Results from the ARGO-YBJ experiment at high altitude

Paolo Camarri on behalf of the ARGO-YBJ collaboration

University of Roma "Tor Vergata" and INFN

SciNeGHE 2009

Assisi, October 7-8-9, 2009

The ARGO-YBJ Experiment

Collaboration Institutes: \checkmark Chinese Academy of Science (CAS)
 Istituto Nazionale di Fisica Nucleare (INFN)

INFN and Dpt. di Fisica Universitù, Lecce INFN and Dpt. di Fisica Universita', Napoli INFN and Dpt. di Fisica Universita', Pavia INFN and Dpt di Fisica Università "Roma Tre", Roma INFN and Dpt. di Fisica Univesità "Tor Vergata", Roma INAF/IFSI and INFN, Torino
INAF/IASF, Palermo and INFN, Catania

IHEP, Beijing
Shandong University, Jinan
South West Jiaotong University, Chengdu
Tibet University, Lhasa
Yunnan University, Kunming
ZhengZhou University, ZhengZhou
Hong Kong University, Hong Kong

Outlook

- Introduction
- ARGO-YBJ detector features and performance
- γ-ray astronomy with ARGO-YBJ
- Cosmic-ray astronomy with ARGOYBJ
- Conclusions

Basic concepts

 for an unconventional air shower detector\& HIGH ALTITUDE SITE (YBJ, 4300 m a.s.I)

* FULL COVERAGE (RPC technology, 92\%)
* HIGH SEGMENTATION \rightarrow see next slides
... in order to:
\checkmark image the shower front
\checkmark reach an energy threshold of a few hundreds of GeV

Current status

- Data taking since November 2007
- Duty cycle ~ 90\%
- Trigger rate 3.6 kHz
- Dead time 4\%
- $220 \mathrm{~GB} /$ day transferred to CNAF

$$
\begin{aligned}
& \text { Physical Goals } \\
& \text { multi-purpose experiment }
\end{aligned}
$$

$>$ Sky survey $-10^{\circ}<\delta<70^{\circ}$ (γ-sources, anisotropies)
$>$ High exposure for flaring activity (γ-sources, GRBs, solar flares)
$>$ C.R. $1 \mathbf{T e V} \rightarrow 1 \mathbf{0}^{4} \mathbf{~ T e V ~}\left\{\begin{array}{l}\text { Helium spectrum } \\ \text { Proton "knee" } \\ \text { Knee region }\end{array}\right.$
$>\overline{\mathrm{p}} / \mathrm{p}$ at TeV energies
$>$ hadronic interactions
by 2 operation modes:

* scaler mode (counting rate, >1 GeV)
* shower mode (full reconstruction, $>300 \mathbf{G e V}$)

The ARGO-YBJ detector

Gas Mixture: Ar/ Iso/TFE = 15/10/75

The ARGO detector:

 operate

> Gas mixture: Ar / i-C
> $\mathrm{H}_{10} / \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{1}=15 / 10 / 75$
> Operating voltage =
> Single RPC absorpti 2 kV (10.2 kV at sea level) Single RPC count ra
> n current @ $7.2 \mathrm{kV}=3-4 \mu \mathrm{~A}$ @ $7.2 \mathrm{kV}=4 \mathrm{kHz}$

Digital and analog readout

Big Pad for charge read-out $\left(1.40 \times 1.25 \mathrm{~m}^{2}\right)$

Space time pixel

Pixel for digital
read-out
($6.7 \times 62 \mathrm{~cm}^{2}$)

Operation Modes

Shower Mode:

- Detection of Extensive Air Showers (direction, size, core ...) Trigger : minimum number of fired pads within 420 ns ≥ 20 fired pads on the central carpet: rate $\sim 3.6 \mathrm{kHz}$

Aims:

- cosmic-ray physics (above $\sim 1 \mathrm{TeV}$)
- VHE γ-astronomy (above $\sim 300 \mathrm{GeV}$)

Scaler Mode:

- Recording the counting rates ($\mathbf{N}_{\text {hit }} \geq 1, \geq 2, \geq 3, \geq 4$) for each cluster at fixed time intervals (every 0.5 s) lowers the energy threshold down to $\approx 1 \mathrm{GeV}$

[^0]
Environmental Parameters

- All the parameters relevant to the detector operation are regularly monitored: temperature, pressure, etc.

