The PAMELA Space Mission for Antimatter and Dark Matter Searches in Cosmic Rays

> F.S. Cafagna, INFN Bari on behalf of the PAMELA Collaboration

PAMELA Collaboration

PAMELA Science

PAMELA as a Space Observatory @ 1AU

EXOTIC MATTER AND COSMIC RAYS

F.S. Cafagna, SCINEGHE 2009, Assisi 7th Oct. 2009

INFN

PAMELA Science

Protons

PAMELA Science

PAMELA detectors

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

PAMELA detectors

Main requirements → high-sensitivity antiparticle identification and precise momentum measure

Design Performance

_		
•	Antiprotons	80 MeV - 150 GeV
•	Positrons	50 MeV – 270 GeV
•	Electrons	up to 400 GeV
•	Protons	up to 700 GeV
•	Electrons+positrons	up to 2 TeV
		(calorimeter alone)
•	Light Nuclei (He/Be/C) up to 200 GeV/n
•	AntiNuclei search	sensitivity of 3x10 ⁻⁸ in He/He
	→ Simultaneous measuren	nent of many cosmic-ray species
	\rightarrow New energy range	
	→ Unprecedented statistic	S

PAMELA: the integration

PameLa

The Resurs DK-1 spacecraft

3. Cafagna, SCINEGHE 2009, Assisi 7th Oct. 2009

PaMé

the satellite & launch

- Launch from Baikonur: June 15th 2006, 0800 UTC. Power On: June 21st 2006, 0300 UTC. Detectors operated as expected after launch
- PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006
 - ~1200 days of data taking (~73% livetime)
 - ~14 TByte of raw data downlinked
 - >1.4x10⁹ triggers recorded and under analysis

Antiproton to Proton Ratio

Antiproton Flux

Fraction of charge released along the calorimeter track

Energy (calo) – Momentum (spectrometer) match

- Tuning/check of selection criteria using:
 - test-beam data
 - simulation
 - flight data: dE/dx from spectrometer & neutron yield from ND
- Selection of pure proton sample from flight data ("pre-sampler" method):
 - Background-suppression method
 - Background-estimation method
- Final results DON'T MAKE USE of test-beam and/or simulation calibrations.

The "pre-sampler" method The electromagnetic calorimeter

Characteristics:

- 44 Si layers (X/Y) +22 W planes
- 16.3 X_o / 0.6 I_o
- 4224 channels
- Dynamic range 1400 mip
- Self-trigger mode (> 300 GeV GF~600 cm² sr)

ROTON SELECTION

2 W planes: ≈1.5 X₀

20 W planes: ≈15 X₀

The "pre-sampler" method The electromagnetic calorimeter

Characteristics:

- 44 Si layers (X/Y) +22 W planes
- 16.3 X_o / 0.6 I₀
- 4224 channels
- Dynamic range 1400 mip
- Self-trigger mode (> 300 GeV GF~600 cm² sr)

e⁺ background estimation from data

Positron to All Electron Fraction

Positron to Electron Fraction

DM ?

 PAMELA ability of measuring both proton and electron charge ration, make it possible to put several constrains to the models

arXiv:0809.2409v3

DM ?

I. Cholis et al. arXiv:0811.3641v1

NFN

• Propose a new light boson (m $_{\Phi} \leq \text{GeV}$), such that $\chi\chi \rightarrow \Phi\Phi$; $\Phi \rightarrow e^+e^-$, $\mu^+\mu^-$, ... • Light boson, so decays to antiprotons are kinematically suppressed

Example: Dark Matter

Kaluza-Klein dark matter

Majorana DM with **new** internal bremsstrahlung correction. NB: requires annihilation cross-section to be 'boosted' by >1000.

Wino Dark Matter in a non-thermal Universe

G. Kane, R. Lu, and S. Watson arXiv:0906.4765v3 [astro-ph]

Positrons from Pulsar

Pamela

Antiprotons & positrons from old SNR's

Pameta

₫/d

Standard Positron Fraction Theoretical Uncertainties

Pamela

Conclusions

- PAMELA is a permanent cosmic ray space laboratory (a three year mission extension has been approved).
- PAMELA is the first space experiment which is measuring the antiproton and positron cosmic-ray components to the high energies (10²GeV) with an unprecedented statistical precision.
- Antiparticle fluxes are an exciting tools to study DM characteristics. Stay tuned for fluxes ... THANKS !!!!

