THE SIMP PROJECT: TOWARDS SINGLE MICROWAVE PHOTON DETECTION

CLAUDIO GATTI - LNF

INTRODUCTION

 Detection of single photons in the microwave to terahertz regime has a large number of applications ranging from dark matter searches and astrophysics to quantum computing and homeland security

Axion searches

Neutrino mass

Quantum computers

BACKGROUND

In the last decade the development of nanotechnologies and of superconducting devices boosted the design of single photon detectors in the GHz to Thz frequency range.

Graphene Bolometers
C.B. McKitterick arXiv:1210.5495

R $\begin{array}{c} \text{Small } \Delta T \\ \text{Big } \Delta R \end{array}$ $\begin{array}{c} \text{Working Point} \\ \end{array}$

Transition Edge Sensors Lolli et al, Sensors 2016, 16, 953

Quantum Dots Hashiba Nanotechnology 21 (2010)

Superconducting qubits Schuster et al., NATURE Vol 445 (2007)

OBJECTIVES

- Development of SIngle Microwave Photon counters to strengthen INFN skills and technologies for Dark Matter searches, Neutrino Physics, Precision Physics and Astrophysics.
- Knowledge Sharing among Research Institutes
- Training of Young Physicists
- Technology Transfer
- Foster participation to National, European, and International Calls.

PARTNERS (COORDINATOR LNF)

PROJECT DESCRIPTION

The SIMP project aims at reaching its main objective developing 4 different technologies (WP2 to WP5).

- WPI Coordination and Dissemination (ALL)
- WP2 Super Conducting Qubits (LNF, CNR-IFN, CNR-NEST)
- WP3 Josephson Temperature to Phase Converter (CNR-NEST, INFN Pi)
- WP4 Nonostructured Quantum Device (INFN Pi, CNR-NEST)
- WP5 Transition Edge Sensors (INRIM, TIFPA, CNR-NEST)
- WP6 Resonant Cavities, WaveGuides and Antennae (LNF, INRIM, TIFPA)

PRELIMINARY GANTT, FTE AND BUDGET

- 3 years project
- FTE 9.5
- Budget 0.8 I M€
- 6-8 years AdR

														_																								
SIMP	YEAR	1					1st	Year												2nd \	Year											3th	Year					
	Month	1	- 2	2 :	3 4	1 5	- 6		7	8 9	9 1	0 1	1 1	2 1	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Task	WP 1 Management																																					
T1.3	Coordination meetings																																					
T1.2	Annual Metings																																					
T1.3	SIMP School																																					
		1	- 2	2 :	3 4	4 5	6		7	8 !	9 1	0 1	1 1	.2 1	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Task	WP 2 SC qubits													П		T																						
T2.1	Setup LNF Cryo Lab															M	2.2																			П		П
T2.2	Transmon Design&Fabrication				D2.1									D2.2																						П		
T2.3	Gatemon Design&Fabrication																							D2.3														
T2.4.1	Tests and Measurements									M2.1											M2.3							M2.4								M2.5	D2.4	
		1	- 2	2 :	3 4	1 5	6		7	8 9	9 1	0 1	1 1	2 1	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Task	WP 3 Josephson T-to-phase converter													Т																								
T3.1	Project of TPC sensor										М3.	2	D3.1				D	3.2																	П	П		П
T3.2	Measurement Setup								M3.1											VI3.5																		_
T3.3	TPC sensor characterization												M3.	3			M	3.4		03.3																		D3.4
T3.4	Test TES WP5													Т	T																					П		П
		1	- 2	2 :	3 4	1 5			7	8 9	9 1	0 1	1 1	2 1	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Task	WP 4 Nanostructured quantum device													Т																								
T4.1	QSs for single photon absorption												D4.1																									\neg
T4.2	QSs for charge detection															D4	.2																					
T4.3	Integration													T	T	M	1.1									D4.3												M4.3
T4.4	Performance																									M4.2												04.4
		1	:	2 :	3 4	1 5	(7 :	8 9	9 1	0 1	1 1	2 1	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Task	WP 5 Superconducting TES																																					
T5.1	Material study												D5.1		Т																							\neg
T5.2	Antenna coupling in wave guide													1		\top																						\neg
T5.3	Design of TES with antenna														MS	1	1																				\Box	\neg
T5.4	TES-Antenna realization								\top																	D5.2										\Box		M5.2
T5.4	Characterization in wave guide			T						T	1		T	T			T																					D5.3
		1	- :	2 :	3 4	1 5	6	;	7	8 9	9 1	0 1	1 1	2 1	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Task	WP 6 RF Cavity Guides and Antennae																																					
T6.1	RF Cavity Design and Construction								D6.1																													
T6.3	Antenna Design										\top		\top	T																					\Box	\Box	\neg	\neg
					_	-	-	_	+	+	+-	_	_	_	_	-	-	-	-	_	_	_	_		_		_	_	_	-	-	_	_	_	-	\rightarrow	${}^{-}$	_

