Consuntivi Gruppo IIII

Paolo Pedroni

Con l'indispensabile collaborazione di G. Bonomi, A. Menegolli, L. Venturelli, N.Zurlo

CSN3 –Status 2016

Linea 1: Quark and hadron dynamics (6 sigle)

Linea 2: Phase transitions of nuclear and hadronic matter (2 sigle)

Linea 3: Nuclear structure and reaction dynamics (7 sigle)

Linea 4: Nuclear astrophysics and interdisciplinary researches (6 sigle)

Ripartizione FTE (483 FTE) (Circa 730 ricercatori)

Ripartizione Budget (circa 9.3 MEuro)

CSN3-Pavia 2016

SIGLA	FTE	Assegnazioni totali (kE)	Missioni (kE)	Altro (kE)
AEGIS	2.9	21.0	16.0	5.0
ALICE	3.8	20.0	17.5	2.5
ASACUSA	6.7	53.5	38.0	15.5
FAMU	2.0	14.0	11.0	3.0
MAMBO	1.9	31.5	18.0	13.5
TOTALI	17.3	140	100.5	39.5

Circa 8 kE/FTE (50% della media globale di CSN3)

DATA TAKING IS IN PROGRESS at the CERN AD

AD Schedule 2016 (Version 3.0 July 12th, 2016)

	Wk	Mon	Tue	Wed	Thu	Fri	Sat	Sun	
Apr 4 - Apr 10	14								
Apr 11 - Apr 17	15			A	D setting up				
Apr 18 - Apr 24	16	07-1515-2323-07							
Apr 25 - May 1	17	MD AD6 AD3 AD5	AD6 AD3 AD3	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
May 2 - May 8	18	AD3 AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 A	D3 AD5 AD6	AD3 AD5 AD6	AD3 AD5 AD6	AD3 AD5 AD6	AD2
May 9 - May 15	19	AD3 AD6 AD5 AD3	AD6 AD5 AD3	BAD6 AD5 A	D3 AD6 AD5	AD3 AD6 AD5	AD3 AD6 AD5	AD3 AD6 AD5	AD2
May 16 - May 22	20	MD AD3 AD5 AD6	AD3 AD5 AD0	AD3 AD5 A	D6 AD3 AD5	AD6 AD3 AD5	AD6 AD3 AD5	AD6 AD3 AD5	AD2
May 23 - May 29	21	AD5 AD6 AD3 AD5	AD6 AD3 AD3	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
May 30 - Jun 5	22	AD2 AD5 AD6 AD2	AD5 AD6 AD2	2 AD5 AD6 A	.D2 <mark>AD5</mark> AD6	AD2 <mark>AD5</mark> AD6	AD2 <mark>AD5</mark> AD6	AD2 AD5 AD6	AD3
Jun 6 - Jun 12	23	MD AD2 AD5 TS	AD2 AD5 AD8	B AD2 AD5 A	.D8 AD2 AD5	AD8 AD2 AD5	AD8 AD2 AD5	AD8 AD2 AD5	AD3 AD4
Jun 13 - Jun 19	24	AD3 AD8 AD2 AD3	AD8 AD2 AD3	B AD8 AD2 <mark>A</mark>	D3 AD8 AD2	AD3 AD8 AD2	AD3 AD8 AD2	AD3 AD8 AD2	AD5 AD
Jun 20 - Jun 26	25	AD6 AD3 AD8 AD6	AD3 AD8 AD0	AD3 AD8 A	D6 AD3 AD8	AD6 AD3 AD8	AD6 AD3 AD8	AD6 AD3 AD8	AD2 AD
Jun 27 - Jul 3	26	MD AD6 AD3 AD5	AD6 AD3 AD	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Jul 4 - Jul 10	27	AD2 AD5 AD6 AD2	AD5 AD6 AD2	2 AD5 AD6 A	.D2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Jul 11 - Jul 17	28	AD3 AD2 AD5 AD3	AD2 AD5 AD3	AD2 AD5 A	D3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD6
Jul 18 - Jul 24	29	MD AD3 AD2 AD6	AD3 AD2 AD	AD3 AD2 A	.D6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADS
Jul 25 - Jul 31	30	AD5 AD6 AD3 AD5	AD6 AD3 AD	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Aug 1 - Aug 7	31	AD2 AD5 AD6 AD2	AD5 AD6 AD2	2 AD5 AD6 A	.D2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Aug 8 - Aug 14	32	MD AD2 AD5 AD3	AD2 AD5 AD3	AD2 AD5 A	D3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	ADG
Aug 15 - Aug 21	33	AD6 AD3 AD2 AD6	AD3 AD2 AD	6 AD3 AD2 A	.D6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADS
Aug 22 - Aug 28	34	AD5 AD6 AD3 AD5	AD6 AD3 AD	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Aug 29 - Sep 4	35	MD AD5 AD6 AD2	AD5 AD6 AD2	AD5 AD6 A	.D2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Sep 5 - Sep 11	36	AD3 AD2 AD5 AD3	AD2 AD5 AD3	AD2 AD5 A	D3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	ADG
Sep 12 - Sep 18	37	AD6 AD3 AD2	TS		AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD5
Sep 19 - Sep 25	38	MD AD6 AD3 AD5	AD6 AD3 AD	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Sep 26 - Oct 2	39	AD2 AD5 AD6 AD2	AD5 AD6 AD2	AD5 AD6 A	D2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD3
Oct 3 - Oct 9	40	AD3 AD2 AD5 AD3	AD2 AD5 AD3	AD2 AD5 A	D3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD6
Oct 10 - Oct 16	41	MD AD3 AD2 AD6	AD3 AD2 AD	AD3 AD2 A	D6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD5
Oct 17 - Oct 23	42	AD5 AD6 AD3 AD5	AD6 AD3 AD	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Oct 24 - Oct 30	43	AD2 AD5 AD6 AD2	AD5 AD6 AD2	AD5 AD6 A	D2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2
Oct 31 - Nov 6	44	MD AD2 AD5 AD3	AD2 AD5 AD3	AD2 AD5 A	D3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD6
Nov 7 - Nov 13	45	AD6 AD3 AD2 AD6	AD3 AD2 AD	AD3 AD2 A	D6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADS
Nov 14 - Nov 20	46	AD5 AD6 AD3 AD5	AD6 AD3 AD	AD6 AD3 A	D5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD5 AD6 AD3	AD2
Nov 21 - Nov 27	47	MD AD5 AD6 AD2	AD5 AD6 AD2	AD5 AD6 A	D2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2 AD5 AD6	AD2
Nov 28 - Dec 4	48	AD3 AD2 AD5 AD3	AD2 AD5 AD3	AD2 AD5 A	D3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD3 AD2 AD5	AD6
Dec 5 - Dec 11	49	AD6 AD3 AD2 AD6	AD3 AD2 AD	AD3 AD2 A	.D6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	AD6 AD3 AD2	ADE
		AD physics stop D	ecember 12th	6AM.					

