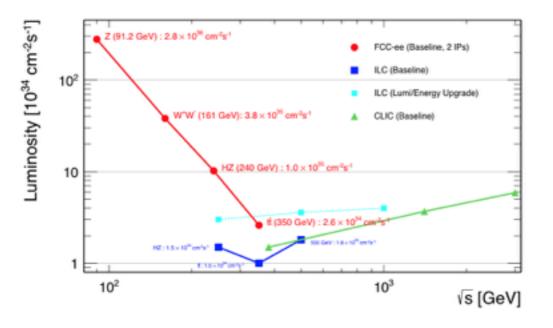
TOP & BSM STUDIES @ FCC-EE

Patrizia Azzi - INFN Padova



Stefania De Curtis - INFN Firenze

TOP PHYSICS AT FCC-EE

as well now? not in CDR

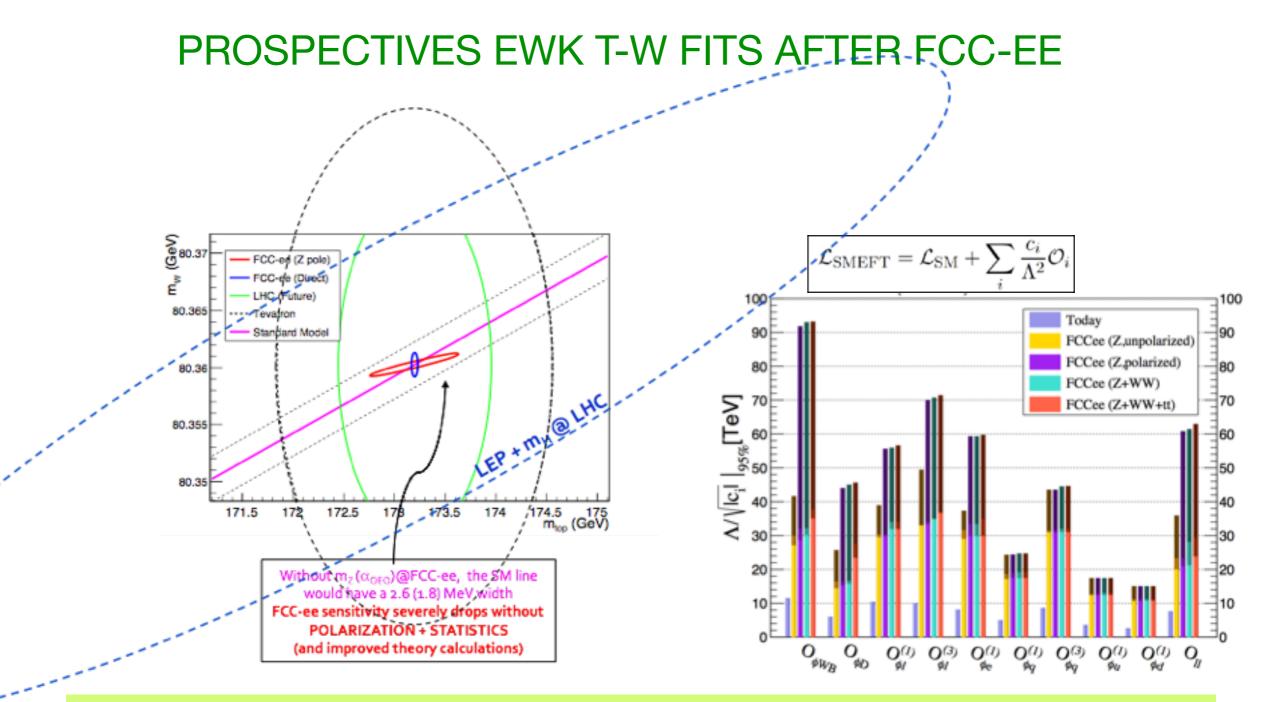
- Dedicated run of ~1.5 ab-1 at and around tt threshold @350GeV « Mega-Top »
 - ► 0.2 ab-1 for mass measurement from threshold scan
 - higher energy runs for top coupling measurement (ttZ,ttγ,ttH)
- Profit of the run at 240GeV (5ab-1) dedicated to HZ production for studies with single top
 - periodic returns at the Z-peak in « FCC-ee top » conditions for calibration

Strength of the FCC-ee program is the ability to span several centre of mass energies at high luminosities

Top physics comes in the program in several places

BUT WHY?

