ASTROPARTICLE PHYSICS **** WITH AMS02

Marco Incagli - INFN Pisa SCINEGHE - 7 oct 2009

Primary Component in e[±]

* PAMELA has observed an increase in the positron fraction, confirming previous hints from other experiments like HEAT and AMS01; Fermi has confirmed the excess in e⁺+e⁻ spectrum

* The most likely interpretation is that an <u>additional primary</u> <u>source of high energy e[±] exists</u> or a secondary acceleration mechanism is at work

***** For a discussion on alternatives see Serpico arXiv:0810.4846

What is this "primary" component?

1. Conventional sources:

1. pulsar emission

2. cosmic rays reacceleration (I will use "primary" also for this, although it really is an acceleration of secondaries)

2. Non conventional sources:

1. dark matter annihilation/decay

3. <u>A combination of the above</u>

Pulsar emission

* Neutron stars with magnetic axis forming an angle with rotation axis

* Dipole emission with photons converted in e⁺e⁻ pairs (no pp pairs produced!)

 Data are reproduced assuming a cutoff at ~600GeV and a production efficiency of 5-10%

Pulsar age is ~10⁵
 years : only few in
 our vicinity (~kpc)

Left: Contributions to the positron spectrum from B0656+14, Geminga and pulsars with D > 400 pc and positron fraction (right) for a Galactic pulsar birthrate of $1/25 \text{ yr}^{-1}$, injection spectrum $\propto E^{-1.5} \exp(-E/600 \text{GeV})$ and $3 \times 10^{47} \text{ erg}$ in pairs.

Cosmic Rays reacceleration

- * Fermi mechanism: cosmic rays are accelerated in interactions with supernovae shock waves
- * Reacceleration (Blasi PRL 103,051104(2009)): when secondaries are produced inside the acceleration region
- * The same mechanism produces an excess in antiprotons

Dark Matter

WMAP:

 $\langle \bullet \rangle$

$\Omega_{\rm M}h^2 = 0.135 \pm 0.008; \ \Omega_{\rm b}h^2 = 0.0224 \pm 0.0009$

* Dark Matter makes up ~85% of existing matter in the universe

* Many candidates for Dark Matter exist, with cross sections and masses spanning a wide range of values

Type	Particle Spin	Approximate Mass Scale
Axion	0	$\mu eV-meV$
Inert Higgs Doublet	0	$50 {\rm GeV}$
Sterile Neutrino	1/2	keV
Neutralino	1/2	10 GeV - 10 TeV
Kaluza-Klein UED	1	TeV

Bergstrom

WIMPs (Weakly Interacting Massive Particles)

7

* however WIMPs have some special characteristics:

singular coincidence between
 Particle Standard Model and
 Cosmological Model to provide
 valid candidates at the TeV scale

"Stolen" from A.Masiero SIF09 - see his talk for details

Ex: a particle \checkmark , in thermal equilibrium with photons, annihilates with a cross section $\delta_A \sim \checkmark/m^2$

It's relic density depends on particle physics (δ_A) and on cosmological quantities (T₀, G, ...)

$$\Omega_{\chi} h^2 \simeq const. \cdot \frac{T_0^3}{M_{\rm Pl}^3 \langle \sigma_A v \rangle} \simeq \frac{0.1 \ {\rm pb} \cdot c}{\langle \sigma_A v \rangle}$$

If $m_{\sim} 10^2 - 10^3 \text{GeV} \implies \sqrt{h^2 - 10^2 - 10^{-1}}$

WIMPs (Weakly Interacting Massive Particles)

8

* however WIMPs have some special characteristics:

- 1. singular coincidence between Particle Standard Model and Cosmological Model to provide valid candidates at the TeV scale
- 2. DM candidates "naturally" exist in theories built non ad hoc: *neutralinos (SUSY), KK particles (Extra Dimensions), inert Higgs (to cancel A² terms at 1 loop)*

