

N. De Filippis

Politecnico and INFN Bari on behalf of WP1: B. Di Micco, S. Braibant, M. Testa, M. Verducci et al. RD_FA Collaboration Meeting, Bologna, July 3-4

RD_FA

The Higgs potential

Why is it relevant?

 $\lambda h_0^2 \eta^2 + \frac{\lambda}{4} \eta^4 + \lambda h_0 \eta^3$ $m_h^2 = 2\lambda h_0^2$ h h h h

After spontaneous symmetry breaking:

The strength of the triple and quartic couplings is fully fixed by the potential shape.

1) it is the last missing ingredient of the SM, like the Higgs boson was the last missing particle, we need to prove that things really behave like we expect;

h

2) It has implications on the stability of the Vacuum;

3) It could make the Higgs boson a good inflation field (see backup)

HH production and decay

Higgs decay branching fraction

NNLO with full top mass *NLO $m_t \rightarrow \infty$

50

75

25

N. De Filippis, Bologna, July 3-4

√s [TeV]

125

100

Current status @LHC

	√s [TeV]	L (fb ⁻¹)	σ(fb) 95% C.L.	<mark>σ/σ_{SM} 95%C.L</mark> .
ATLAS: 4b, bbττ, bbγγ, WWγγ WWWW	8	20,3	< 470	< 48
ATLAS: 4b	13	13,3	< 1000	< 29
CMS: 4b	13	2,32	< 11760	< 310
ATLAS: WWγγ	13	13,3	< 12900	< 340
ATLAS: bbγγ	13	3,2	< 5400	< 142
CMS: bbττ	13	39,5	< 950	< 25
CMS: WWbb	13	36	< 3270	< 86

HL-LHC √s = 14 TeV, L = 3000 fb ⁻¹	Exp. sign	λ/λ _{SM} 95% C.L.	<mark>ехр σ/σ</mark> ѕм
ATLAS: bbγγ	1.05 σ	[-0.8, 7.7]	< 1.7 [recalc.]
CMS: bbγγ	1.6 σ		< 1.3
ATLAS: 4b	?	[0.2, 7.0] _{stat.} , [-3.5, 11]	< 1.5 _{stat.} , 5.2
CMS: 4b	0,67		< 2.9 _{stat.} , 7
ATLAS: bbττ	0.6 σ	[-4, 12]	< 4.3
CMS: bbττ	0,39		<3.9 _{stat.} , 5.2
CMS: VVbb	0,45		< 4.6 _{stat.} , 4.9

Present best channel 4b, situation will change with higher statistics when syst. dominated channels will saturate their sensitivity.

HL-LHC doesn't seem able to provide a useful constraint on λ , it could probably provide an observation of the whole process.

But advanced analysis techniques are on going...

FCC studies

Main references

- Physics at a 100 TeV pp collider [arXiv:1606.09408]
- 1st FCC-hh Physics Workshop 16-20 January 2017 CERN
- FCC-hh physics analysis meetings
- FCC week 2017 @ Berlin
- studies performed with different level of details, in particular trigger, eff. simulation and pile-up studies need to be implemented in many of them, but first bulk of phys. potentiality ready.

Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies

Editors:
R. Contino^{1,2}, D. Curtin³, A. Katz^{1,4}, M. L. Mangano¹, G. Panico⁵, M. J. Ramsey-Musolf^{6,7},
G. Zanderighi¹
Contributors:
C. Anastasiou⁸, W. Astill⁹, J. K. Behr^{10,11}, W. Bizon⁹, P. S. Bhupal Dev¹², D. Bortoletto¹⁰,
Q.-H. Cao^{13,14,15}, F. Caola¹, J. Chakrabortty¹⁶, C.-Y. Chen^{17,18,19}, S.-L. Chen^{15,20}, F. Dulat⁸,
G. Bambhaniya²¹, D. Buttazzo²² D. de Florian²³, C. Englert²⁴, J. A. Frost¹⁰, B. Fuks²⁵,
T. Gherghetta²⁶, G. Giudice¹, J. Gluza²⁷, N. Greiner²⁸, H. Gray²⁹, N. P. Hartland¹⁰, C. Issever¹⁰,
T. Jeliński²⁷, A. Karlberg⁹, J. H. Kim,^{30,31,32}, F. Kling³³, A. Lazopoulos⁸, S. J. Lee^{34,35}, Y. Liu¹³,
G. Luisoni¹, J. Mazzitelli^{23,36}, B. Mistlberger¹, P. Monni⁹, K. Nikolopoulos³⁷, R. N. Mohapatra³,
A. Papaefstathiou¹, M. Perelstein³⁸, F. Petriello³⁹, T. Plehn⁴⁰, P. Reimitz⁴⁰, J. Ren⁴¹, J. Rojo¹⁰,
K. Sakurai⁴², T. Schell⁴⁰, F. Sala⁴³, M. Selvaggi⁴⁴, H.-S. Shao¹, M. Son³⁰, M. Spannowsky⁴², T. Srivastava¹⁶, S.-F. Su³³, R. Szafron⁴⁵, T. Tait⁴⁶, A. Tesi⁴⁷, A. Thamm⁴⁸, P. Torrielli⁴⁹,
F. Tramontano⁵⁰, J. Winter⁵¹, A. Wulzer⁵², Q.-S. Yan^{53,54,55}, W. M. Yao⁵⁶, Y.-C. Zhang⁵⁷, X. Zhao⁵³,

FCC studies: HH→bbγγ

Selection:

- 1. 2 γ , 2 b-jet $|\eta| < 4.5$, $p_T^{sub} > 35$, $p_T^{lead} > 60 \text{ GeV}$
- 2. $|m_{\gamma\gamma} m_h| < 2.0$, $100 < m_{bb} < 150 \text{ GeV}$
- 3. p_T^{bb} , $p_T^{\gamma\gamma} > 100$ GeV, ΔR_{bb} , $\Delta R_{\gamma\gamma} < 3.5$

Simulation: 6T magnetic field Signal LO samples, Pythia6 showering, no pile-up simulation

S/√B 23 [3 ab⁻¹] 73 [30 ab⁻¹]

Process	Acceptance cuts [fb]	Final selection [fb]	Events ($L = 30 \text{ ab}^{-1}$)
$h(b\bar{b})h(\gamma\gamma)~({\rm SM})$	0.73	0.40	12061
$bbj\gamma$	132	0.467	13996
$jj\gamma\gamma$	30.1	0.164	4909
$t\bar{t}h(\gamma\gamma)$	1.85	0.163	4883
$b\bar{b}\gamma\gamma$	47.6	0.098	2947
$b\bar{b}h(\gamma\gamma)$	0.098	$7.6 imes10^{-3}$	227
$bj\gamma\gamma$	3.14	$5.2 imes 10^{-3}$	155
Total background	212	1.30	27118

 $\Delta\sigma/\sigma = 1.6\%$ [30 ab⁻¹] $\Delta\lambda/\lambda = 6\%$ [2.5% sig. syst.]

RD_FA

FCC studies: HH→bbbb

Sensitivity to λ from unboosted objects, λ diagram contributes mainly at low m_{hh}

RD_FA

Multi-leptons: HH->bbZZ,bbWW,bbμμ

$$hh \rightarrow (b\bar{b}) (ZZ^*) \rightarrow (b\bar{b}) (4\ell), hh \rightarrow (b\bar{b}) (WW^*) / (\tilde{\tau}^+ \tilde{\tau}^-) \rightarrow (b\bar{b}) (\ell^+ \ell^-), hh \rightarrow (b\bar{b}) (\mu^+ \mu^-) \text{ and } hh \rightarrow (b\bar{b}) (\tilde{Z}\gamma) \rightarrow (b\bar{b}) (\tilde{\ell}^+ \tilde{\ell}^- \gamma) = (b\bar{b}) (\tilde{\ell}^+ \tilde{\ell}^- \gamma) = (b\bar{b}) (\tilde{\ell}^+ \ell^-) = (b\bar{b}) (\tilde{\ell}^+ \ell^-)$$