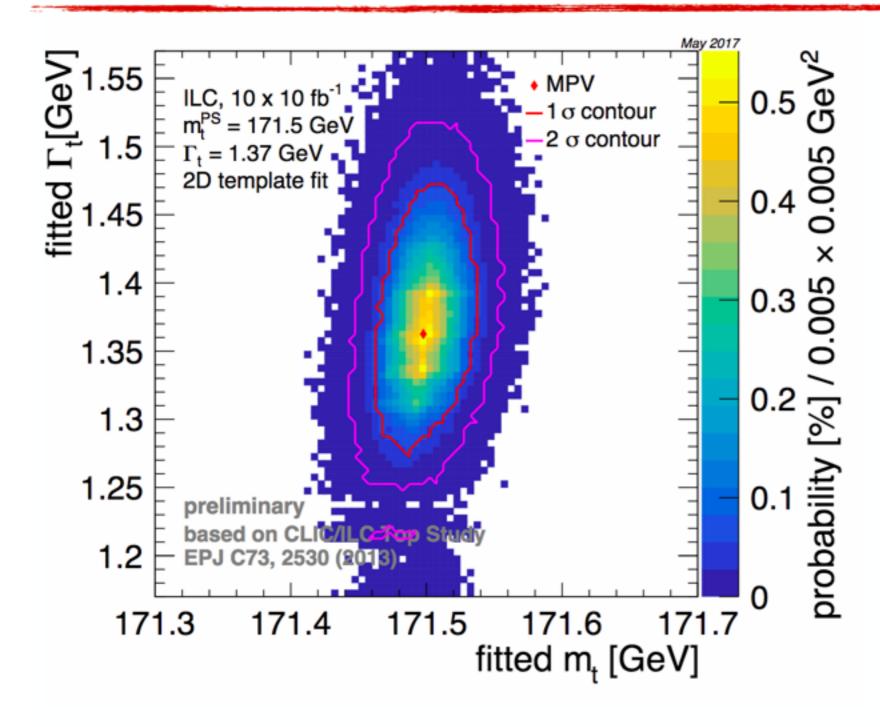
- ➤The SM fits need a precise knowledge of the top quark mass to enhance the sensitivity to new physics effects
- ➤Top precision measurements are a portal to new physics effects at high scales, the clean environement and large statistics at FCC-ee will allow to probe:
 - (anomalous) couplings
 - indirect effects from loop contributions
 - suppressed and rare decays
- at FCC-ee, by construction, and at other planned lepton collider, because of the current experimental limits, the window for direct production of heavier new physics objects is tiny
- standing on the shoulders of LHC-Run2 results for possible direct discovery of new particles in the TeV range
 - next machine allowing direct searches for multi-TeV objects will be the FCChh


TOP PRODUCTION & DECAY

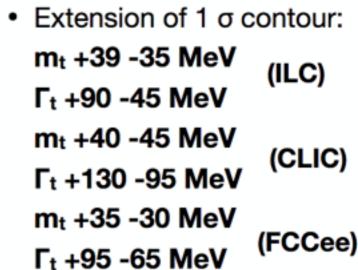
► Top physics analysis is driven by production and decays modes

• at lepton collider running close to threshold (or above), pair production dominates

- The decay ~100% BR in Wb
 - final states classified on the basis of the Ws decay
- at lower center of mass energies can profit of (anomalous) production of single top
 - SM cross section is tiny and basically impossible to disentangle from pair production at ee colliders