5				
	1) ENLARGEMENT OF THE SM	SUSY (x ^μ , θ)	EXTRA DIM. (x ^{µ,} j ⁱ)	LITTLE HIGGS. SM part + new part
1		Anticomm. Coord.	New bosonic Coord.	to cancel Λ ² at 1-Loop
l	2) SELECTION RULE	R-PARITY LSP	KK-PARITY LKP	T-PARITY LTP
l	DISCRETE SYMM.	Neutralino spin 1/2	spin1	spin0
	+STABLE NEW PART.			
I	3) FIND REGION (S)	mLSP	m _{LKP}	↓ m _{iTP}
I	PARAM. SPACE	~100 - 200	~600 - 800	~400 - 800
	PART. IS NEUTRAL + $\Omega_L h^2$ OK	GeV	GeV	GeV
			$X X \to W^+ V$	$V^- \rightarrow e^+ + \nu_e + W^-$
	example in SUS	SY therory:	$x x \rightarrow$	$b\overline{b} \rightarrow e^+ + X$
	neutralino annih production of photons, antipro	ilation and bositrons, tons and	$\begin{array}{c} x x \rightarrow y \\ x x \rightarrow hadron \end{array}$	$(via \ loops)$ $s \to \pi^0 + X \to \gamma \gamma + X$
l	antideuterons		VV	duana (A) V
			$\chi \chi \rightarrow h d$	p + 1
			$X X \rightarrow h c$	$arons \rightarrow D + Y$

"Stolen" from A.Masiero SIF09 - see his talk for details

How is it possible to discriminate among different solutions?

9

1. Collect high statistics with improved resolution in a larger energy window (= *more and better* approach): example prePAMELA vs postPAMELA

2. Compare different channels and constraint the theory (= *biodiversity* approach): *more later*

+ Roberta Sparvoli + May 4th, 2009 + Tango in Paris

The richness of biodiversity

* A Dark Matter candidate of $M_{\tau}=150$ GeV which decays in W⁺W⁻ well explains *positrons data*, but it fails in describing e^++e^- *flux*, as measured by ATIC and FERMI, and *antiproton/proton ratio*, measured by PAMELA

M.Incagli - INFN Pisa

 $\langle \bullet \rangle$

10

DM discovered?

* ...maybe not! Rather unnatural (mostly $\tau^+\tau^-$) and large boost required

11

M.Incagli - INFN Pisa

Other ingredients to make predictions

* The flux measured on the earth has many contributions:

background due to "standard" cosmic rays: depends on production mechanism, propagation, acceleration, confinement in our galaxy, interactions with InterStellar Medium, ...

"signal" due to eventual DM: depends on DM density (squared!), on propagation, ...

* A new generation experiment should be able to constraint, as much as possible, all these additional sources of incertitude

COSMIC RAYS: many incertitudes in production and propagation mechanisms

> These incertitudes affect both the background prediction and the signal propagation from production to detection, in particular for charged particles

COSMIC RAYS: production and propagation

COSMIC RAYS: production and propagation

	stable	δ decay	K capture
primary CR	big bang and stellar	age of the origin material	Delay between synthesis
	nucleosynthesis	(U, Pu, Cm, …)	and acceleration (⁵⁶ Ni, ⁵⁷ Co)
secondary CR	diffusion process	galaxy confinement time	Energy changes
(dependent from ISM)	(B/C, sub-Fe/Fe)	(¹⁰ Be, ²⁶ AI, ³⁶ CI, ⁵⁴ Mn)	(decelerations)
		Biss (700W) Will (1200W) Ferror et al. (1995) Webby et al. (1995) 3He/4He 10 ⁻¹ E _{kin} (GeV/nuc) 1 0 1 0 1 5 1 0 1 0 	ISOMAX (top-of-instrument) SMILI Voyager Webber Buffington IMP8 0.1 0.1 0.1 0.1 0.1 0.1 0.1

COSMIC RAYS: production and propagation

	stable	δ decay	K capture
primary CR	big bang and stellar nucleosynthesis	age of the origin material (U, Pu, Cm, …)	Delay between synthesis and acceleration (⁵⁶ Ni, ⁵⁷ Co)
secondary CR (dependent from ISM)	diffusion process (B/C, sub-Fe/Fe)	galaxy confinement time (¹⁰ Be, ²⁶ Al, ³⁶ Cl, ⁵⁴ Mn)	Energy changes (decelerations)
Our Galaxy		SNR Shock Wave	> 10 ⁵ y Source
		0.5 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	SOMMX CNES/SIS UNES/SIS UNES/SIS UNESES UNESES Messoler Mass Mas
AWIS-U2	10 ⁻²	$\frac{halflife(y)}{10^4 10^5 10^6 10^7 10^8}$	10Be/9Be 10 ⁻¹ 1 10 E _{kin} (GeV/nuc)

A general purpose experiment

* In summary, an experiment aiming to settle these issues needs:

- Magnetic field: positive vs negative charge
- **Good calorimeter:** e + vsp (easier for negative charge)
- Way to distinguish Z and A: background predictions and signal propagation
- * Large statistics: flux $\sim E(GeV)^{-3}$ so large geometrical acceptance and long integration time necessary to reach E ~ 1 TeV
- **Optimal localization:** outside atmosphere to see primaries

 \bigotimes

AMS02 performances: rigidity

$R = B\rho = \frac{p}{eZ}$

The AMS-02 Si Tracker + magnet:

- Permanent dipole magnet B=0.8T
- Silicon double-sided sensors
- 8 layers arranged in 5 planes
- Resolution < 10 μ m in the bending direction
- A rigidity determination of 2% at 10 GV

AMS02 performances: e/p separation with ECAL

✓ Lead-SciFi calorimeter with 17.2 X_0 & 0.8 δ_i

✓ Energy resolution with ECAL <2% at E>50GeV

 ✓ Discriminant variables used to characterize electromagnetic behavior: electron efficiency
 >95%, proton reduction ~10³

TEST BEAM DATA

AMS02 performances: e/p separation with TRD

20 layers of Xe/CO2 filled straw tubes for dE/dx Transition Radiation x-ray detection

 $\langle \bullet \rangle$

AMS02 performances: velocity measurement in RICH and TOF

Redundant measurements

- **RICH**: δ with $\delta\delta/\delta = 0.01\%$
- TOF: $\delta = \delta L/\delta t$ with $\delta \delta / \delta = 1\%$

AMSO2 performances: mass measurement

The AMS-02 spectrometry

- Tracker for rigidity and charge
- RICH for velocity and charge
- Isotopic distinction up to 10 GeV/n

SCINEGHE2009

M.Incagli - INFN Pisa

 \diamond

AMS02 performances: charge measurement

The charge evaluation is redundant

- Tracker, TOF, ECAL: energy deposition by ionization
- RICH: number of photons in the Cherenkov ring.

SCINEGHE2009

AMS02 on the ISS

* The experiment will be installed on the ISS

* >3 years
mission with
magnetic field

* acceptance =
 0.24m²sr
 (0.08m²sr with
 ECAL)

Precursor flight: AMS01

M.Incagli - INFN Pisa

SCINEGHE2009

SPACE SHUTTLE PROGRAM Space Shuttle Flight Operations and Integration Office NASA Johnson Space Center, Houston, Texas

AMS-2 will fly on board of STS-134

AMS-2 takes ~1/4 of shuttle cargo bay

Colonel Roberto Vittori will be part of the crew which will fly on STS-134 in this 13 days mission

Dace

<u>CR# S072134</u> Baseline STS-134 in the Flight Definition and Requirements Document (FDRD)

June 25, 2009 – PRCB

MO3/Shelby Lawson Mission Integration Mgr.

Shuttle manifest

M.Incagli - INFN Pisa

28

SCINEGHE2009

Space Shuttle	SPACE SHUTTLE PROGRA Space Shuttle Flight Operations NASA Johnson Space Center, Houston, Texas	AM s and Integration Office		NASA
Program	STS-134 (ISS-ULF6) T	imeline Overview	Presenter Shelby Law	'son
-			June 2009	Page 29
FD1	Launch			
FD2	SRMS Checkout; OBSS Survey; EMU	Checkout; EVA Tool Config		
FD3 DTO-	RPM, Rendezvous w/ Station & dock 703; Ingress Station; Midde	o PMA2 (on Node 2 forward port); (ck transfers; Deploy ELC3 from Shu	Orion RNS uttle PLB to ISS P3	Upper
FD4	Deploy AMS-02 from Shuttle PLB to I	SS S3 Upper Inboard CAS, EVA Prei	D	
FD5	EVA 1 – Transfer MISSE 8 from PLB t	ISS. Return MISSE 7a & 7b from E	LC2 to PLB side	walls
FD6	Focused Inspection (if required), Wa	er Dump, EVA Prep		
FD7	EVA2 – Clean/lubricate Starboard ar	d Port SARJ		
FD8	Late Inspection, Off Duty, EVA Prep			
FD9	EVA 3 – Transfer and stow Integrated Install PDGF on I	Boom Assembly from PLB to S1 T S; Middeck Transfers	russ OSE;	
FD10	Off duty, Crew Conference, GLACIER	stow, Hatch Close		
FD11	Undock from ISS; Flyaround; Re-ren	dezvous for Orion RNS DTO-703		
FD12	Cabin Stow, Water Dump, FCS C/O			
FD13	Deorbit Prep, Landing			
	AMS 4th	deployment fores mission day: <u>1 aug</u>	een on g 2010	