Temperature

Barometric Pressure

Detector stability

Accounting for the monitored changes in the atmospheric pressure the trigger rate is pretty stable, with relative fluctuation
~0.5\%@1ס

Shower recostruction

Fired pads on the carpet

Arrival time vs position

Arrival direction measurement:

- Core reconstruction: Maximum Likelihood Method applied to the lateral density profile of the shower
- Fit of the shower front with a conical shape

Strip

ARGO-130

ARGO-130

$\mathrm{E} \sim 1000 \mathrm{TeV}$

Big Pad
This will extend the dynamics of the detector up to and beyond 1 PeV
E 2009 - Assisi - October 8, 2009

γ astronomy

- Crab
- Mrk 421
- Sky survey/galactic plane
no $\gamma /$ h discrimination applied so far

Sources at > 3 б

Galactic

- Crab 7.8 б
- MGRO J2031+41 (LAT pulsar) 3.6 б
- PSR J2021+4026 (LAT pulsar, gamma Cygni SNR)
- HESS J1841-055 (unidentified)

Extragalactic

- Mrk421
- Blazar B3 0650+453 (FSRQ z=0.993) 3.2σ

Crab energy spectrum

$\mathbf{N}_{\text {PAD }}$	Events /day	$\mathbf{E}_{\text {med }}$ (TeV)
$40-$ 100	128 ± 24	0.85
$100-$ 300	$17.9 \pm$ 6.3	1.8
>300	9.2 ± 2.3	5.2

$\mathrm{dN} / \mathrm{dE}=(3.73 \pm 0.80) \cdot 10^{-11} \mathrm{E}^{-2.67 \pm 0.25} \mathrm{ev} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{TeV}^{-1}$

Mrk 421 X-rays ASM/RXTE

Mrk 421 - July-August 2006 (test data)

$$
\mathrm{N}_{\mathrm{PAD}}>40
$$

Excess distribution

obs. time ≈ 109 hours
Flux $\approx 3-4$ Crab

Mrk 421 - 2008

10 days average

Mrk 421 spectrum

(2008, days 41 - 180)

Integral flux ($\mathrm{E}>1 \mathrm{TeV}$)
$(4.9 \pm 2.0) \cdot 10^{-11} \mathrm{ev} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
$\approx 2 \times$ Crab
from: Primack et al.
AIP conf Proc 745, 23, 2005

Power law spectrum + EBL absorption :
$\mathrm{dN} / \mathrm{dE}=(7.5 \pm 1.7) \cdot 10^{-11} \mathrm{E}^{-2.51 \pm 0.29} \mathrm{e}^{-\tau(\mathrm{E})} \mathrm{ev} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{TeV}^{-1}$

Mrk 421 - June 2008

June 11-13, 2008

Event rate

$$
\mathbf{N}_{\text {PAD }}>100
$$

Expected from theoretical SED

SED

Galactic plane

542 days

$$
\mathrm{T}_{\text {obs }}=10 \mathrm{~h} \quad 10.7 \sigma
$$

Extension $0.8^{\circ} \quad 0.5^{\circ}$
$\mathrm{dN} / \mathrm{dE}=(1.28 \pm 0.13) 10^{-11} \mathrm{E}^{-2.41} \gamma \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{TeV}^{-1}$
for $\mathrm{E}=0.5-80 \mathrm{TeV}$
~ 30\% Crab
In ARGO: $8.5 \mathrm{ev} /$ day Aharonian et al., A\&A 477, 353-363 ciNcGHE 2000 - Assisis - October 8, 2009 (2008)

