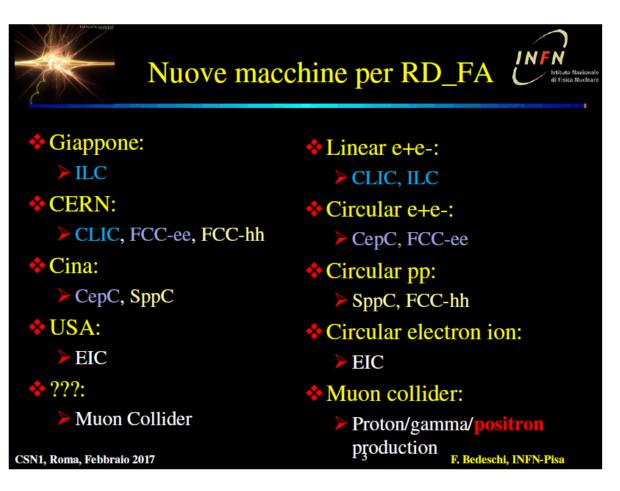
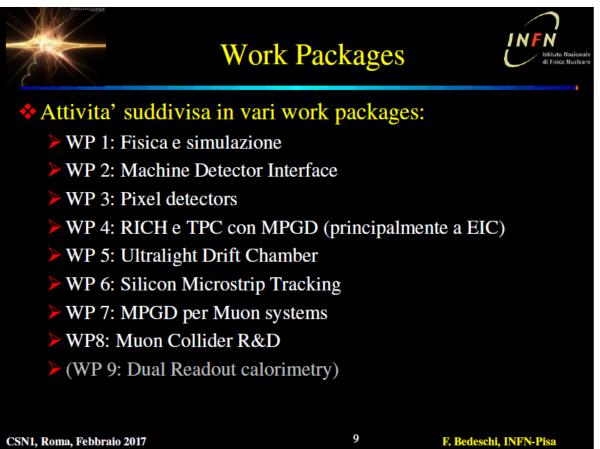
RD_FA - Trieste


S. Dalla Torre, S. Levorato


STEFANO e' in viaggio: si scusa per la sua assenza

RD_FA - A new activity stared in CSN I in year 2017

Collaboration structure

- PI: Franco Bedeschi
- INFN groups:
 - Pisa, Padova, Roma I, Bari, Bologna, Lecce, Perugia, Ferrara, Roma III, Trieste, Catania, Firenze, Genova, Lab. Naz. di Frascati, Milano, Milano Bicocca, Napoli, Pavia, Torino

RD_FA @ TRIESTE

- A. Bressan
- M. Cobal
- S. Dalla Torre
- S. Dasgupta
- S. Levorato
- A. Martin
- F. Tessarotto

ATTIVITA'

- Organizzazione EICUG, luglio 2017
- R&D
- Contributi allo sviluppo del caso di fisica (MC)

EICUG2017

CONTRIBUTION IN BUILDING UP THE COMMUNITY

- previous <u>EICUG meetings</u>
 - June 2014, Stony Brook
 - January 2016, Berkley
 - July 2016, Argonne

• initiative for the dissemination and the enlargement of the community in Italy and Europe

the JULY 2017 meeting of the EICUG will be host at INFN – Trieste Trieste (Italy), 18-22 July 2017

http://eicug2017.ts.infn.it/

Organized by A. Bressan and S. Dalla Torre, S. Levorato with the support of the Trieste COMPASS group

	workshop		EICUG meeting										
	1	18-Jul	19-Jul	20-Jul	21-Jul	22-Jul							
	Tue	esday	Wednesday	Thursday	Friday	Saturday							
morning	workshop		opening session	plenary session	parallel sessions	closing session							
afternoon	workshop		plenary session	plenary session	parallel sessions								
					istitutional meetings								
	registration /												
evening	welcome party		social banquet										