Based on injector schedule V1.6

- Temperature of \overline{H} given by the temperature of \overline{p}
- Rydberg H: strong dipole moment → Stark acceleration

NEW IN 2016 with positrons

1 T activities (November-December) -positron implantation onto the target -diagnostic for SSPALS measurements

SSPALS = Single-shot positron annihilation lifetime spectroscopy

That is being efficiently combined with the Positronium excitation to n=3 (and to Rydberg states) achieved in 2015 in the so-called "bread box"

Ps excitation to n=3

O. K. Forslund, ⁷ S. Gerber, ⁷ M. Giammarchi,^{2,3} A. Gligorova,¹⁷ S. Gninenko,¹⁸ F. Guatieri,^{8,9} S. Haider, ⁷ H. Holmestad,¹⁹ T. Huse,¹⁹ I. L. Jernelv, ⁷ E. Jordan,¹⁵ A. Kellerbauer,¹³ M. Kimura,³ T. Koetlig, ⁷ D. Kraincky,^{12,13} V. Lagomarsino,^{12,13} P. Lansonneur,³³ P. Lebrun,²³ S. Lehner,²⁰ J. Liberadzka,⁷ C. Malbrunot,^{7,20} S. Mariazzi,^{30,*} L. Marx,⁷ V. Matveev,^{18,21}
 Z. Mazzotta,^{2,14} G. Nebbia,²² P. Nedelec,²³ M. Oberthaler,⁶ N. Pacifico,¹⁷ D. Pagano,⁴⁵ L. Penasa,^{8,9} V. Petracek,¹⁶ C. Pistillo,³ F. Prelz,² M. Prevedelli,²⁴ L. Ravelli,^{8,9} L. Resch,⁷ B. Rienäcker,⁷ O. M. Røhne,¹⁹ A. Rotondi,^{5,25} M. Sacerdoti,^{2,14} H. Sandaker,¹⁹ R. Santoro,^{2,11} P. Scampoli,^{3,26} L. Smestad,^{7,27} F. Sorrentino,^{12,13} M. Spacek,¹⁶ J. Storey,³ I. M. Strojek,¹⁶ G. Testera,¹³ I. Tietje,⁷ S. Vamosi,²⁰ E. Widmann,²⁰ P. Yzombard,¹⁰ J. Zmeskal,²⁰ and N. Zurlo^{5,28} (AEJS Collaboration)