GRB

- Scaler mode 1-100 GeV
- Shower mode 10-1000 GeV
- Upper limits to the fluence ($\geq 10^{-5} \mathrm{erg} / \mathrm{cm}^{2}$)
- Upper limits to the cutoff energy as a function of the spectral index (1-100 GeV)

GRB Sample (for ICRC09)

\square Total number of GRBs analyzed: 66
. With known redshift: 11
L Long duration GRBs (>2s): 58
\square Short duration GRBs ($\leq 2 \mathrm{~s}$): 8

The distribution of the statistical significances
is compared with a

Referenced Papers

1) Search for Gamma Ray Bursts with the ARGO-YBJ detector in scaler mode, Astrophysical Journal 699 (2009) 128
\rightarrow Upper limits to the fluence of 62 GRBs (9 with redshift z) in the energy range $1-100 \mathrm{GeV}$
2) ARGO-YBJ constraints on very high energy emission from GRBs, Astroparticle Physics 32 (2009) 47
\rightarrow Upper limits to the fluence of 26 GRBs (6 with z) in the ranges $10-100 \mathrm{GeV}$ and $10-1000 \mathrm{GeV}$

GRB090902B

- Detected by Fermi GBM at 11:05:08 UT $\left(\mathrm{T}_{0}\right)$ and zenith angle $\theta=23.1^{\circ}$ (uncertainty $=1.0^{\circ}$), with a duration $\mathrm{T}_{90}=25 \mathrm{~s}$
- Detected by Fermi LAT at 11:05:15 UT (uncertainty = 2.4 '): within $100 \mathrm{~s} \rightarrow>30$ events with $\mathrm{E}>1 \mathrm{GeV}$ 82 s after $\mathrm{T}_{0} \rightarrow$ photon with $\mathrm{E}=33.4 \mathrm{GeV}$ (record!)
\longrightarrow extended emission at GeV energies (common feature of high energy emission?)
- Scaler data analysis

GRB090902B: Upper Limit

- The spectrum obtained with both GBM and LAT data is well fitted by a Band function + underlying single power law
- Fluences of the Band component: $\mathrm{F}=3.74 \cdot 10^{-4} \mathrm{erg} / \mathrm{cm}^{2}$ Fluence of the whole GBM + LAT emission:

$$
F(8 \mathrm{keV}-30 \mathrm{GeV})=4.86 \cdot 10^{-4} \mathrm{erg} / \mathrm{cm}^{2}
$$

- Extrapolated fluence, considering absorption in EBL ($\mathrm{z}=1.8$):

$$
\mathrm{F}(1-100 \mathrm{GeV})=5.9 \cdot 10^{-5} \mathrm{erg} / \mathrm{cm}^{2}
$$

- Upper limit to fluence during T_{90}, considering absorption:
- Upper limit to the cutoff energy, without absorption in EBL:

Cosmic Rays

- Medium scale anisotropies
- Moon shadow and the anti-p/p ratio
- Proton-air cross section

Medium scale anisotropy (preliminary)

542 days

ARGO sky survey
Smoothing window radius $=5^{\circ}$

2007 day 311-2009 day 220

Proton median energy $\approx 2 \mathrm{FeV}$
$-7.5 \longrightarrow 12.6 \mathrm{~s} . \mathrm{d}$.

MILAGRO

The Moon shadow on cosmic rays

- Size of the deficit \Rightarrow angular resolution

Position \Rightarrow pointing accuracy

- West displacement \Rightarrow Energy calibration

$$
\text { Geomagnetic bending } \approx 1.57^{\circ} \times \mathrm{Z} / \mathrm{E}(\mathrm{TeV})
$$

The angular width in the N-S direction

 using the Moon shadow

Based on the Robust method reconstruction

The Earth-Moon system as a spectroneter

The Moon shadow can be used to put limits on the antiparticle flux.