• Accelerator workshop - Fulvia Pilat, Ferdinand Willeke

PARALLEL SESSIONS

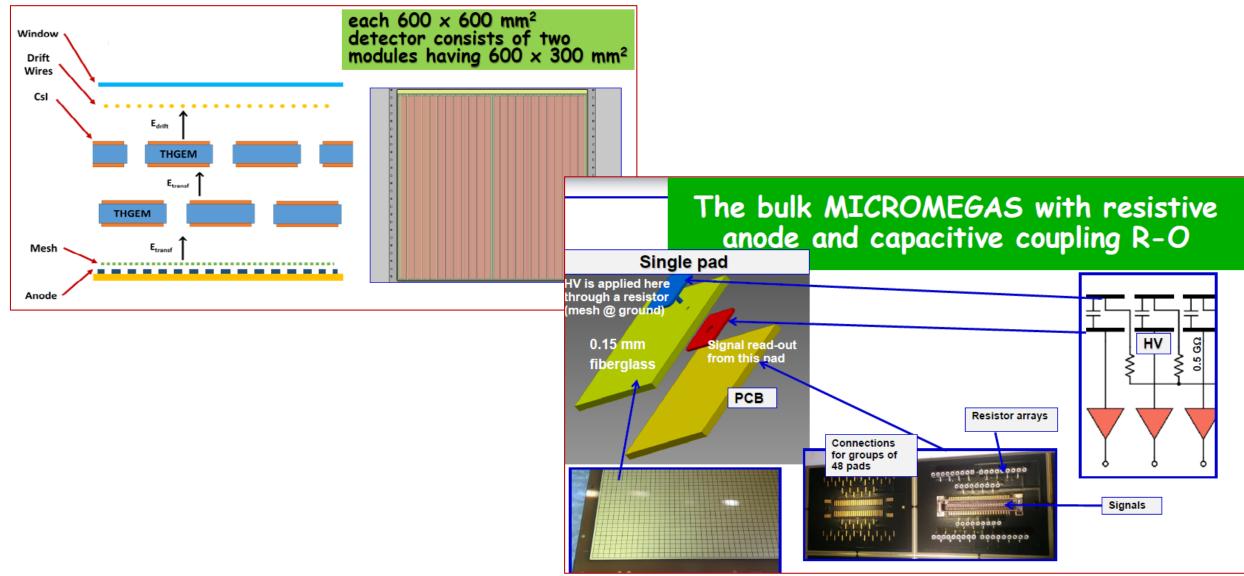
- New Technologies (detectors) K. Gnanvo, S. Procureur
- Nucleon and Nuclear structure and hadronization G. Schnell, H. Matevosyan
- Phenomenology and new observables Z. Kang, C. Lorce'
- 3D nucleon and nucleus structure B. Pasquini, A. Martin
- Collective effects in nucleons and nuclei M. Ruspa, Y. Hatta

INVITED TALKS - Physics

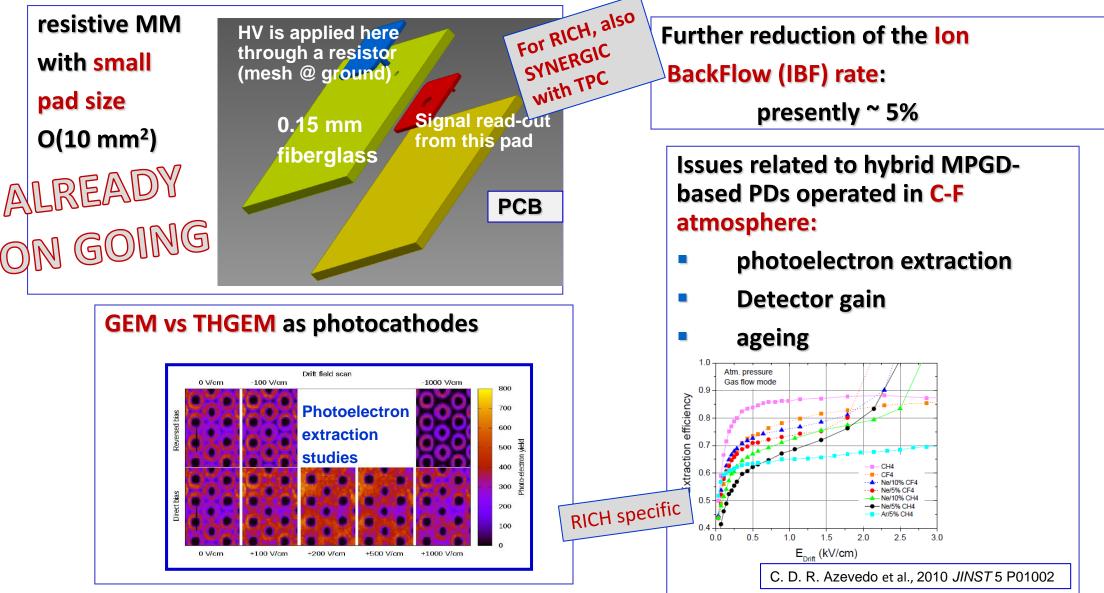
- Progress from LHC in the physics domain of interest for EIC (E. Scapparone)
- UPC and nucleon and nuclear structure (T. Lappi)
- 3D imaging (A. Bacchetta)
- Nucleon structure and dynamics from lattice QCD (G. Koutsou)
- The origin of the mass (C. Roberts)
- Saturation at small x (R. Venugopalan)