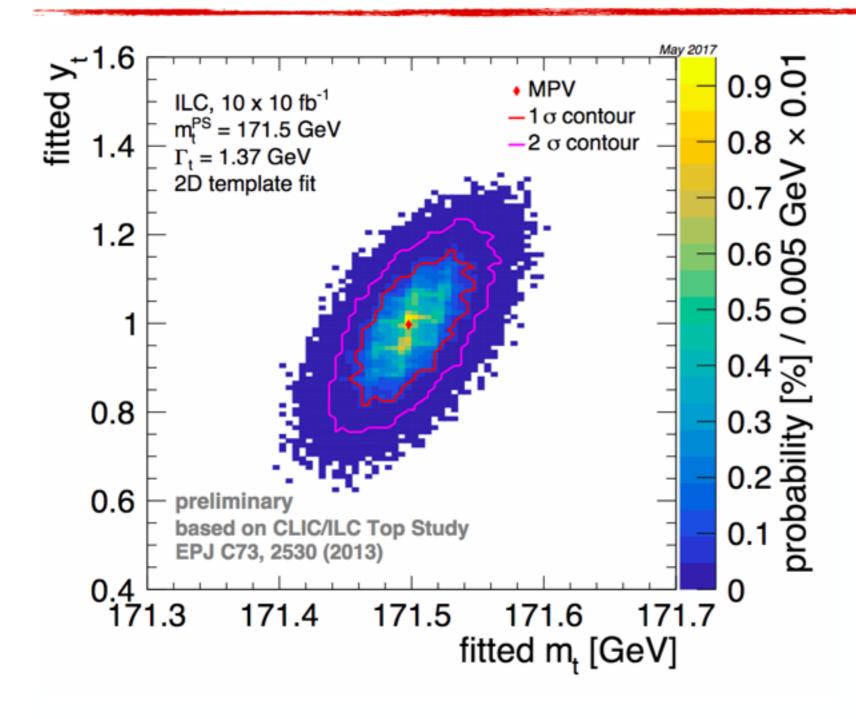


Improvements in m_{top}, α_S, M_W at FCC-ee will improve understanding consistency SM in top-W-H radiative corrections

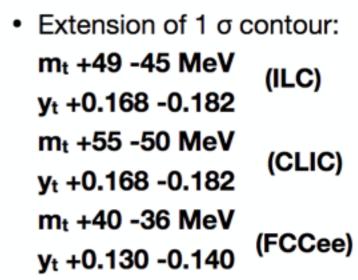

► Sensitivity for NP scale extended up to 100 TeV

FROM FRANK SIMON

Mass & Width: 2D Template Fit ILC, CLIC, FCCee



- 1D mass resolution (assuming def. Γ_t)
 18 MeV (ILC)
 21 MeV (CLIC)
 16 MeV (FCCee)
- 1D width resolution (assuming def. m_t)
 43 MeV (ILC)
 51 MeV (CLIC)
 37 MeV (FCCee)



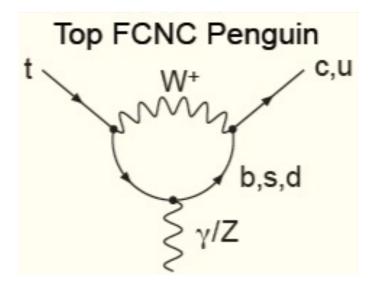
FROM FRANK SIMON

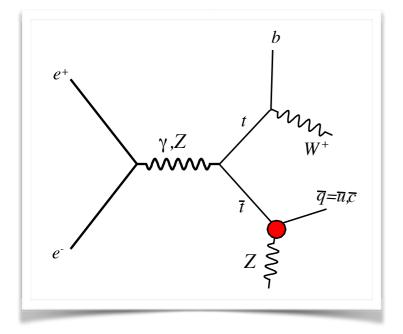
Mass & Yukawa: 2D Template Fit ILC, CLIC, FCCee