NEW IN 2016 with antiprotons

We succeeded in moving antiprotons into the 1 tesla region, where they will be combined with positronium atoms in order to form antihydrogen

This has required additional improvement, because the 1 tesla trap has small diameter compared to the 5 tesla trap (so antiprotons must be compressed via rotating wall techniques)

And simultaneously antiprotons are cooled with electrons, but avoiding in the meanwhile the centrifugal separation:

NEW IN 2016 Secondary beamline

Tests of emulsions to be used for antihydrogen fringes detection. These tests are performed with low energy antiprotons

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: January 23, 2017 REVISED: March 13, 2017 ACCEPTED: March 30, 2017 PUBLISHED: April 19, 2017

Measurement of antiproton annihilation on Cu, Ag and Au with emulsion films

The AEgIS collaboration

inst

S. Aghion,^{a,b} C. Amsler,^{c,d} A. Ariga,^c T. Ariga,^{c,1,2} G. Bonomi,^{e,f} P. Bräunig,^g R.S. Brusa,^{h,i}
L. Cabaret,^j M. Caccia,^{b,k} R. Caravita,^{l,m} F. Castelli,^{b,n} G. Cerchiari,^o D. Comparat,^j
G. Consolati,^{a,b} A. Demetrio,^g L. Di Noto,^{l,m} M. Doser,^p A. Ereditato,^c C. Evans,^{a,b}
R. Ferragut,^{a,b} J. Fesel,^p A. Fontana,^f S. Gerber,^p M. Giammarchi,ⁱ A. Gligorova,^q
F. Guatieri,^{h,i} S. Haider,^p A. Hinterberger,^p H. Holmestad,^r T. Huse,^r J. Kawada,^c
A. Kellerbauer,^o M. Kimura,^c D. Krasnický,^{l,m} V. Lagomarsino,^{l,m} P. Lansonneur,^s
P. Lebrun,^s C. Malbrunot,^{d,p} S. Mariazzi,^d V. Matveev,^{t,u} Z. Mazzotta,^{b,n} S.R. Müller,^g
G. Nebbia,^v P. Nedelec,^s M. Oberthaler,^g N. Pacifico,^q D. Pagano,^{e,f} L. Penasa,^{h,i}
V. Petracek,^w C. Pistillo,^c F. Prelz,^b M. Prevedelli,^x L. Ravelli,^{h,i} B. Rienaecker,^p
O.M. Røhne,^r A. Rotondi,^{f,y} M. Sacerdoti,^{b,n} H. Sandaker,^r R. Santoro,^{b,k} P. Scampoli,^{c,z}
M. Simon,^d L. Smestad,^{p,aa} F. Sorrentino,^{l,m} G. Testera,^m I.C. Tietje,^p S. Vamosi,^d
M. Vladymyrov,^c E. Widmann,^d P. Yzombard,^j C. Zimmer,^{o,p,ab} J. Zmeskal^d and N. Zurlo^{f,ac}

. Particle multiplicity from antiproton annihilations as a function of atomic number for MIPs (top) (bottom).

INFN BRESCIA/PAVIA GROUP ACTIVITY

We are responsible for the DAQ, for the online & offline software and for the external scintillator system

FIGURE 1. The $AE\overline{g}IS$ external scintillators are placed around the 5 tesla and 1 tesla magnets.

External scintillators are extremely important since they are used as reference for others detectors

Brescia members are also involved in the FACT development

NEW IN 2016

A new comprehensive offline tool called gAn has been developed and is being completed including all the gathered information

AEgIS Analysis Framework

It is managed via the CERN GitLab

Also an interactive version via web has been developed

Annihilation vertex reconstruction algorithm with FACT (Fast Annihilation Cryogenic Tracking) detector

FIGURE 1. The $AE\overline{g}IS$ external scintillators are placed around the 5 tesla and 1 tesla magnets.

