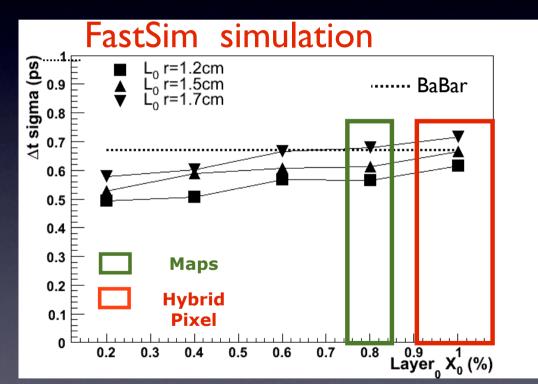
# SVT detector configurations for Physics studies

Nicola Neri Università di Pisa & INFN for the SVT group


> 31 February 2009 DGWG Meeting

## Identification of figure of merits for SVT geometry optimization

- Adequate proper time resolution for time-dependent measurements:
  - consider BaBar proper time resolution as reference;
  - impact of proper time resolution on TD analysis of benchmark channels as  $K_S \pi^0(\gamma)$ ;
- Impact of improved vertex resolution on Physics:
  - B-D vertex separation (already proved at 3-4 $\sigma$  level for D<sup>0</sup>):
    - evaluate bkg rejection performances and impact on benchmark channels;
    - dipole-based tagging algorithm (not figure of merit but a possibility to explore);
  - tau physics: vertexing information for bkg rejection (e.g. impact on  $\tau \rightarrow \mu \gamma$ )?
- Impact of increase of tracking volume down to 0.2 rad on efficiency and purity on benchmark channels: rare decays with neutrino, B recoil.
- Impact of layer position and multiplicity on Ks and soft-pion reconstruction.

#### Proper time resolution vs $layer_0 X_0(\%)$ B<sub>0</sub> $\rightarrow \pi^+ \pi$ decay mode $\beta\gamma=0.28$ beampipe X<sub>0</sub> = 0.424%

hit resolution =  $10 \,\mu m$ 



• Main result is that proper time resolution is adequate for time dependent measurements.

#### Baseline configuration for layer<sub>0</sub>

- According to available studies for proper time resolution and background rate, we know that:
  - $\checkmark$  radius for layer<sub>0</sub> has to be within 1.5 cm;
  - $\checkmark$  intrinsic hit resolution for layer<sub>0</sub> about 10  $\mu$ m;
  - ✓ layer<sub>0</sub> material budget less than 1.0% ( $X_0$ );
  - ✓ readout architecture up to 100 MHz/cm<sup>2</sup> to cope with bkg rate (with safety factor  $5 \times 4$  cluster size);
  - ✓ radiation hardness several Mrad.
- Hybrid pixel has the best chance to meet all the above requirement in the TDR timescale (MAPS could improve performances but more R&D needed):
  - $\checkmark$  radius for layer<sub>0</sub> = 1.5 cm;
  - intrinsic hit resolution = 10  $\mu$ m at normal incidence, to be studied resolution at large angles with 50  $\mu$ m pitch and digital readout;
  - ✓ material budget around 1.0 % ( $X_0$ ).

### SVT configurations for SuperB

• SVT solutions that are under study:



- (a) Layer<sub>0</sub> with hybrid pixels technology + BaBar SVT configuration for Layer<sub>1</sub> - Layer<sub>5</sub>;
- (b) Layer<sub>0</sub> and Layer<sub>1</sub> with hybrid pixels technology + BaBar SVT configuration for Layer<sub>2</sub> Layer<sub>5</sub>;
- (c) solution (a) removing layer<sub>2</sub>;
- (d) solution (b) removing layer<sub>2</sub>;
- (e) hybrid pixels with 50x250μm<sup>2</sup> (z, r-phi) as foreseen for Atlas Ibilayer upgrade. Well advanced project with similar specs and timescale.

#### Configurations for layer

- Double side strip detector, as in BaBar, is the baseline solution for layer1:
  - dE/dX information with 3 bit ADC for pulse height (FSSR2 chip)
- Present studies are not resolutive for the background rate on layer, we need to be open to a layer pixel solution:
  - larger amount of material 0.5%  $X_0 \rightarrow \sim 1.0\% X_0$ ;
  - intrinsic resolution to be studied at large angles;
  - no dE/dX information (only digital information on pixel)

#### Configurations for layer<sub>2</sub> - layer<sub>n</sub>

- Double side strip detector is the baseline solution:
  - dE/dX information with 3 bit ADC for pulse height (FSSR2 chip);
  - need to optimize the internal geometry:
    - number of layers;
    - radius of each layer;
    - arch-shape, barrel-shap or disks for external layers.

#### To do list

- Implement baseline configuration in FastSim (Layero with hybrid pixels technology + BaBar SVT configuration for Layeri -Layers):
  - best guess of material budget for hybrid pixel;
  - intrinsic resolution vs large angle;
  - dE/dX with 3 bit ADC for strip detectors
- Implement different configurations (previously mentioned) in FastSim for SVT studies and test them on relevant benchmark channels.