AMS status

AMS has been pre-integrated without the solenoid to check mechanical interferences and to test the DAQ system

* Several months of cosmic ray runs with the detector in different configurations

SCINEGHE2009

M.Incagli - INFN Pisa

Magnetic field map Field stability measured with NMR probe

* Then the detector has been disassembled, the magnet switched on and the field mapped: field decay at 1.1% per year

M.Incagli - INFN Pisa

AMS02 schedule

* October-november 2009: flight integration and magnet cool down

* At the end of november AMS02 will leave (forever) the clean room in CERN Prevessin site for the following operations:

Major tasks after leaving CERN				
Task	Start date	Offset from previous task	Duration (Elapsed Days)	End date
Beam Test operations	27-nov-09	0	20	17-dic-09
ESTEC operations (TVT & EMI)	17-dic-09	٥	87	14-mar-10
KSC operations	14-mar-10	0	122	14-lug-10

* ready for the flight of july 29!

Physics in AMS: Cosmic Rays propagation

* AMS02 can collect > 10⁶ particles in each of the channel described below in order to constraint with good precision CR propagation and confinement properties

33

SCINEGHE2009

Physics in AMS: DM indirect search

 Positrons, gammas, antiprotons and antideuterons are optimal channels for the indirect detection of dark matter. Examples:

$$\begin{array}{c} X X \to W^+ W^- \to e^+ + \nu_e + W^- \\ X X \to b \,\overline{b} \to e^+ + X \end{array}$$

 $\begin{array}{c} X X \rightarrow \gamma \gamma & \text{(via loops)} \\ X X \rightarrow hadrons \rightarrow \pi^0 + X \rightarrow \gamma \gamma + X \end{array}$

 $\begin{array}{c} X X \rightarrow hadrons \rightarrow \overline{p} + Y \\ X X \rightarrow hadrons \rightarrow \overline{D} + Y \end{array}$

Antiprotons

* Main background: protons from charge misreconstruction

* Antiprotons can discriminate among different contributions: pulsars (no antip), cosmic ray reacceleration, DM

CR reacceleration: Blasi, 09

M.Incagli - INFN Pisa

 $\langle \bullet \rangle$

35

SCINEGHE2009

What about antideuterons?

- Antideuterons are produced by antip, antid coalescence after qq hadronization
- * A new recent calculation (СЕRN-РН-ТН/2009-149) has increased the coalescence probability due to the jet-like structure of the high mass DM-DM interactions
- * AMS sensitivity is below $10^{-7} (m^2 s sr)^{-1}$, so few antid events could be observed

Antid production
 for DM mass
 0.1-30TeV

 filled histogram: secondary antid production

10

 \overline{d} kinetic energy T in GeV/n

10

10-7

10-8

10-1

1

 $\Gamma \times d\Phi_{a}/dT$ in $1/m^2 \sec st$

36

SCINEGHE2009

103

102

electrons/positrons

ECAL standalone rejection at ~10³
 Combined with Tracker (E/p matching) and TRD a p suppression of ~10⁶ is achieved

* e+,e- spectra free from background from hadrons

Positron absolute spectrum can be measured up to ~500GeV or more (depending on spectral shape)

Photons in AMS02

Two δ *detection modes in AMS-02*

Photon conversion direction from Tracker, energy from Tracker+ECAL Single photon direction and angle from ECAL

<u>Main bg: δ rays</u> Rejection factor: >10⁵(p), 4.10⁴(e) [TRD veto, invariant mass]

<u>Main bg: secondaries: δ from p interactions</u> Rejection power: 5.10⁶ [veto on hits, δ direction]

M.Incagli - INFN Pisa

In spite of the smaller (with respect to FERMI) field of view, the good angular and energy resolutions make AMS a competitive actor also for photon physics

Summary

* PAMELA, Fermi and other previous experiments have shown the presence of a "primary" component in the electron/positron spectrum in the region 10-1000GeV

* This energy region is of particular interest for Dark Matter search

* The contemporary measurement of positron+antiproton+antid +photon fluxes, together with the measurement of nuclei with Z>1, is the best tool to establish the nature of this component

* The AMS02 experiment, which will start taking data on august 2010, has the capabilities of performing all these measurements