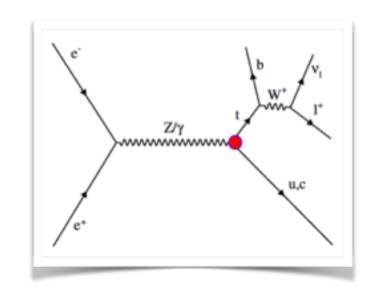
- 1D mass resolution (assuming def. y_t) 18 MeV (ILC) 21 MeV (CLIC) 16 MeV (FCCee)
- 1D Yukawa resolution (assuming def. m_t)
 0.067 (ILC)
 0.067 (CLIC)
 0.057 (FCCee)

15

7


FCNC IN TOP PRODUCTION AND DECAY


➤FCNC in the SM are forbidden at tree level and only allowed via higher order corrections: strongly suppressed.


Can be strongly enhanced in BSM models

►At the FCC-ee they can be studied:

- ➤ at decay vertex in pair production at √s=350 GeV
- > at production vertex in single top events at $\sqrt{s}=240$ GeV and $\sqrt{s}=350$ GeV

Process	SM		
$t \rightarrow Zu$	7×10^{-17}		
$t \to Zc$	$1 imes 10^{-14}$		
$t \to g u$	$4 imes 10^{-14}$		
$t \to gc$	$5 imes 10^{-12}$		
$t ightarrow \gamma u$	4×10^{-16}		
$t\to \gamma c$	$5 imes 10^{-14}$		
$t \rightarrow h u$	$2 imes 10^{-17}$		
$t \to hc$	$3 imes 10^{-15}$		

Patrizia Azzi - Bologna 3-4/7/2017

FCNC IN TOP PRODUCTION AND DECAY

• Studies performed for tqZ-tq γ in single top production at $\sqrt{s}=240+350$ GeV in single lepton and all hadronic final state

$\sqrt{s} = 240 \text{ GeV}$	1+jets, 5 ab-1	all-had, 5ab-1
$Br(t \to q\gamma)$	2.84×10^{-5}	-1.5×10^{-4}
$Br(t \to qZ) \ (\sigma_{\mu\nu})$	$3.45 imes 10^{-5}$	3.9×10^{-4}
$Br(t \to qZ) \ (\gamma_{\mu})$	$7.09 imes 10^{-5}$	1.9×10^{-4}

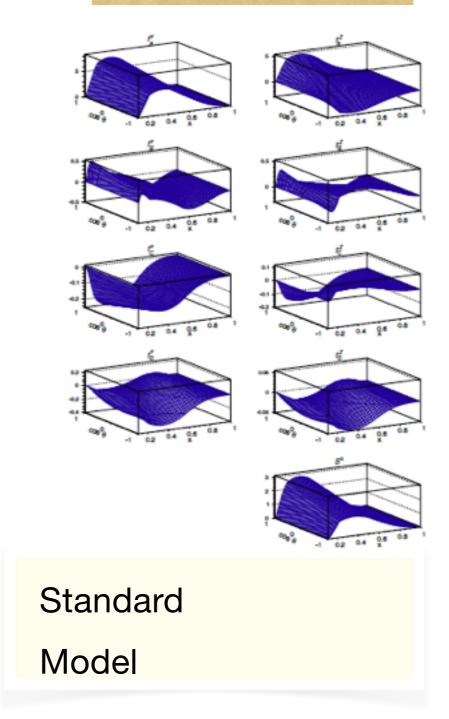
$\sqrt{s} = 350 \text{ GeV}$	l+jets, 1.5 ab-1	H. Khanpour, S. Khatibi, M.
$Br(t \to q\gamma)$	1.39×10^{-5}	Khatiri,
$Br(t \to qZ) \ (\sigma_{\mu\nu})$	1.99×10^{-5}	M. M. Najafabadi arXiv: 1408:2090
$Br(t \to qZ) \ (\gamma_{\mu})$	7.45×10^{-5}	B. Mele, S. Biswas

Very preliminary studies, large potential to achieve competitive limits. Big challenge coming from HL-LHC. Profits of synergy of 240 GeV and 350 GeV running

SUMMARY TABLE OF PLANNED STUDIES FOR CDR

➤very strong competition from HL-LHC on this topic (now it's a tie). We believe LC can still be competitive, but needs to be proven as a physic case.