New, more accurate calibration of the external scintillators performed with cosmic rays

Entries/channel

PMT	HV	QDC	cosmic pea	calibration		
	(volt)	channel	uncorrected	offset	corrected for	constant
			value	subtracted	QDC channe	(pC/MeV)
					disuniformity	
1	2300	1	403 ± 3	333 ± 3	320 ± 3	15.9 ± 0.1
2	2300	1	313 ± 3	243 ± 3	233 ± 3	11.6 ± 0.1
3	2300	2	392 ± 3	344 ± 3	358 ± 3	17.8 ± 0.1
4	2300	2	268 ± 2	220 ± 2	229 ± 2	11.4 ± 0.1
5	2500	1	641 ± 20	556 ± 20	535 ± 20	26.5 ± 1.0
6	2350	1	660 ± 10	575 ± 10	553 ± 10	27.4 ± 0.5
7	2450	2	$937{\pm}~13$	913 ± 13	950 ± 13	47.0 ± 0.6
8	2250	2	388 ± 5	328 ± 5	341 ± 5	16.9 ± 0.3
9	2250	1	661 ± 2	576 ± 2	554 ± 2	27.5 ± 0.1
10	2220	2	436 ± 6	376 ± 6	391 ± 6	19.3 ± 0.3
11	2150	2	976 ± 4	916 ± 4	952 ± 4	47.1 ± 0.2
12	2250	1	562 ± 60	477 ± 60	459 ± 58	22.7 ± 2.9
13	1900	2	605 ± 4	545 ± 4	567 ± 4	28.1 ± 0.2
14	1800	2	1043 ± 20	1083 ± 20	1146 ± 21	57.7 ± 1.1
15	2030	1	1130 ± 50	1045 ± 50	1005 ± 48	$ \hspace{.02cm} 49.7 \pm 2.4 \hspace{.02cm} $
16	1950	1	819 ± 4	734 ± 4	706 ± 4	35.0 ± 0.2
17	2300	1	1300 ± 18	1215 ± 18	1168 ± 18	57.8 ± 0.9
18	2000	2	991 ± 9	931 ± 9	968 ± 9	$ 47.9\pm0.5 $
19	1925	1	464 ± 3	370 ± 3	364 ± 3	18.0 ± 0.2
20	1910	2	558 ± 3	498 ± 3	518 ± 3	25.6 ± 0.2
21	2000	1	1790 ± 20	1705 ± 20	1640 ± 19	81.2 ± 0.9
22	1820	2	540 ± 8	480 ± 8	499 ± 8	$\boxed{24.7\pm0.4}$
23	1970	1	967 ± 14	882 ± 14	848 ± 14	$\mid42.0\pm0.7\mid$
24	1900	2	1685 ± 40	1625 ± 40	1690 ± 40	83.6 ± 2.0
TABLE 4. Calibration constants for all the PMTs. For PMTs 1-4, these values						

are taken from 2016 data. For PMTs 5-24, the spectra were recorded in Feb 2017 (after some adjustment in the HV's). In both cases, the main apparatus magnetic field was off.

Obiettivi per il 2017

1) Laser excitation of positronium in the 1 T region

- 2) Optimization of antiprotons transfer in the 1 T region
- 3) Cooling of antiprotons and measurement of their temperature in the 1 T region
- 4) Hbar production

		111	Anno:	2016	Sigla: AEGIS	
FTE: 2,6+0,5 Persone (Ricercatori + Tecnologi): 5+1						
				Missioni		
	Assegnato	Speso	%		Note	
Meetings	2	2	100,00			
Turni o costruzione	14	14	100,00			
Conferenze	0	0	100,00			
Totale	16	16				
		Speso				
Capitolo	Assegnato	Come richiesto	Altro	Variazioni Bilancio	Note	
Consumi	1	0,5	0	0		
Altri Consumi	0	Ó	0	0		
Costruzione Apparati	0	0	0	0		
Inventario	0	0	0	0		
Licenze	0	0	0	0		
Trasporti	0	0	0	0		
Servizi	4	4	0	0		
Totale	5	4,5	0	0		
Totale tte le cifre in kEuro	5	4,5	0	0		

