Dark matter searches with H.E.S.S.

Björn Opitz¹, Universität Hamburg

on behalf of the H.E.S.S. collaboration

SciNeGHE, Assisi — October 8, 2009

¹bjoern.opitz@desy.de

Overview

Introduction

- Indirect search for dark matter
- Features of DM candidate particles
- Possible sources of a DM signal

2 H.E.S.S. searches

- Galactic centre
- Dwarf Spheroidals
- Intermediate mass black holes
- Extragalactic sources

Indirect search for dark matter

IF dark matter particles annihilate ... or decay:

- final states (usually) decay hadronically
 → production of very-high-energy (VHE) γ's by π₀ decay
- or production of $\gamma\gamma$ or γZ lines via loop processes
- \longrightarrow look for VHE γ 's *coming from* regions with high DM density \longrightarrow and for antimatter: diffuse flux of charged particles

Photon flux calculation: self-annihilation

• Differential flux:
$$\frac{d\Phi(\Delta\Omega, E_{\gamma})}{dE_{\gamma}} = \frac{1}{8\pi} \underbrace{\frac{\langle \sigma v \rangle}{m_{\text{DM}}^2} \frac{dN_{\gamma}}{dE_{\gamma}}}_{\text{particle physics}} \times \underbrace{\overline{J}(\Delta\Omega)\Delta\Omega}_{\text{astrophysics}}$$

• "halo factor":
$$\overline{J}(\Delta\Omega) = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{\text{Los.}} dl \cdot \rho^2(l)$$

• decaying DM: $\overline{J} \propto \int \rho \longrightarrow$ not considered

Summary & outlook

Features of DM candidate particles

Mostly studied: Supersymmetry ...

- of. David's talk ...
- continuous γ flux from neutralino annihilation
- here: peak from "virtual bremsstrahlung" [JHEP 0801,049 (2008)]
 — cf. Ripken et al., ICRC '09

... or extra dimensions

- first KK excitation *B*(1) as DM particle (here: 6 dim.)
- spectrum with hard cut-off [PRD 80,023512 (2009)]

Summary & outlook

Possible sources of a DM signal

Centre of the Milky Way

 H.E.S.S. source J1745-290 coincident with Sgr A* [arXiv:0811.0931]

Local clumps of dark matter

 DM "mini-spikes" [PRD 72,103517 (2005)] (and SciNeGHE 2007 proc.)

www.mpa-garching.mpg.de/aquarius

Summary & outlook

Possible sources of a DM signal (II)

Dwarf spheroidal galaxies [0902.3492]

- most extremely DM-dominated galaxies [ApJ 678,614 (2008)]
- high M/L
- no astrophysical γ-ray background!

(Clusters of) Galaxies

 DM predictions: [PRD 61,023514 (1999)], [A&A 455,21 (2006)]

"FREE EXTRA":

Cosmic ray electrons + positrons

Galactic centre

d = 8 kpc, $M\approx 10^6~M_{\odot}$

- Bonus: Nearby source of TeV photons
- Malus: Spectrum doesn't look like dark matter

PRL 97,221102 (2006)

- strong source coincident with Sgr A*
- spectrum well-fit by a power law with cut-off above 10 TeV [A&A 503,817 (2009)]
- un-identified astrophysical source produces *bulk* of emission

Fit of power-law background + DM signal models to spectrum \rightarrow robust calculation of upper limits: $\langle \sigma v \rangle \leq 1 \cdot 10^{-24} \text{ cm}^3/\text{s}$

Sagittarius Dwarf Spheroidal galaxy

d = 25 kpc, $M\approx 10^6~M_{\odot}$

- Bonus: Close, large dwarf spheroidal
- Malus: No signal. Upper limit on integrated flux (E_γ > 250 GeV)

Astrop. Phys. 29,55 (2008)

- 11 h of data
- $\Phi_{\text{Int}} \le 3.6 \cdot 10^{-12} \, / \text{cm}^2 \text{s}$
- Two diff. profile models (NFW): $\overline{J} = 2.2 \cdot 10^{24} \text{ GeV}^2/\text{cm}^5$ ("cusped"), $\overline{J} = 75 \cdot 10^{24} \text{ GeV}^2/\text{cm}^5$ ("cored")
- SUSY limit: $\langle \sigma v \rangle \leq 5 \cdot 10^{-24} \text{ cm}^{3}/\text{s}$
- KK limit: $\langle \sigma v \rangle \leq 1 \cdot 10^{-24} \text{ cm}^3/\text{s}$
- both for cusped NFW profile, at 95% C.L., for $m_{\chi} \sim$ 1 TeV

Canis major overdensity

d = 8 kpc, M = ?

