- Provides:
 - leptons (electrons and muons)
 - photons
 - jets and missing transverse energy (particle flow)
 - taus and b's
 - designed to deal with hadronic environment
 - well-suited also for e+e- studies
 - detector cards for: CMS ATLAS LHCb FCC-hh ILD CEPC
 - fully integrated within the FCC software (FCCSW)

7

DELPHES fast simulation

 10^{4}

 10^{4}

E [GeV]

E [GeV]

8

Particle-Flow

- Given charged track hitting given calorimeter cell:
 - are deposits more **compatible** with **charged** or **charged + neutrals** hypotheses?
 - how to assign momenta to all resulting components ?
- We have **two** measurements (E $_{\rm trk}$, $\sigma_{\rm trk}$) and (E $_{\rm calo}$, $\sigma_{\rm calo}$)
- Call $E_{neutral} = E_{calo} E_{trk}$

Algorithm:

If
$$E_{neutral} / \sqrt{(\sigma_{trk}^2 + \sigma_{calo}^2)} > S$$
:

→ create PF neutral particle + PF track

Otherwise:

- → create PF track with (weighted) average energy $w_i = 1/\sigma_i^2$
- EM (had) deposit 100% in ECAL (HCAL)
- No propagation in calorimeters
- No clustering (topological) clustering, exploiting pre-defined grid

9

Particle-Flow

Tracking in Dense environment (NEW!) PHES fast simulation Instrinsic tracking angular resolution efficiency 8.0 efficiency 0.8 0.6 0.6 $\sigma_{\theta} = 0.001$ • $\sigma_{\mu} = 0.001$ • $\sigma_{\theta} = 0.002$ • $\sigma_{\theta} = 0.002$ • $\sigma_{0} = 0.003$ 0.4 • $\sigma_{\theta} = 0.003$ 0.4 • $\sigma_{\theta} = 0.005$ • $\sigma_{\theta} = 0.005$ • $\sigma_{\rm A} = 0.01$ • $\sigma_{\theta} = 0.01$ 0.2 0.2 QCD jets, $p_T = 1 \text{ TeV}$ QCD jets, $p_T = 5 \text{ TeV}$ 0 0 -2 $^{-1}$ 0 -2 $\log \Delta R(\text{jet,track})$ $\log \Delta R(\text{jet,track})$ efficiency 8.0 efficiency 8.0 0.6 0.6 • $\sigma_{\theta} = 0.001$ • $\sigma_{\mu} = 0.001$ • $\sigma_{\theta} = 0.002$ • $\sigma_{\theta} = 0.002$ • $\sigma_{\theta} = 0.003$ • $\sigma_{\theta} = 0.003$ 0.4 0.4 • $\sigma_{\theta} = 0.005$ • $\sigma_{\theta} = 0.005$ • $\sigma_{\theta} = 0.01$ • $\sigma_{\theta} = 0.01$ 0.2 0.2 QCD jets, $p_T = 10 \text{ TeV}$ QCD jets, $p_{_{\rm T}} = 20 \text{ TeV}$ 0 0 11 -2-20 0 -1 $\log \Delta R(\text{jet,track})$

 $\log \Delta R(\text{jet,track})$

Jet substructure

- Embedded in FastJetFinder module
- $\tau_1, \tau_2, ..., \tau_5$ saved as jet members (N-subjettiness)
- Trimming, Pruning, SoftDrop ...

Pile-up and Timing

- Beamspot description with f(z,t) customizable profile has been included
- Time information is propagated up calorimeters, and then smeared
- Vertexing in 3D/4D has been included

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/PileUp

PAPAS

github.com/HEP-FCC/papas

What is PAPAS?

Papas: Parameterized Particle Simulation

Approach:

- parameterise detector
- fast simulation/particle flow reconstruction
- Python and C++ versions of Papas

Main authors: Colin Bernet Alice Robson

Detector Parameterisation

```
class Tracker(DetectorElement):
```

```
def __init__(self):
    volume = VolumeCylinder('tracker', 1.29, 1.99)
    mat = material.void
    super(Tracker, self).__init__('tracker', volume, mat)
```

```
def acceptance(self, track):
    pt = track.p3() .Pt()
    eta = abs(track.p3() .Eta())
    if eta < 1.35 and pt>0.5:
        return random.uniform(0,1)<0.95
    elif eta < 2.5 and pt>0.5:
        return random.uniform(0,1)<0.9
    else:
        return False</pre>
```

```
def resolution(self, track):
    return 1.1e-2
```

Parameters used to define:

simple geometry (cylinder)

acceptance model

resolution model

(+ B field)

Particle Flow

- Papas uses a very similar particle flow algorithm as in CMS
- Builds calo-clusters out of realistic stochastic energy deposit
- Finds "connected" sets of clusters/tracks
- Build particles from "connected" clusters/tracks
- Neutral excesses are created using the full ECAL+HCAL information

Particle Flow

Effect of tracker on Z-mass reconstruction

No tracker: calorimetric reconstruction of all particles

Example

Aim: measure ZH inclusive cross-section at 240GeV, 500 fb⁻¹

- Generate: ZH, ZZ, WW samples
 - two lepton channel
 - determine recoil
 - cuts and normalisation as in LEP3
- 600k events in total
- more tuning needed for e and mu resolution (a bit too coarse)

Conclusions

- Delphes and PAPAS fast-simulation tools have been presented
- Delphes originally designed for hadronic environment (pile-up, simple particle-flow, optimised for high pT objects)
- PAPAS originally designed for e+e- (more advanced particle-flow)
- Both tools can nevertheless be used in e+e- and hh environments
- Thorough comparative study will be performed soon ...
- Try them out at: github.com/HEP-FCC/fcc-tutorials

Thank you

FCC-hh detector

Tracker

- -6 < η < 6 coverage
- pixel : $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 15-30 \mu m$, X/X₀(layer) ~ 0.5-1.5%
- outer : σ_{rφ} ~10μm, σ_Z ~30-100μm, X/X₀(layer) ~ 1.5-3%

Calorimeters

- ECAL: LArg , $30X_0$, 1.6 λ , r = 1.7-2.7 m (barrel)
- HCAL: Fe/Sci , 9 λ , r = 2.8 4.8 m (barrel)
- endcaps and fwd to be defined (investigating HGCAL ...)

Muon spectrometer

- Two stations separated by I-2 m
- 50 μm pos., 70μrad angular

Magnet

- central R = 5, L = 10 m, B = 4T
- forward R = 3m, L = 3m, B = 4T

FCC-hh detector

FCC-ee detector - IDEA

Courtesy of M. Dams

IDEA detector concept based on present state-of-the-art technologies:

- Vertex detector, MAPS
- Ultra-light drift chamber with PID
- Pre-shower counter
- Double read-out calorimetry
- 2 T solenoidal magnetic field
- Possibly instrumented return yoke
- ◆ Or possibly surrounded by large tracking volume (R ≃ 8m) for very weakly coupled (long-lived) particles

Two Options: Coil inside or outside calorimetry