CONSUNTIVO SCIENTIFICO ALICE 2016

Attività scientifiche 2016

- Analisi dei canali di decadimento dei mesoni D
- Quality Assurance per il rivelatore di vertice (Inner Tracking System ITS)
- ALICE Masterclass
- Sviluppo del codice di simulazione per il nuovo rivelatore di vertice (ITSU)
- Premio come prima migliore comunicazione della Sezione diFisica Nucleare e Subnucleare, con la presentazione dal titolo"Ricostruzione di mesoni D in collisioni pp a 8 TeV con l'esperimentoALICE a LHC" (Susanna Costanza)
- Da dicembre 2016 abbiamo iniziato a firmare gli articoli scientifici
- Dal 2017 abbiamo iniziato a partecipare ai turni di presa dati (~2 settimane/firma)

Susanna Costanza

D-meson hadronic decays

Why do we study D mesons?

- LHC as a heavy-flavour factory (charm and beauty):
 - large cross section for $c\bar{c}$ and $b\bar{b}$ production: $\sigma_{LHC}^{C\bar{c}} \approx 10\sigma_{RHIC}^{C\bar{c}}$
- Heavy quarks are produced in hard scattering processes in the initial stages of the collision \rightarrow test of pQCD calculations
- Energy dependence of total charm production cross section in pp well reproduced by NLO pQCD-based calculation over more than 3 orders of magnitude → charm production in pp theoretically under control
- In pp collisions,
 - a reference for Pb-Pb collisions
 - Insight in the production mechanism
 - a test for perturbative QCD in a new energy regime

D-meson hadronic decays

Channel studied: $D^{o} \rightarrow K^{-}\pi^{+}$

- Data sample analysed: pp collisions, $\sqrt{s} = 8$ TeV and 13 TeV
- D^o mesons and their antiparticles reconstructed in the central rapidity region from their charged hadronic decay channels
- Displaced decay vertex is signature of heavy-flavour hadron decay → tracking and vertexing precision essential for heavy-flavour analysis

- Secondary vertices of D-mesons reconstructed using tracks with: – $\eta < |0.8|$
 - $p_{T} > 0.3' \text{ GeV/c}$
 - at least 70 associated space points in TPC (out of a maximum of 159)
 - X^2 /ndf < 2 in the TPC
 - at least one associated hit in either of the two innermost layers in ITS
- p_{τ} dependent kinematic and topological cuts applied on the final decay products to enhance signal-to-background ratio and maximize significance.
- Additional background rejection in the low momentum region through particle identification (PID) in TPC and TOF

D-meson reconstruction

Susanna Costanza

Susanna Costanza

Quality Assurance for ITS detector

- Trending studies (periodic checks) to evaluate the performances of the ITS detector, in corrispondence of the calibration and reconstruction steps of the data collected at the LHC.
- Checks performed also on the Monte Carlo productions, anchored to specific data set.
- Direct comparison between experimental runs and Monte Carlo productions, run by run (for 10% production)

- Daily meetings for pPb data taking and for new pp productions

Susanna Costanza

³ Introduction

- **ALPIDE** chip is a CMOS Monolithic Active Pixel Sensor developed for a major upgrade of the Inner Tracking System (ITS) of ALICE
- The ITS Upgrade pursues 3 major objectives:
 - Improvement of the impact parameter resolution
 - Innermost layer from 39 mm down to 22 mm
 - Improved single point resolution due to a smaller pixel size
 - Improvement of the tracking efficiency and transverse momentum resolution in the low p_T range
 - 7 detection layers in place of the current 6
 - Improvement of the readout rate capability with Pb-Pb data

Introduction

- The **ALPIDE** chip is implemented in a 180 nm CMOS Imaging Process
- chip size: 15 mm x 30 mm containing a matrix of 512 x 1024 pixels
- pixel size: 29.24 μm x 26.88 μm

- A charged particle crossing the sensor liberates free charge carriers in the material by ionization
- The electrons released in the epitaxial layer diffuse laterally while remain vertically confined by potential barriers
- The signal sensing elements are n-well diodes (~2 μm diameter)

³ Introduction

- For the simulation of the ALPIDE chip a fully parametrized solution has been proposed (mainly because of its unknown analog response)
- In this context, the chip response can be regarded as the convolution of a contribution due to physics and one due to the detector
- Response, however, can be factorized:

$$F(eta\gamma, heta) \cdot D(ar{x}, I)$$

Physics contribution

 $m{\cdot} F(m{eta}m{\gamma},m{ heta})$ is estimated from MC whereas $D(ar{x},I)$ is estimated from data