INVITED TALKS - Detectors

- TPC review and perspectives for EIC (T. Hemmik)
- MAPS developments and perspectives for EIC (P. Camerini)
- PID developments and perspectives for EIC (speaker to be confirmed)
- MPGDs for high energy applications (M. Titov)

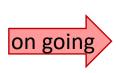

HARDWARE, R&D

R&D for EXPERIMENTS @ EIC


Two <u>strategic</u> sectors for experimental set-ups at EIC <u>matching our expertise</u> and with <u>open issues</u>:

- HIGH-p: h-PID in the range 6 < p < 60 GeV/c
 - Radiator: gas is mandatory
 - Collider implementation: short (~ 1 m) radiator length
 - Two attempts, so far, both requiring deeper exploration
 - High pressure, studied for ALICE upgrade VHMPID
 - Towards the very far UV with window-less approach (prototype tested at Fermilab)
 - In both approaches gaseous photon detectors are mandatory
- The next TPC generation for high rate operation requires ungated TPCs
 - How?
 - By Ion BackFlow (IBF) suppression in MPGDs
 - IBF suppression recipes deteriorate dE/dx resolution ...
 - Parameter tension → appropriate compromise needed

The novel photon detectors by MPGD technologies



A SUMMARY OF THE R&D PROGRAMME

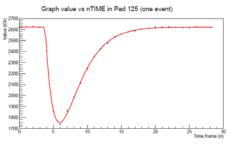
PLANNING (as presented in CSN I)

- Planning over 3 years
- 4 R&D items illustrated in the previous slide

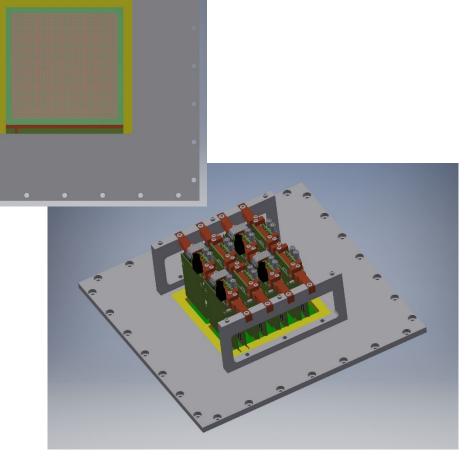
			2017				20	18		2019			
		1st	2nd	3rd	4th	1st	2nd	3rd	4th	1st	2nd	3rd	4th
TASK no	TASK	quarter											
	resistive MM by discrete elements with												
1	miniaturized pad size												
	comparison of THGEM vs GEM												
2	photocathodes												
	enhancement of the IFB suppression in												
3	hybrid MPGDs												
	operation of hybrid MPGDs (THGEMs +												
4	MM) in fluorocarbon-rich gas mixtures												

Resistive MM with miniaturized pad-size

 $8 \times 8 \text{ mm}^2 \rightarrow 3 \times 3 \text{ mm}^2$

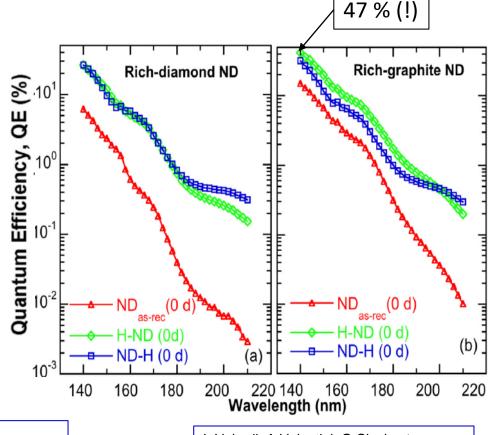

*Prototype active area : 10 x 10 cm*²

Designed to be expandable: FE card and resistor cards cover the same are of the pads (grouped by 128 channels)


Design well advanced

- In parallel, prepare for the prototype read-out:
 - By the SRS (Scalable Read-out System), FE: APV25
 - Development of the DAQ software and test with an existing prototype
 - Stage: M. Baruzzo

S. Dalla Torre, S. Levorato


A VERY RECENT NEW OPTION FOR THE R&D

CsI, the only standard photoconverter compatible with gaseous atmospheres, has problematic issues, main ones:

- It does **not** tolerate **exposure to air** (water vapour, oxygen)
- **Ageing** by ion bombardment

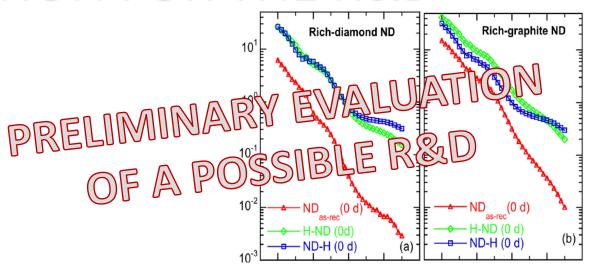
From Antonio Valentini – Sezione INFN di Bari (2016)

- Italian patent application n. 102015000053374
- Photocatodes: diamon film obtained with Spray Technique making use of NC powder
 - Spray technique: **T ~ 120**° (instead of ~800° as in standard techniques)

Coupling of ND photoconverter and MPGDs?

an exiting perspective with several open questions

- Radiation hardness?
- Ageing ?
- Compatibility and performance with gas atmospheres?