- Bonus: Very close! Good candidate for DM signal.
- Malus: Status as a Dwarf Spheroidal under dispute. Properties not well constrained; tidally disrupted

black (red) points: MSSM models (WMAP OK)

ApJ 691,175 (2009)

- 9.6 h of data
- Assumptions: ${\rm M}_{\rm halo}\approx 3\cdot 10^8~{\rm M}_{\odot},$ NFW DM profile
- $\bullet \longrightarrow \overline{J} = 5.9 \cdot 10^{24} \ \mathrm{GeV^2/cm^5}$
- SUSY limit: $\langle \sigma v \rangle \leq 10^{-23} \text{ cm}^{3}/\text{s}$
- KK limit: $\langle \sigma v \rangle \leq 10^{-24} \text{ cm}^3/\text{s}$
- both at 95% C.L., for $m_{\chi} \sim$ 1 TeV

Intermediate mass black holes

d = ?, 10 < M < 10^6 M_{\odot}

- Bonus: Should exist! 100–1000 per galaxy? DM "mini-spikes"
- Malus: No unambiguous observation of IMBHs to date

PRD 78,072008 (2008)

- IMBH: from Pop-III stars or primordial halos
- use Galactic plane scan, excluding known sources
- assume \sim 100 IMBH in Milky Way halo
- SUSY limit: $\langle \sigma v \rangle \le 10^{-27}$ cm³/s for m_{χ} > 1 TeV (90 % C.L.)

Radio galaxy M87

d = 16 Mpc, M_{BH} = 10⁹ M_{\odot}

- Bonus: Extragalactic TeV γ source!
- Malus: Temporal variation, signal too strong for DM

Science 314,1424 (2006) ... and 24,444 (2009)

- strong flares → not DM
- low flux state above DM estimations
- MWL campaign: VHE γ's from core! (not resolvable with ACTs)
- cf. Marcos' talk

Coma cluster

z = 0.023, M pprox 10 15 M $_{\odot}$

- Bonus: Giant, heavy object
- Malus: No signal

arXiv:0907.0727

- 8 h of data
- no significant flux detection
- UL (99% CL, $E_{\gamma} > 1$ TeV): $\Phi \le 6 \cdot 10^{-13}$ /cm²s (factor ~ 100 above expected dark matter signal)
- constraints on non-DM models derived

Cosmic ray electrons (+ positrons)

d < 1 kpc, m_{e} = 4.6 \cdot 10 $^{-61}$ M_{\odot}

- Bonus: Coming from everywhere! e^+ (cut-off) as DM signal
- Malus: Coming from everywhere. No source backtracking.

PRL 101,261104 (2008) and arXiv:0905.0105

- elm. showers from extragal. regions with small γ flux (~5 % expected)
- large coll. area \longrightarrow high statistics
- hadronic background rejection: "electron likeness" parameter from simulations & Random Forest
- power law break at ~1 TeV, ATIC peak not seen, good agreement with Fermi

Summary of H.E.S.S. DM searches

No, we haven't seen it yet ...

- Searches for dark matter on different mass & distance scales
- H.E.S.S. results → (among the) most constraining DM limits from Cherenkov telescopes
- Limits on $\langle \sigma v \rangle$ vs. m_{χ} not reaching standard "thermal WIMP" / mSUGRA values (without substructure boosts)
- Cross-section limits dependent on DM halo uncertainties

H.E.S.S. obs.	GC	Sgr dSph	СМа	IMBH	M87
t _{obs} (h)	64	11	10	(~ 400)	89
d (kpc)	8	25	8	(?)	16000
Core mass (M_{\odot})	10 ⁶	10 ⁶	10^{6} (?)	(10 ⁵ ?)	>10 ⁹
UL: $\langle \sigma v \rangle$ (cm ³ /s)	10 ⁻²⁴	$5 \cdot 10^{-24}$	10^{-23}	10 ⁻²⁷	10 ⁻²²

Outlook

H.E.S.S. phase II

- 5th telescope: Ø 28m
- higher sensitivity
- $\bullet~$ E_{thr} lowered to $\sim 30~GeV$
 - \longrightarrow better coverage of WIMPy mass range
 - \longrightarrow overlap with Fermi
- first light next year

LHC

- (Re-) Start of operation: next month!
- But: Will [*enter your favourite new physics here*] be **the** dark matter as seen in the Universe?
- biodiversity of collider-based, direct and indirect searches!

 \longrightarrow more to come: **CTA**

Outlook (II)

Pre-preliminary: Analysis using spectral information

- using differential (d⊕/dE) flux limits from Sgr dSph ...
- assuming $\overline{J} = 2.2 \cdot 10^{24} \text{ GeV}^2/\text{cm}^5 \dots$
- for AMSB Wino models [Nucl. Phys. B 570,455 (2000)] ...
- ... part of the LHC-relevant parameter space might actually be excluded by H.E.S.S. measurements.

Introduction 0000

H.E.S.S. searches

Summary & outlook

Backup: e^{\pm} analysis – hadronic bkgr rejection

Summary & outlook

Backup: e^{\pm} analysis – KK peak with H.E.S.S.

Backup: Effects of internal bremsstrahlung

J. Ripken, ICRC 2009: Models excluded by GC observations

Summary & outlook

Backup: AMSB and the LHC

 Blue diamonds: LHC reach for AMSB models (A. Barr et al., [JHEP 03,045 (2003)])

• S. AbdusSalam et al.: Fit to low E observables [PRD 80,035017 (2009)]