³₅ Physics Contribution

- The contribution from physics takes into account the fact that the average cluster size (**ACS**) is proportional to the energy deposit E_{loss}
- From the Bethe-Block formula, ACS (<u>from the physics contribution only</u>) is parametrized as

$$A\cdot rac{1+x^2}{x^2}\left[rac{1}{2}\cdot \ln(B\cdot x^2) - rac{x^2}{1+x^2} - C\cdot \ln(x)
ight]\cdot rac{1}{\cos heta}$$

- What about $D(\bar{x}, I)$
- From the analysis of the test beam data with the ALPIDE-3 chip, a strong dependence between ACS and crossing position is observed
- This effect has been parametrized with 2D gaussian in the simulation

³₆ Cluster size vs track position

- Because of this strong dependance a 2D gaussian model was implemented in the simulation to parametrize the average cluster size
- The actual cluster size was sampled from a Landau with Mo = ACS

• The FWHM was tuned to match the CS distribution in data

• The simulation, initially developed in AliRoot, was ported (and, since then, further developed) in O2

- ³₇ Cluster size vs track position
- This model can reproduce the data quite well

$\frac{3}{8}$ Cluster shape vs θ

• Study of the cluster shape vs the incidence angles ongoing

CONSUNTIVI SCIENTIFICI 2016

3 different experiments:

ASACUSA Italia cognome nome	TIPO	Ricercatori Tecr	nologi	FTE
Baù Marco	assoc	Assegnista		50
Bianconi Andrea	assoc	Prof.Associato		70
Corradini Maurizio	assoc			
Ferrari Marco	assoc	Prof. Associato		50
Ferrari Vittorio	assoc	Prof. Ordinario		50
Leali Marco	assoc	Tecn.Laureato	х	100
Mascagna Valerio	assoc.	Assegnista		100
Solazzi Luigi assoc	assoc.	Ricercatore		50
Venturelli Luca assoc	assoc.	Prof. Ordinario		100

+ collaboratori Università dell'Insubria-Como & INFN Trieste

Pubblicazioni ASACUSA 2016

 \overline{H} • C. Sauerzopf et al. "Towards measuring the ground state hyperfine splitting of antihydrogen – a progress report" Hyperfine Interact 237 (2016) 103

• B. Radics et al. "Antihydrogen synthesis in a double-CUSP trap towards test of the CPT-symmetry" Hyperfine Interact 237 (2016) 156

• Y. Nagata et al. "Direct detection of antihydrogen atoms using a BGO crystal" NIM A 840 (2016) 153–159

- $\overline{p}He^+$ M.Hori et al. "Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio" **Science** 354 (2016) 610-614
- $\sigma_{ann}(\overline{p}A)$ K. Todoroki et al. "Instrumentation for measurement of in-flight annihilations of 130-keV antiprotons on target foils" NIM A (2016) 59256

• H. Aghai–Khozani et al. "New results of the antiproton-carbon annihilation cross section measurement at low energies" EPJ Web of Conf. 130, 07014 (2016)

Consuntivi FAMU 2016

CdS, 5 giugno 2016

Motivazioni: il puzzle del raggio del protone

- Si considerano le distribuzioni di carica, $\rho_E(r)$ e magnetica, $\rho_M(r)$. $R_Z = \int (\int \rho_E(r') \rho_M(r-r') d^3r') r d^3r - \Delta E^{HFS}{}_{1S} = 184.087X - 1.281Y R_Z meV.$ La teoria prevede X ≈ 15 , Y < 10.
- Misura dello splitting iperfine (HFS) nello stato base dell'idrogeno muonico, legato al raggio Zemach del protone dal HFS del $(\mu^{-}p)_{1S}$
- Esperimento basato sul Lamb Shift nel μ -p al PSI (2010): r_{ch}= 0.84089(39) fm
- Discrepanza di 7σ da CODATA-2010: $r_{ch}=0.87750(510)$ fm basato su scattering e-p e spettroscopia H.
- Necessità di una misura conclusiva: FAMU @RIKEN-RAL muon facility.