In fact, if protons are deflected
towards the West, antiprotons are deflected towards the East.

If the displacement is large and the angular resolution is small enough, we can distinguish between the 2 shadows.

If no event deficit on the antimatter side is observed, an upper limit on the antiproton content can be calculated.

Data $(2006+2007+2008)$

n Pad > 100
Significance: $\sim 43 \sigma$

9 standard deviations /month

2009 - Assisi - October 8, 2009

Moon shadow: all data $(2006+2007+2008)$

$$
N>60 \quad \theta<50^{\circ}
$$

≈ 9 standard deviations / month

Antiproton/proton ratio at TeV/energies

G. Di Sciascio et al. ICRC 2009
arXiv:0907.1164

Proton-air cross section measurement (to be published soon on PR D)

Use the shower frequency vs ($\sec \theta-1$)

$$
I(\theta)=I(0) \cdot e^{-\frac{h_{o}}{\Lambda}(\sec \theta-1)}
$$

for fixed energy and shower age.
The lenght Λ differs from the p interaction lenght mainly because of collision inelasticity, shower fluctuations and detector resolution.

It has been shown that $\Lambda=\mathrm{k} \lambda_{\mathrm{int}}$, where k is determined by simulations and depends on:

- hadronic interactions
- detector features and location (atm. depth)
- actual set of experimental observables
- analysis cuts
- energy, ...

Then:

$$
\sigma_{\text {p-Air }}(\mathrm{mb})=2.4 \cdot 10^{4} / \lambda_{\text {int }}\left(\mathrm{g} / \mathrm{cm}^{2}\right)
$$

Take care of shower fluctuations

- Constrain $X_{D O}=X_{d e t}-X_{0}$ or

$$
X_{D M}=X_{\text {det }}-X_{\max }
$$

- Select deep showers (large $X_{\max }$,
i.e. small $X_{D M}$)
- Exploit the detector features (spacetime pattern) and location (depth).

Experimental data

Clear exponential behaviour

Full consistency with MC simulation at each selection step

Weather effects, namely the atmospheric pressure dependence on time, have been shown to be at the level of less than 1%
$\mathrm{h}_{0}{ }^{\mathrm{MC}}=606.7 \mathrm{~g} / \mathrm{cm}^{2}$ (4300 m a.s.1. standard atm.)
$\mathrm{h}_{0}{ }^{\mathrm{MC}} / \mathrm{h}_{0}=0.988 \pm 0.007$

The proton-air cross section

ScinveGrie zouy - Assisi - Uctoder 0, zu09

Conclusions

- excellent detector performance
- smooth running of the experiment with good parameters
- duty cycle: 90\%
- trigger rate: 3.6 kHz
- dead time: 4\%
- minimum shower size: 20 particles
- Total integrated events > 2×10^{11}
- imaging of the shower front successfully implemented
- analysis to be extended beyond 100 TeV
- studies to improve the reconstruction and sensitivity in progress
- many relevant results on the road

Effective area for γ-ray detection in ARGO-YBJ

from optical to TeV energies

Donnarumma et al. ApJ 691 L13
 da â and
 - SWIFT (UVOT \& XRT; June 12-13)
 - AGILE (E > 100 MeV ; June 9-15)

- MAGIC and VERITAS (E>400 GeV; May 27 - June 8)
complemented by publicly-available data from
RossiXTE/ASM (2-12 keV) and Swift/BAT (15-50 keV).