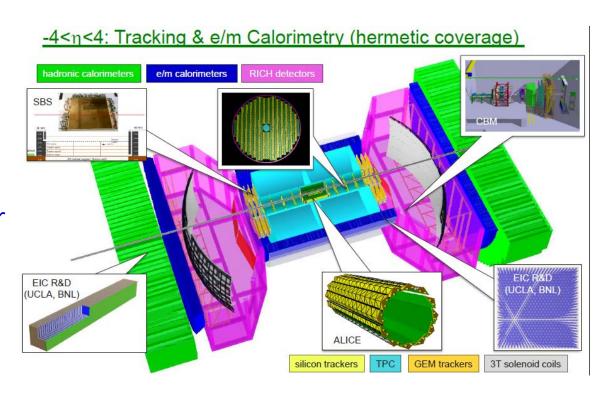

L.Velardi, A.Valentini, G.Cicala al.,
Diamond & Related Materials 76 (2017) 1

PRELIMINARY EVALUATION
OF A POSSIBLE R&D

A VERY RECENT NEW OPTION FOR THE R&D

If this novel R&D is started →

items 2,3,4 postponed to start this strategic R&D in 2018 (decision within a few days)


NC photocathodes in gas

			2017				2018				2019			
TASK no	TASK	1st quarter	2nd quarter	3rd quarter	4th quarter	1st quarter	2nd quarter	3rd quarter	4th quarter	1st quarter	2nd quarter	3rd quarter	4th quarte	
	resistive MM by discrete elements with													
1	miniaturized pad size													
	a marison of THGEM vs GEM													
2	photocathodes													
	enhancement of the IFB suppression in			_										
	hybrid MPGDs													
	operation of hybrid کیای (THGEMs +													
	Iviivi) in fluorocarbon-rich gas mixtures													

PHYSICS

CONTEXT: EIC WISHES FOR THE EXPERIMENTS

- Reach in kinematic variables
- Reliable electron identification
- Good hadron PID
- High spatial resolution of primary vertex
- Low material budget
- The more close to 4π acceptance the better
- Luminosity and polarization measurement
- Close-to-beam-line acceptance add-on detectors to register
 - recoil protons
 - low Q² electrons
 - neutrons in hadron beam direction

GOAL: IMPROVE THE PHYSICS EVENT GENERATORS

Starting point: the experience gained within COMPASS

- Event Generators
 - from good, old Lepto to Pythia 6
 - Synergies with the EIC plans: bringing ℓN in Pythia 8
- Radiative Correction tools
 - Radgen
 - Djangoh/HERACLES
- GEANT for the experimental setup simulation
- Moreover we plan to <u>use the comparison with the COMPASS data to</u> validate the new tools under development

GOAL: IMPROVE THE PHYSICS EVENT GENERATORS

Present activities for EIC:

Insert <u>spin effects</u> into the Monte Carlo event generators:

Recursive Monte-Carlo for polarized quark j

Albi Kerbizi
University of Trieste, INFN

Spin 2016, Champaign 26 September 2016

- Account for <u>radiative effects</u> at Monte Carlo level
- Run EIC ROOT to give inputs for hardware design
 - software runs on the RACF @ BNL (RHIC and ATLAS Computing Facility) where the EIC group has its own nodes: a Trieste account available
- RICH dedicated simulations

SUPPORT FOR

R&D AND PHYSICS STUDIES

SUPPORT STATUS

• R&D

- In 2016 application to the programme <u>Generic Detector R&D for an Electron</u> <u>Ion Collider</u>
 - We have joint the eRD6 Consortium
 - GRANT received for consumables, travelling, a postdoc
- For 2017 request within the INFN-HEP program RD_FA
 - Support received for consumables (13 k€) and travelling

Physics studies

- In 2016 application to the programme <u>Generic Detector R&D for an Electron</u> <u>Ion Collider</u> within the project eRD20
 - The project has received support
- For 2017 request within the INFN-HEP program RD-FA
 - Support received for travelling