Outlook (\neq Summary)

Oxford Dictionary:

1. A person's point of view

2. The prospect for the future

A contribution to the discussion in a time of healthy uncertainty

The Standard Model paradox

R. Barbieri Pisa, June 8, 2017 The SM Lagrangian (since 1973 in its full content)

$$\mathcal{L}_{\sim SM} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\Psi} \not D \psi \quad (_{\sim}1975-2000)$$
$$+ |D_{\mu}h|^{2} - V(h) \quad (_{\sim}1990 - 2012 - now)$$
$$+ \psi_{i}\lambda_{ij}\psi_{j}h + h.c. \quad (_{\sim}2000 - now)$$

In () the approximate dates of the experimental shining of the various lines (at different levels)

The synthetic nature of PP exhibited

QCD in full strength

Precision in ElectroWeak Physics

(a story that goes on from about 1970 on and still keeps its relevance)

	APV	$(g-2)_e$	$(g-2)_{\mu}$	W, Z	$\mid m_{top}$
$\Delta O/O$	10^{-3}	10^{-8}	10^{-6}	$10^{-(3\div 4)}$	10^{-2}
d(cm)	10^{-5}	10^{-11}	10^{-13}	10^{-16}	10^{-16}

precision at work at many different scales

a key to understanding

The Standard Model or not the SM?

Question:

1: Give the SM for granted and "look elsewhere" or ?

2: Keep testing the SM to learn how to complete it Answer:

the "or" is the problem

reasons of poor understanding and reasons of incompleteness

Precision in Higgs couplings

at best, currently, a 20% precision no measurement, so far, of triple or quartic self-coupling

The Higgs boson is the least "understood" particle in the SM It cannot be the one that is less precisely measured

 $\delta\sigma_{Zh}/\sigma_{Zh} < 1\%$ achievable in an e+e- collider ILC: about 30% in Higgs self-coupling CEPC CLIC muon collider

The flavour paradox $\lambda_{ij}\Psi_i\Psi_jh$

as opposed to the hard time we have in trying to describe spectrum and mixings of quarks and leptons

Not easy to improve without observed deviations from the SM

A significant comparison

A significant comparison

An "Extreme Flavour" experiment?

Vagnoni – SNS, 7–10 Dec 2014

- Currently planned experiments at the HL-LHC will only exploit a small fraction of the huge rate of heavyflavoured hadrons produced
 - ATLAS/CMS: full LHC integrated luminosity of 3000 fb⁻¹, but limited efficiency due to lepton high p_T requirements
 - LHCb: high efficiency, also on charm events and hadronic final states, but limited in luminosity, 50 fb⁻¹ vs 3000 fb⁻¹
- Would an experiment capable of exploiting the full HL-LHC luminosity for flavour physics be conceivable?
 - Aiming at collecting O(100) times the LHCb upgrade luminosity $\rightarrow 10^{14}$ b and 10^{15} c hadrons in acceptance at L=10³⁵ cm⁻²s⁻¹

a recent <Phase-II LHCb Upgrade> submitted to the LHCC

Lepton Flavour Violation

Motivation: extra degrees of freedom + unification

Key neutrino measurements

Power spectrum of large scale structures

Power spectrum $P(k)/P_{massless \nu}(k)$

Determination with future large-scale structure observations (Euclid) at 2 – 5σ depending on control of (mildy) non-linear physics

Not independent on "priors" but still highly significant

 $\Delta N_{eff}^{
u} \lesssim 0.6$ now, expected to improve in sensitivity by about one order of magnitude

Dark Matter

makes sense to look also elsewhere independent motivations valuable (almost) a forgotten question: Why Ω_b and Ω_{DM} comparable?

WIMP direct searches

Axion/ALP searches

Good to look for other couplings:

$$\vec{\nabla}a \cdot \vec{\sigma}, \ a\vec{\sigma} \cdot \vec{E}, \ \dot{a}\mathcal{O}_{SM} \ (a\mathcal{O}_{SM})$$

The hierarchy problem, once again

Can we compute the Higgs mass/vev in terms of some fundamental dynamics?