Metodologia

- L'atomo di µp assorbe un fotone da un laser IR alla lunghezza d'onda della risonanza $\lambda_0 = hc/DE^{1S}_{HFS} \approx 6.8$ µm della transizione da singoletto a tripletto (spin flip).
- Quando l'atomo viene de-eccitato collisionalmente allo stato 1S, viene accelerato di 0.12 eV (\approx 2/3 dell'energia di transizione iperfine).
- Questa sequenza di processi viene rivelata tramite i prodotti di reazioni la cui rate dipende dalla velocita' del µp.
- In particolare, viene osservato il trasferimento del μ dal protone a nuclei di un gas pesante appropriato, che abbia una dipendenza importante dell'energia dalla rate di trasferimento.
- Il trasferimento del μ è identificato da raggi X caratteristici emessi durante la diseccitazione dell'atomo muonico piu pesante.
- λ_0 (da cui si ricava ΔE^{1S}_{HFS}) viene identificata dalla risposta massimale.

La Collaborazione FAMU (2016)

- Responsabile Nazionale: Andrea Vacchi (INFN Trieste)
- Sezioni di: Bologna, Milano, Milano Bicocca, Pavia, Roma 3, Trieste (dal 2017: Napoli)
- Collaborazioni estere: Krakow (Pol.), Sofia (Bul.)
- FAMU-Pavia: 1.8 FTE, 5 persone (2 ricercatori, 3 tecnologi) (+0.3 FTE rispetto al 2015)
- Finanziamenti PV 2016: Missioni 11 k€, Consumo 2 k€, Trasporti 1 k€
- Pubblicazioni 2016:

A. Adamczak et al., "Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization", Journal of Instrumentation, Volume 11(5) P05007 (2016).

R. Bertoni et al., "Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy", Nucl. Instr. Meth. A824, 212-214 (2016).

- Conferenze 2016:

"The construction of the Fiber-SiPM beam monitor system of the R484 and R582 experiments at the RIKEN-RAL muon facility", IPRD2016 (Siena, Italy) (M. Bonesini et al.)

Run FAMU 2014: primi risultati

A. Adamczak et al., "Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization", Journal of Instrumentation, Volume 11, May 2016.

RUN FAMU 2016

- Test run su fascio di muoni a RIKEN RAL (febbraio 2016) per misura di rate trasferimento di muoni da idrogeno muonico ad atomi pesanti: sono state variate pressione, la temperatura e la concentrazione dei nuclei in diverse miscele di gas.
- ≻ Test rivelatori (LaBr3, Pr:LUAG, HPGe).
- Test monitor dei muoni del fascio (odoscopio).

Test sul cristallo+riflettore+SiPM array (2015/2016)

- Installazione 4 Pr:LuAG e 2 CeCAGG e presa dati presso RIKEN-RAL nei test run di Dicembre 2015 e Febbraio 2016 (in collaborazione con INFN-MiB).
- Collaborazione all'analisi dei dati in corso: tre pubblicazioni in fase di finalizzazione.

righe di atomi muonici evidenti.

Attività FAMU-PV 2016: nuovo monitor di fascio

- 2 piani x/y di fibre scintillanti BCF12 (<u>diametro 1 mm</u>) lette da SiPM Advansid 1x1 mm² con celle da 40 μm.
- Boards per alloggiamento SiPM disegnate e realizzate dal Servizio Elettronico della Sezione di Pavia. Meccanica stampata su stampante 3D a Pavia su CAD di INFN Milano Bicocca.

Profilo del fascio (X,Y) misurato dall'odoscopio a 61 MeV/c. RMS del fascio < 1 cm in entrambe le coordinate. Attività FAMU-PV 2016: elettronica per Germanio MiB

• Disegno e realizzazione da parte del Servizio Elettronico dello stadio di pre-amplificazione per i rivelatori a Germanio di INFN Milano Bicocca in vista dei test run autunno 2016 e 2017.

Time (ns)

- Esempio di segnale acquisito durante i run di FAMU a RIKEN-RAL con l'attuale elettronica di amplificazione Ortec:

- tempo di salita elevato, non permette di distinguere tra fotoni X primari e ritardati.

Serve una risoluzione temporale di qualche decina di ns.

- Il gruppo FAMU-PV ha iniziato a sviluppare un pre-amplificatore per arrivare a tempi di salita sotto i 100 ns. I test sono iniziati con la realizzazione di un pre-amplificatore simil Ortec da utilizzare come punto di partenza:

- Il nuovo preamplificatore è molto più veloce e non mostra overshoot.