- Fabrication and test of superconducting qubits (Transmon and Gatemon)
- Coupling of qubit to 10 GHz resonant cavity at cryogenic temperature < 100 mK
- Readout of qubit state

Dispersive Readout

The presence of a photon in the cavity with mode frequency ω_r induces a shift 2χ on the qubit frequency ω_a . Driving the qubit with a radiofrequency signal $\omega_s = \omega_a + 2\chi$ a transition $|g> \rightarrow |e>$ is induced from its ground to the excited state. This transition happens only if there is a photon in the resonant cavity.

A qubit in the excited states induces in turn a shift in the cavity frequency. To test the qubit state a second radiofrequency signal with frequency $\omega_{rf} = \omega_r + \chi$ is sent to the cavity. The qubit state is inferred from the transmitted signal.

WP3 (INFN-PI, CNR-NEST): JOSEPHSON PHOTODETECTOR VIA T-PHASE CONVERSION 10 GHZ-THZ

F.Giazotto et al. arXiv:1703.05284

$$NEP_{expected} \approx 10^{-22} W/\sqrt{Hz}$$

WP4 (INFN-PI, CNR-NEST): PHOTODETECTOR WITH NANOSTRUCTURED QUANTUM DEVICE 0.1THZ-1THZ

Quantum Dot Detectors

- QD2 coupled to an antenna act as an artificial atom
- QDI act as a gate for a Single Electron Transistor. Capacitive coupling between QDI and QD2 opens the SET gate

Typical values:

- C ≈0.1 fF
- ∆V=e/C=I mV
- I=0.1 nA
- \bullet $\tau_{life}=1$ ms
- $A=I\tau/e=0.1 \text{ nA I ms/I.6 } 10^{-19} \text{ C} = 5 \cdot 10^5$

$$NEP_{measured} \approx 10^{-20} W/\sqrt{Hz}$$

WP5 (TIFPA, CNR-NEST, INRIM TO,...): TES SINGLE PHOTON DETECTOR 50 GHZ

WP5 (TIFPA, CNR-NEST, INRIM TO,...): TES SINGLE PHOTON DETECTOR 50 GHZ

Tc of Cu/Al bilayers

LNF UNIT

- Claudio Gatti 50% (Coordination, RF setup, Test & Measurements) (+ Quax 50%)
- Daniele Di Gioacchino 50% (Experimental setup, Test & Measurements) (+ Quax 50%)
- Carlo Ligi 29% (Operation of Diluition Refrigerators, Test & Measurement) (+ Quax 20%)
- Luca Foggetta 30% (Operation of Diluition Refrigerators, Test & Measurement)
- Bruno Buonomo 30% (Test & Measurement, Setup of Qubit Fabrication)
- David Alesini 10% (Resonant Cavity Design, Simulation, RF Setup) (+ Quax 15%)
- Sandro Gallo 10% (Resonant Cavity Design, RF Setup)

RELATION WITH QUAX AND OTHER INFN ACTIVITY

- Single photon counting of GHz photons would boost the sensitivity of axion searches, Quax included
- The Quax-LNF group is involved in SIMP
- G.Lamanna (Quax-LNF) is part of INFN-Pi Unit
- P. Falferi (Quax-Tn) is in the TIFPA Unit
- First results of the STAX R&D on TES for axion detection (approved last year in CSNV) will continue in WP 5
 (ongoing discussion with CSNV if the projects formally merged or other similar solution) (Involved CNR-NEST
 and INFN-Pi)

REQUESTS

To CSNV

About 150-200 k€ (Wave function generator 20 GHz, Spectrum Analyzer, amplifiers, mixers, circulators, digitizer, thermometers, chiller, resonant cavity construction, cryogenic gas, travel, 2 years AdR)

To LNF

- New Cryo Lab in Nautilus Area
- Nautilus He Liquefactor and Technician for operation (0.2 FTE)
- Cryogenic Technician (0.5 FTE)
- Mechanical Designer DA (0.1 FTE) for resonant cavity technical design
- People interested in building this new activity

CONCLUSION

Since 1990 an increasing number of papers were published on single photon detectors (SPD) driven by reasearch in Quantum Information. A strong effort was put also in SPD in the sub-THz regime. To face new and old challenges of fundamental physics (Axions, Light Dark Matter, CMB, Neutrinos), we must look to these technologies.