 Typically low yield 	channel	$\sigma(100 \text{ TeV}) \text{ (fb)}$	$N_{30 \text{ ab}^{-1}}$ (ideal)	$N_{30 \text{ ab}^{-1}}(\text{LHC})$
and low background	$\mathbf{h}\mathbf{h} ightarrow (bar{b})(\ell^+\ell^-\ell^{'+}\ell^{'-})$	0.26	130	41
thanks to the multi-	$t\bar{t}h ightarrow (\ell^+ b u_\ell) (\ell'^- \bar{b} ar{ u}_{\ell'}) (2\ell)$	193.6	304	109
lepton final state:	$t\bar{t}Z ightarrow (\ell^+ b u_\ell) (\ell'^- ar{b} ar{ u}_{\ell'})(2\ell)$	256.7	66	25
- [,	${f Zh} ightarrow (bar b)(4\ell)$	2.29	O(1)	O(1)
 Exception for WWbb 	$\mathbf{ZZZ} \rightarrow (4\ell)(b\bar{b})$	0.53	O(1)	O(1)
\rightarrow IIbb (high top	$\mathbf{b}\mathbf{\bar{b}h} ightarrow b\mathbf{\bar{b}}(4\ell) (p_{T,b} > 15 \text{ GeV})$	0.26	O(10)	O(1)
background)	${f ZZh} ightarrow (4\ell) (bar b)$	0.12	$\mathcal{O}(10^{-2})$	$\mathcal{O}(10^{-2})$

30 ab⁻¹

channel	$\sigma(100 \text{ TeV}) \text{ (fb)}$	$N_{30 \mathrm{~ab^{-1}}}(\mathrm{ideal})$	$N_{ m 30 \ ab^{-1}}(m LHC)$			
$\mathbf{h}\mathbf{h} ightarrow (bar{b})(W^+W^-) ightarrow (bar{b})(\ell'^+ u_{\ell'}\ell^-ar{ u}_{\ell})$	27.16	209	199	Channel	S/√(S+B)	S/B
$\mathbf{h}\mathbf{h} ightarrow (bar{b})(au^+ au^-) ightarrow (bar{b})(\ell'^+ u_{\ell'}ar{ u}_ au\ell^-ar{ u}_\ell u_ au)$	14.63	385	243	41	58	0.35
$t\bar{t} ightarrow (\ell^+ b u_\ell) (\ell'^- \bar{b} \bar{ u}_{\ell'})$ (cuts as in Eq. 49)	25.08×10^3	343^{+232}_{-94}	158^{+153}_{-48}	-11	0,0	0,00
$b\bar{b}Z \rightarrow b\bar{b}(\ell^+\ell^-)$ ($p_{T,b} > 30 \text{ GeV}$)	$107.36 imes 10^3$	$2580\substack{+2040\\-750}$	4940^{+2250}_{-1130}	21	9,4	0,17
$\mathbf{ZZ} ightarrow bar{b}(\ell^+\ell^-)$	356.0	O(1)	$\mathcal{O}(1)$			
${f h}{f Z} o bar{b}(\ell^+\ell^-)$	99.79	498	404	bbuu	, bblly have	а
$\mathbf{b}\mathbf{\bar{b}h} \rightarrow b\bar{b}(\ell^+\ell^-) (p_{T,b} > 30 \text{ GeV})$	26.81	$\mathcal{O}(10)$	$\mathcal{O}(10)$	negligi	ble contrinu	tion

RD_FA

FCC studies: S/N ratio

80 -		■S/√B		S/B (%)		 γγbb looks to be the golden channel;
60						 need to reach maximal accuracy in this channel simulation,
40						mplementing pile-up simulation and more accurate fake estimate;
20						 detector design should be driven by minimisation of systematics on it;
0 -	γγ bb	bb bb	4I bb	WWbb, 2I	WWbb, 1I	 more work needed on WWbb to fully exploit its potentiality;

 highly boosted topologies are less useful for λ measurement, sensitivity to λ from low m_{hh} region

FCC-hh looks to have a strong physics case

RD_FA

Current FCC studies for RD_FA

L=30 ab-1	Δσ/σ	Δλ/λ
γγbb	1.3%	2.5%
4 b	25% (S/B ~2%)	200%
ZZbb, 4I	~30%	~40%

Between the final state from the HH decay:

- 4b, WWbb are dominant
- γγbb, ZZbb are the cleanest

The **Italian community** started to work in 2016 on:

- WWbb, Inuqqbb
- ZZbb, 4lbb
- We used a fast simulation tool (Delphes)
- Pileup simulation with 50, 200, 900 events

Last contributions to conferences:

- B. Di Micco, IFAE Trieste April 19-21 2017
- B. Di Micco, FCC Week Berlin
 May 29 June 1 2017

RD_FA

Pile-up and det. simulation with Delphes

S. Braibant (Bologna), B. Di Micco, M. Testa, M. Verducci (Roma 3)

pile-up configuration used in this presentation (when used), simulated with Delphes using CMS HL-LHC cards

Simulation of the 5 ns low and high luminosity phase and of the 25 ns high luminosity phase

Calorimetry

RD_FA: HH \rightarrow ZZbb \rightarrow 4lbb, l=e, μ

Events/0.5 GeV

10³

- \geq 4 muons with $p_T > 5$ GeV, $|\eta| < 4.0$
- \geq 4 electrons with $p_T > 7$ GeV, $|\eta| < 4.0$
- Z₁ selection: $\ell^+ \ell^-$ pair with mass closes to the nominal Z boson mass $40 \text{ GeV} < m_{Z1} < 120 \text{ GeV}$
- Z₂ selection: second $\ell^+\ell^-$ pair $12 \text{ GeV} < m_{Z2} < 120 \text{ GeV}$
- Among the 4 selected leptons: at least one with $p_T > 20$ GeV and one with $p_T > 1$ GeV
- QCD suppression: $m(\ell^+\ell^-) > 4 \text{ GeV}$
- Kinematic cuts: $m_{4\ell} > 120 \text{ GeV}, m_{4\ell} <$ 130 GeV
- At least 2 b-jets with $p_T > 30 \text{ GeV}$

15 = 100 TeV

AMC@NLO + Her

• big impact from lepton isolation cut (not presented here), need to optimise isolation criteria

10-2 120 M, [GeV]

	σ·L· Br(hh→ZZbb→4lbb)	no b-jet req.	with b-jet	ε (no b-jet)	ε (b-jet)
4e					
4μ	161	61	12,1	38%	7,4%
4e	161	40	7,7	25%	4,8%
Tot	322	101	20	31%	6,2%

N. De Filippis (Bari), S. Braibant (Bologna)

10

Events/1 GeV

RD_FA

N. De Filippis, Bologna, July 3-4

s = 100 TeV

H H → bb + 4ι

130

1s = 100 TeV (L) dt = 3000 fb

AMC@NLO + Herwig $H H \rightarrow b\overline{b} + 4e$

125

125

{L} dt = 3000 fb⁻¹

AMC@NLO + Herwig+

M. [GeV]

M₄ [GeV]

Object in PU environment [WWbb analysis]

B. Di Micco, M. Testa, M. Verducci (Roma 3)

- Using charged hadrons, muons, electrons and calorimeter towers to build particle-flow objects
- Tracks from pile-up are rejected if $|Z_0 Z_{PV}| > \sqrt{\sigma^2(Z_0) + \sigma^2(Z_{PV})}$

✦ Jets

• Anti-Kt (Fast Jet) algorithm

Particle Flow Reconstruction

- particle-flow objects as inputs
- R = 0.4
- Jet Area pile-up correction:
- private calibration to particle level $p_T^{\text{corrected}} = p_T^{\text{raw}} \rho \cdot \text{JetArea}$
- p_T^{jet} > 20 GeV

Missing Transverse Energy

- Anti-Kt (Fast Jet) algorithm
- negative vector sum of Jets, after pile-up correction and calibration

Jet pT response

RD_FA

HH→WWbb→lvqqbb: MVA analysis

B. Di Micco, M. Testa, M. Verducci (Roma 3)

Input variables:

 $\Delta R_{jj}, \Delta R_{bb}, \Delta R_{WW}, m_T^{WW}, m_{bb} \\ m_{jj}, p_T^{bb}, p_T^{WW}, E_T^{miss}, m_T^W, m_{WW}$

Pre-training cuts:

 $p_T^{WW}, p_T^{bb} > 150, 80 < m_{bb} < 180 \,\text{GeV}$ $\Delta R_{bb} < 2.0$

stat. sign. 4.1 σ with S/B 0.06, 13 σ @30 ab⁻¹

RD_FA

N. De Filippis, Bologna, July 3-4

Conclusion and plans

- Fix the Delphes configuration and the handling of pileup (all+Michele Selvaggi)
- Simulation of the background for ZZbb and WWbb in various pileup scenario is our close-term priority (S. Braibant, N. De Filippis, B. Di Micco) – End September
- Optmization of the analyses with delphes (isolation, ID, pileup rejection) (all) - October
- Provide an internal document about those analyses (S. Braibant, N. De Filippis, B. Di Micco) – September – October → Contribute to CDR (urgent)
- Going to follow and contribute regularly CepC and FCC meeting so we can find adidtional collaborators.
- Ask INFN institutes representatives to involve new students

RD_FA

RD_FA

VBF hh production

VBF jets at high η go in the very forward region, 50% event loss with η acceptance of 4 instead of 5

Not strong sensitivity to SM hh production, but adds information on New Physics operators

	68% probability interval on $\delta_{c_{2V}}$				
	$1 \times \sigma_{\rm bkg}$ $3 \times \sigma_{\rm bkg}$				
LHC_{14}	[-0.37, 0.45]	[-0.43, 0.48]			
HL-LHC	[-0.15, 0.19]	[-0.18, 0.20]			
FCC_{100}	[0, 0.01]	[-0.01, 0.01]			

			$14 { m TeV}$	$100~{\rm TeV}$
		$p_{T_j} (\text{GeV}) \geq$	25	40
Acceptance cuts		p_{T_b} (GeV) \geq	25	35
		$ \eta_j \leq$	4.5	6.5
		$ \eta_b \leq$	2.5	3.0
		$ \Delta y_{jj} \ge$	5.0	5.0
VBF cuts		$m_{jj}~({\rm GeV}) \geq$	700	1000
	Central jet veto:	$p_{T_{j_3}}~({\rm GeV})~\leq$	45	65
		$m_{hh} \; (\text{GeV}) \geq$	500	1000

	95% probability upper limit on μ			
	$1 \times \sigma_{\rm bkg}$	$3 imes\sigma_{ m bkg}$		
LHC_{14}	109	210		
HL-LHC	49	108		
FCC_{100}	12	23		

Higgs quartic

	Signal	$b\bar{b}jj\gamma\gamma$	$Ht\bar{t}$	S/B	S/\sqrt{B}
preselection	50	2.3×10^5	2.2×10^4	$2.5 imes 10^{-4}$	0.14
$\chi^2_{H,min} < 6.1$	26	4.6×10^4	9.9×10^3	$5.0 imes 10^{-4}$	0.14
$ m_H^{rec}-126~{\rm GeV} <5.1~{\rm GeV}$	20	1.7×10^4	7.0×10^3	$8.1 imes 10^{-4}$	0.15

30 ab⁻¹: $-4 < \lambda_4 < 16$

Higgs boson as inflaton

Gravitational action coupled to the SM sector

$$S = \int \left[\frac{1}{2}M_{\rm pl}^2 R + \mathcal{L}\right] d^4x \sqrt{-g} = \int \left[\frac{1}{2}M_{\rm pl}^2 R - \frac{1}{2}\partial_\mu h\partial^\mu h + V(h) + \dots\right] d^4x \sqrt{-g}$$

Inflation model

- need a scalar field (h is a scalar field)
- need a well shaped potential, with a slow-roll condition

$$V(\phi) >> \frac{1}{2} \dot{\phi}^2 \longrightarrow H^2 = \frac{8\pi G}{3} V(\phi) \simeq const. \longrightarrow a(t) \simeq e^{Ht} \quad \left(H(t) = \frac{\dot{a}}{a} \right)$$

universe radius, exponentially expanding during inflation

In order to make this to work

$$h >> h_0 V(h) \sim \lambda h^4 \lambda \sim 10^{-13}$$

Intringuing, λ nearly vanishes for high h value with the present value of top and Higgs mass.

The Higgs potential could have such role if properly shaped

Understanding the Higgs potential is the last missing piece of the SM, and it could have fundamental cosmological implications.

N. De Filippis, Bologna, July 3-4

199