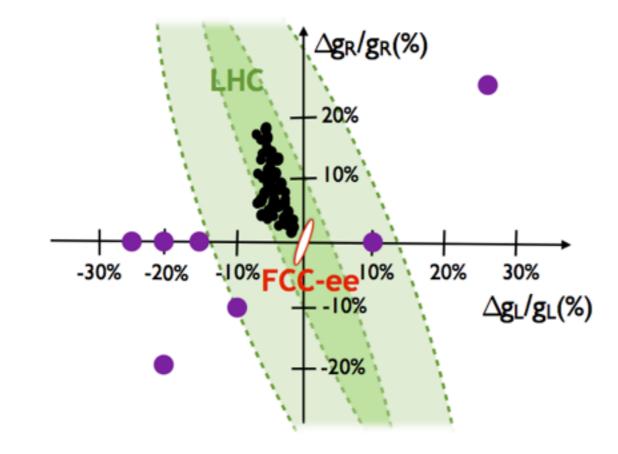
- ➤ Need to evaluate better the statistical but also the systematic power.
- ➤Assumption: to have a single anomalous vertex in the event (either production or decay). Combine all possibilities properly.
- ► Collaborating groups: IPN Teheran, CLIC (Naomi Van Der Kolk)
- ➤All analyses are being redone for FCCee CDR. Some with FullSim from CLIC, some with Delphes if we don't manage in time.

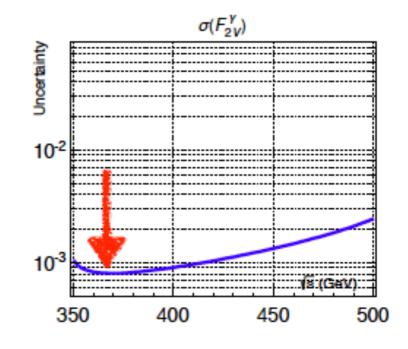

	@240 GeV Single top production	@350 GeV Single top production	@350 GeV pair top production
tqγ/tqZ I+jets final state	DONE	DONE	exists from CLIC/ILC
tqγ/tqZ all-jets final state	DONE	in progress	exist from CLIC
tcH/tqH	_	_	exists @500 In progress with ILC
tqg	_	_	exists @500

ELECTROWEAK COUPLINGS OF THE TOP QUARK (1)

- ≻ttZ, ttγ couplings can be enhanced in extra dimensions and (particularly) composite Higgs models
 - Directly probed in the tt production process at FCC-ee
- Profit of the fact that top polarization information is maximally transferred to its final state particles via the weak decay
- >Use lepton energy and angular distributions in top decay to disentangle ttZ from ttγ in I+jets
 - Sensitivity investigated in optimal observable analysis (confirmed by full simulation analysis)