Prossimo passo: test su fascio a RIKEN-RAL.

MAMBO

MAMiBOnn

Studio di fotoreazioni indotte su nucleoni e nuclei utilizzando gli acceleratori

- MAMI E_γ ≤ 1.6 GeV (Mainz)
 A2 Collaboration (spokepersons : A. Thomas Mainz (circa 80 persone)
 P. Pedroni INFN-PV)
- ► ELSA E_γ ≤ 3.0 GeV (Bonn)
 BGO-OD collaboration (spokepersons : H. Schmieden Bonn (circa 60 persone)
 P. LeviSandri INFN-LNF)

Sezioni INFN Partecipanti: CT (Me), ISS, LNF, PV, RM2, TO

COLLABORAZIONE MAMBO

Responsabile Nazionale: PAOLO LEVI SANDRI

Sezioni INFN partecipanti:

ROMA TOV	Responsabile Locale
LNF	Responsabile Locale
MESSINA	Responsabile Locale
PAVIA	Responsabile Locale
ISS-RM	Responsabile Locale
TORINO	Responsabile Locale

RACHELE DI SALVO PAOLO LEVI SANDRI GIUSEPPE MANDAGLIO PAOLO PEDRONI FRANCESCO GHIO GIANPIERO GERVINO

21 ricercatori; 11.2 FTE

MAMBO- Physics Topics

(mainly involving low cross sections and/or precision measurements)

- •Threshold meson production: (test of LET/ ChPT):
 - Strangeness ($\gamma N \rightarrow \Lambda K$)
 - π^0 meson photoproduction at threshold
- Ambiguity free amplitude analysis of meson photoproduction

Requires Double polarization measurements:

 $\gamma N \rightarrow N\pi(\pi)$; N η (ρ ,...) channels

• Tests of fundamental symmetries (C,CP,CPT...)

(Rare) η , η' decays

- In medium properties of hadrons & nuclear physics: Meson photo production on nuclei
- Search for "missing" baryon resonances

Vector meson (ϕ , ω) photo production

Use of state-the-art technology (circularly and linearly polarised photon beams; longitudinally and transverse polrised proton/deuteron/3He targets) is required

A2@MAMI: detector overview

- photon beam produced by bremsstrahlung process and tagged by the magnetic ٠ spectrometer
- $\dot{E}_{\gamma} < 1.5 \text{ GeV}, \Delta E_{\gamma} = 2 4 \text{ MeV}$ Linear and circular polarisations available

MWPC:2 cylindrical detectors (PAVIA)

MAMBO – Bonn - Apparato

Attività svolta 2016-2017

Bonn : -) Fine commissioning del sistema MWPCs

-) Prese dati in fascio e con camere a fili e con fotoni linearmente polarizzati (fotoproduzione di mesoni $\eta \quad ed \eta'$)

Polarized Nucleon Target

Polarized Nucleon Target

Very first Results from the 2016 Beam time

103

Maximal polarization: about 70% with a relaxation time of 80 hrs

Time Spectra (individual TDCs)

Bonn – April beam time wire signals

Grazie al prezioso lavoro di Domenico Calabrò ed alla valida collaborazione di Roberto Nardò è stato possibile risolvere i grossi problemi di rumore/malfunzionamento delle schede con preamplificatori fili costruite da INR-Mosca

Bonn – April beam time strip signals

Publications (refereed journals)

```
2011: 4 (1 PLB)
2012: 4 (1 PLB)
2013 10 (2 PRL; 4 PLB)
2014 11 (4 PRL; 1 PLB)
2015 10 (1 PRL; 2 PLB)
2016 7 (1 PRL)
```

Attività prevista 2017-2018

Mainz : -) manutenzione camere a fili -) analisi dati offline

- -) **test nuovo** rivelatore (TPC attiva) (su fascio di elettroni !)
- -) commissioning nuovo rivelatore di Tagging (352 scintillatori)
- -) Prese dati con bersagli protone/deuterio non polarizzati (scattering Compton,...)

Bonn : -) manutenzione camere a fili

- -) analisi dati offline
- -) Continuazione dei runs di misura con rivelatore al completo (MRPC) (fotoproduzione mesoni eta/eta' con fotoni linearmente polarizzati)