Pierre Auger Observatory studying the universe's highest energy particles

The AUGER Experiment

D. Martello Department of Physics University of Salento & INFN Lecce

The Pierre Auger Collaboration

Argentina Australia **Bolivia** Brazil Croatia Czech Rep. France Germany Italy **Mexico Netherlands Poland Portugal** Slovenia Spain UK USA Vietnam

Auger: unprecedented statistics \leftarrow ≈ 3000 evts/yr with and precision $E > 10^{19} eV$

Hybrid Detector:

Array of 1600 water Cherenkov detectors covering 3000 km² duty cycle: 100%

Fluorescence telescopes 24 FDs (30°×30° each) duty cycle: 10%

Better geometric reconstruction, cross-calibration, control of systematic.

The Surface Detector

The Surface Detector (SD)

The Surface Detector (SD)

FD vs SD

	SD-only	FD-only	Hybrid
Duty-cycle	~100%	~10%	~10%
Angular resolution	1-2 deg	3-5 deg	0.2 deg
Energy	C & M depend	independent	independent
Aperture	independent	E, C, M depend	independent
Energy Thr.	~10 ^{18.5} eV	~10 ^{17,5} eV	~10 ¹⁸ eV

E = Energy, M = Interaction Model, C = Composition

Hybrid events used to calibrate SD detector

795 high quality hybrid events

Energy resolution 17 %

The UHECRs

Are the UHECR Charged "Standard" Particles?

Particles Type

Neutrino detection with AUGER

No neutrino like events detected!

Identification of Photon Induced Showers

Depth of shower maximum (Xmax)

Fluorescence Detector

Astrop. Phys. 31 (2009) 399

Photon-induced shower is expected to develop deeper

Smaller radius of curvature Higher rise-time of the detector signal Smaller number of muons (Nµ) at ground Astrop. Phys. 29 (2008) 243

Surface Detector

Searching for photons: the SD side

No photon candidates!

E_{\min}	N_{γ}	$\mathcal{N}_{\gamma}^{0.95}$	$N_{\mathrm{non}-\gamma}$	ε	$\mathcal{F}_{0.95}$
10	0	3.0	570	0.53	2.0%
20	0	3.0	145	0.81	5.1%
40	0	3.0	21	0.92	31%

Searching for photons: the FD side

Photon Proton Iron

1800

Top Top-down models severely constrained! The FD FD-hybrid limit complements the array results and extends to lower energies

The extended site in the Northern Hemisphere would help (~factor7)

The Greisen Zatsepin Kuzmin prediction

The ankle is about in the expected place. A steepening is found at energy of about 2.9×10^{19} eV

Probably the AUGER steepening means that the CRs are protons

The measured spectrum is well in agreement with a GZK hypothesis. SHDM subdominant scenario is severely constrained

Arrival Direction

Highest-energy particles must be extragalactic

Deflection < 1°

Above $E \approx 5^{*}10^{19}$ eV, protons loose rapidly energy via pion photoproduction. Energy loss $\approx 15 \%$ / interaction. Interaction length ≈ 10 Mpc

If UHECR are protons then they direction distribution must be anisotropy The higher energy Cosmic Rays can open a new window for astronomy

The probability for an isotropy distribution is $P \sim 10^{-5}$ Consistent with the Protons Hypothesis

Region of the sky with galactic latitude $|b| < 12^{\circ}$ is also indicated

Arrival Direction

	Number of events E > 55 EeV	Correlated with AGN $\psi = 3.1$ degree	Expected for isotropy
Data August 2007 (Science paper)	27	18	5.7
Excluding band on galactic plane (b > 12 degree)	21	17	5.3
Data March 2009	58	26	12.2
Excluding band on galactic plane (b > 12 degree)	45	25	11.3

Probability of isotropic distribution: 6x10⁻³ (2x10⁻³)

17/44 post scan events correlate still preferred an anisotropic distribution

Assuming only CenA as CRs detectable source 2% chance probability for isotropic distribution

Other catalogues are used Swift-BAT uniform, hard X-ray 261 Seyfert galaxies 2MRS vol selected 1940 brightest from 2MASS cat. HIPASS 3058 H1 galaxies HIPASS HL 759 high luminosity

If we believe in anisotropy of UHECRs then they can be protons

AUGER is a hybrid detector!

Using the FD detector we can measure the X_{max} of the shower X_{lov} X_{up} field of view (B)cm?) X_{up} – X_{down} chosen large enough to detect most of distribution

Mass Composition

Showers induced by different primary develop in a different way in the atmosphere. Protons interact deeper of iron and

the RMS of the X_{max} is norrow

Hybrid duty cycle 10% of SD. Not enough statistics in the more interesting energy range !

Start energy for anisotropy analysis

But hybrid analysis indicate that mass composition turns heavy

UHECRs scenario

AUGER South is complete and is taking data:

event sample (>10¹⁹ eV) larger than sum of all previous experiments, AUGER energy and angular resolution better of previous experiments AUGER statistics is growing fast

Contamination of not charged particles negligible

Upper limit in photon flux already exclude top-down models No neutrino like candidate found

Spectrum

consistent with a GZK-like cut-off (E=2.9 \times 10¹⁹ eV) ankle seen at E=4.1 \times 10¹⁸ eV (galactic to extra-galactic transaction?) <u>GZK cut-off hints a proton hypohesis for E>55 EeV</u>

Arrival Direction

still data prefer an anisotropy scenario at highest energy (>55 EeV) possible extra-galactic origin inside the GZK cut-off the anisotropy hints a proton hypotesis for E>55 EeV

Mass Composition

the only analysis strongly model dependent comparison with Monte Carlo essential indicate a mixed/heavy composition but for E<55 EeV