SEDs for June 2008 flares

- The total proton-proton cross section, in an energy region so far unexplored by particle accelerators, has been inferred by using the Glauber theory. The result favours the $\log ^{2}(s)$ asymptotic behaviour.
- The analysis will be extended to larger energies (up to the PeV region), by using the analog RPC readout, now being implemented

Fiuence Upper Limits in the $1-100$

GeV

panae for GRBs with unknown redshift

Fluence upper limits (99% c.1.)
obtained extrapolating the keV power law spectra measured by satellites

Fluence upper limits (99% c.1.) obtained assuming a differential spectral index 2.5

Fluence Upper Limits in the $1-100 \mathrm{GeV}$ range for GRBs with known redshift

Fluence upper limits (99% c.l.) obtained with differential spectral indexes ranging from the value measured by satellites to 2.5

Conclusions

ARGO-YBJ has been taking data since Nov 2007 with duty cycle $>90 \%$

Results from the first year data :

- Angular resolution as expected
- Crab Nebula spectrum in agreement with other experiments
- Mrk421: - flare observed in 2006 with ARGO test data
- monitored during all 2008
- VHE flux correlated with X rays
- observed flare in June in only 3 days
- Studies to increase the sensitivity are in progress
- Confirmation of the Milagro cosmic rays hotspots
- Sky survey going on

Upper Limits to the Cutoff Energy

An upper limit on the GRB cutoff energy is given by the intersection of the fluence upper limit, as a function of the cutoff energy, with the extrapolation of the fluence measured by satellites

Sky Survey

Search independent of satellite detections

In EAS-TOP a search for clusters of N shower events in $\mathrm{t} \leq 10 \mathrm{~s}$ in a circular window with radius $\alpha=2.2 \times \sigma_{\text {res }}$ was carried out, where $\sigma_{\text {res }}$ was the detector angular resolution. The statistical significance of these clusters was then obtained from comparison with Poisson probability.

Possible search also for signals from evaporation of Primordial Black Holes ($\mathrm{M} \quad 10^{15} \mathrm{~g}$) on short timescales $\mathrm{t}($ Whipple $\rightarrow 1,3$ and 5 s$)$.

Absorption in the Extragalactic Background Light (EBL)

- GRB paper in single mode \rightarrow model of Kneiske et al. (2004)
- Paper on Mrk421 \rightarrow model of Primack et al. (2005)
- GRB paper in shower mode \rightarrow model of Franceschini et al. (2008)

GRBs observed by LAI on Fermi

GRB	SAT	$T(s)$	$\left(^{\circ}\right)$	z	
080825C	Fermi	22	56.2	\sim	2.34
080916C	Fermi	66	95.2	4.35	2.26
081024B	Fermi	0.4	104	\sim	1.24
081215A	Fermi	7.7	35.9	\sim	2.066
090217	Fermi	32.8	109	\sim	CPL
090323	Fermi	150	74.1	3.57	CPL
090328A	Fermi	80	158	0.736	2.05
090510A	Swift	0.3	57.4	0.903	0.98
090626	Fermi	70	111	\sim	Band
090902B	Fermi	25	23.1	1.822	1.94

GRB090902B: Scaler Data Analvsis

300 s around T 90 (bins of $t=0.5 \mathrm{~s}$)

127 "good" clusters

Search on different timescales t
$\mathrm{T} 90=25 \mathrm{~s} \rightarrow \quad=1.12$
$\mathrm{t}=90 \mathrm{~s}$ (extended emission) $\rightarrow \quad \tilde{=} 0.50$
$\mathrm{t}=\mathrm{T}_{0}+6 \quad \mathrm{~T}_{0}+26 \mathrm{~s}$ (maximum density of $>1 \mathrm{GeV}$ events) $\rightarrow \quad=1.16$
$\mathrm{t}=\mathrm{T}_{0}+82 \quad \mathrm{~T}_{0}+83 \mathrm{~s}$ (time of the 33 GeV photon) $\rightarrow \quad=0.74$

GRB090902B: Upper Limit

- The spectrum obtained with both GBM and LAT data is well fitted by a Band function + underlying single power law
- Fluences of the Band component: $\mathrm{F}=3.74 \quad 10^{4} \mathrm{erg} / \mathrm{cm}^{2}$ Fluence of the whole GBM + LAT emission:

$$
\mathrm{F}(8 \mathrm{keV} 30 \mathrm{GeV})=4.86 \quad 10^{4} \mathrm{erg} / \mathrm{cm}^{2}
$$