Foppiani, Janot, Pajero

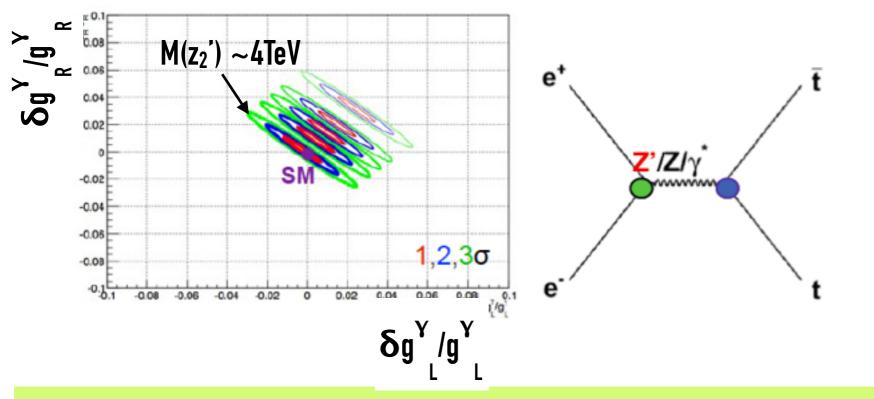

P. Janot arXiv: 1503.01325



ELECTROWEAK COUPLINGS OF THE TOP QUARK(2)

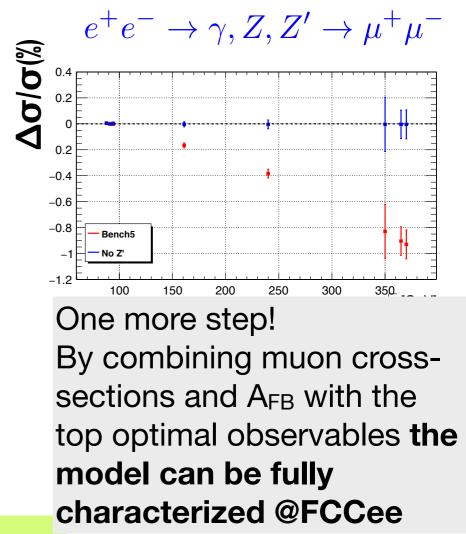
Large statistics and final state polarization allow a full separation of the ttZ/γ couplings with NO need for polarization in the initial state.

≻Optimal √s= 365-370 GeV


- Fit includes conservative assumptions detector performance
- Theory uncertainty on production mechanism dominates

FCC-ee expects precision of order 10⁻² to 10⁻³

BSM POTENTIAL: COMPOSITE HIGGS MODEL


► The CHM modification of the process arise via 3 effects:

- modification of the Zee coupling (negligible)
- modification of the Ztt coupling from mixing between top and extra fermions, mixing between Z and Z's
- s-channel exchange of the Z's (interference)

With FCC-ee precision sensitivity up to 4TeV Z' mass

Barducci, De Curtis, Moretti, Pruna 1311.3305

CONCLUSIONS

- the top physics program at FCCee is extremely rich due to:
 - the very high luminosity that can be collected
 - the possibility of runs at different(optimal) \sqrt{s}
- the measurement of the main parameters of the SM with unprecedented precision is a priority:

top mass precision at 10MeV ttZ/ttγ couplings at ~% indirect ttH coupling

 the opportunities offered for indirect effect of new physics in rare/forbidden/ FCNC processes are extremely interesting

sensitivity to CHM m(Z')~4 TeV

FCNC limits on tq(c)Z $\sim 10^{-4}/10^{-5}$

- These preliminary studies show that FCC-ee is able to achieve excellent precision on fundamental Top related measurements while:
 - very large √s energy running is not needed
 - beam polarization is not needed

ADDITIONAL PLANS & STUDIES FOR CDR

➤ Ongoing studies (not presented here) that will be included in the CDR:

- ► **Top mass @threshold**: extract a new measurement with the native FCC software
 - > Optimization of scan points: N. Foppiani still helping but will be leaving Italy
- New estimate for precisions on width and indirect extraction of the Yukawa coupling from threshold scan
 - ► F. Simon from CLIC confirmed help for CDR
- Update and optimize the FCNC analysis for I+jets and all-hadronic for the tqZ/γ vertex with some estimate of systematics as well.
 - Add the FCNC analysis for tcH vertex
 - ► New help from CLIC analyzers (N. Van Der Kolk)
- Continue the potential for characterization of BSM models via precision top measurement
 - ► Work from S. De Curtis/Moretti/Janot ... anything else?
- Can add detector studies using top final states.