- Extrapolated fluence, considering absorption in EBL (z =1.8):

$$
\mathrm{F}(\tilde{1} 100 \mathrm{GeV})=5.9 \quad 10^{5} \mathrm{erg} / \mathrm{cm}^{2}
$$

- Upper limit to fluence during T90, considering absorption:

$$
F(\tilde{1} 100 \mathrm{GeV})=1.4 \quad 10^{4} \mathrm{erg} / \mathrm{cm}^{2}
$$

- Upper limit to the cutoff energy, without absorption in EBL:

$$
\mathrm{E}_{\text {cut }}=130 \mathrm{GeV}_{\text {Scincche } 2009-\text { Assisi- October 8, } 2009}
$$

Other gamma rays sources....

115 Fermi Lat sources

44 TeV sources

135 sources

135 Fermi Lat + TeV sources

The Moon Shadow

Хоб $\mu \imath \chi \rho \alpha \psi \sigma \alpha \rho \varepsilon ~ \eta \alpha \mu \pi \varepsilon \rho \varepsilon \delta \beta \psi \tau \eta \varepsilon$ Moov

$\Delta \varepsilon \phi \downarrow \chi \iota \tau$ оф хобرux $\rho \propto \chi \psi \sigma$ uv

Гєо $\mu \alpha \gamma \vee \varepsilon \tau \iota \chi$ Фı $\lambda \lambda \delta: \pi 0 \sigma \iota \tau \iota \varpi \varepsilon \lambda \psi ~ \chi \eta \alpha \rho \gamma \varepsilon \delta$ $\pi \alpha \rho \tau \iota \chi \lambda \varepsilon \sigma$ $\delta \varepsilon \phi \lambda \varepsilon \chi \tau \varepsilon \delta \tau о \omega \alpha \rho \delta \sigma \tau \eta \varepsilon \Omega \varepsilon \sigma \tau \alpha \sim \delta$
 E $\alpha \sigma \tau$.

 $\pi \rho \circ \varpi \iota \delta \varepsilon \alpha \delta \iota \rho \varepsilon \chi \tau \chi \eta \varepsilon \chi \kappa$ оф $\tau \eta \varepsilon \rho \varepsilon \lambda \alpha \tau \iota \circ v$ $\beta \varepsilon \tau \omega \varepsilon \varepsilon v$ бוֹє $\alpha v \delta \pi \rho \imath \mu \alpha \rho \psi \varepsilon v \varepsilon \rho \gamma \psi$ Evepp\% qoùıßpoutiov

section

- No p-p (and pbar-p) accelerator data available at these energies
- The $\log ^{2}(\mathrm{~s})$ asymptotic behaviour is favoured

Percent variation

MX E๘єvт $\delta \iota \sigma \pi \lambda \alpha \psi$

Strip

ARGO-130

PadXY
Entries 9855
$\begin{array}{ll}\text { Mean x } & 32.17\end{array}$
Mean $y \quad 33.45$
RMS $\mathrm{x} \quad 20.58$
RMS y 19.87

E $\quad 100 \mathrm{TeV}$

E $\quad 1000 \mathrm{TeV}$

Strip

ARGO-130

E $\quad 100 \mathrm{TeV}$

Strip Big Pad

ARGO \& ICECUBE muons

$\mathrm{E} \sim 100 \mathrm{TeV}$

Strip

Big Pad

$\mathrm{E} \sim 1000 \mathrm{TeV}$

ARGO-130

Strip

Big Pad

Gamma Rays vs X-rays in 2008

10 days
average

[^0]: Aims:

 - flaring phenomena (high energy tail of GRBs, solar flares)
 - detector and environment monitor