NOT in the SM

$$-\frac{t}{2} + \frac{h}{2} + \frac{\xi}{2} W, Z$$

 $\delta m_h^2 \propto \Lambda^2$

We have seen $\log\Lambda$ divergences everywhere: running of gauge couplings, scaling violations, anomalies

Power law divergences prevent us from calculating or even estimating the Fermi scale nor the cosmological constant

The standard reaction

$$\begin{split} \delta m_h^2 &= \frac{3y_t^2}{4\pi^2} \Lambda_t^2 - \frac{9g^2}{32\pi^2} \Lambda_g^2 - \frac{3{g'}^2}{32\pi^2} \Lambda_{g'}^2 + \dots \\ & (\Lambda_t \lesssim 0.4\sqrt{\Delta} \ TeV) \Lambda_g \lesssim 1.1\sqrt{\Delta} \ TeV \qquad \Lambda_{g'} \lesssim 3.7\sqrt{\Delta} \ TeV \\ & 1/\Delta \ = \text{amount of tuning} \end{split}$$

⇒ Look for a top "partner" (coloured, S=0 or 1/2) with a mass not far from 1 TeV

aesthetically and theoretically SUSY as the best option (among others)

 $< h > \approx m_{\tilde{e}} \approx m_{SUSY \ particles}$

But this is a quantitative relation only if one bars accidental cancellations

Not a problem for SUSY but for knowing if true in nature

Where are the superpartners?

Define an "inverse fine-tuning" measure

Cute more natural models available (JMR) Too cute? Peculiar configurations $(m_i^{susy} > ?)$

The judgement suspended, reasons of concern

Other signals than from standard sparticles (R-axions, S-axions, ...)?

$\Lambda^2\text{-divergences}$ as a signal of the problem

Pending questions to avoid a "low energy" explanation of the hierarchy:

- gravity?
- Non-asymptotically free couplings?
- No higher physical scale?

Can we lack a clever IR-UV connection?

Frequently asked questions about "naturalness" especially after the (temporary) blank of LHC in BSM

Is the quest for "naturalness" still relevant? More than ever

How about: "naturalness" = "low energy" New Physics?

Not a "theorem" anymore

Which are the good "naturalness" solutions?

The ones that lead to testable predictions, the more quantitative the better

For completeness

$$\mathcal{L}_{SMGR} = \frac{\sqrt{-g}}{16\pi G_N} (-R(g) + 2\Lambda)$$

Classically well tested BH, GW, cosmology

Resists quantisation

No successful renormalisation recipe so far

No way to calculate or even estimate $\Lambda~(\approx (10^{-3} eV)^4)$

The boundaries between PP, AP and cosmology fading away

GW151226f								
GW151226b								
GW151226a								
LVT151012f								
LVT151012b								
LVT151012a			4					
GW150914f								
GW150914b								
GW150914a								
LMC X-3								
GRO[1655-40								
XTE 1550-564								
, XTE 1118+480								
GRS1915+105								
GRS 1009-45								
CygX-1								
A0620-00								
XTEJ1859+226								
LMC X-1								
GS 1354-64								
XTEJ1819-254								
XTEJ1650-50(0)								
GX339-4	- · · · · · - · · · · · · · · · · ·							
M33 X-7								
GRO J0422+32				· · · · · · · · ·				
GS 2000+25				.				
GRS 1124-68	• • • • • • • • • • • • • • • •							
4U1543-47								
H1705-25								
GRS 1716-249								
GS2023+338				· · · · · · · · ·				
	2	0 4	0 6	0				
	M [M_{\odot}]							

Vitale 2017

If mirror, is there a way to solve

First guided by the Dark Radiation:

 $m'_i = y'_i v'$ T_d = decoupling temperature

look for P-breaking in light Yukawa's $y_i^\prime > y_i$

Enough? Need a theory of flavour?

B, Hall, Gregoire 2005

3

?

2

If mirror, is there a way to solve

The only breaking of Parity in a single parameter $\epsilon \neq \epsilon'$

from where the fermion hierarchies (standard and mirror) arise

$$y_{ij} = \epsilon^{n_i} \lambda_{ij} \epsilon^{\bar{n}_j} \qquad \qquad y'_{ij} = \epsilon'^{n_i} \lambda_{ij} \epsilon'^{\bar{n}_j}$$
$$\frac{y'_f}{y_f} = \left(\frac{\epsilon'}{\epsilon}\right)^{n_f} \left(1 + \delta_f(\epsilon'^{m_f} - \epsilon^{m_f})\right)$$

3

2

Dark Matter

DM = the lightest among:

 $He'_* = B'_{uuu} + 2e' \quad H' = B'_{uud} + e' \quad n' = B'_{udd} \quad H'_* = B'_{ddd} + \bar{e}'$

Dark Matter direct detection

Now $\Delta N_{eff}^{\nu} \lesssim 0.6$

Precision on Higgs couplings

Physics at Λ_{TH} (SUSY, composite, extra-dim.s, etc.?) affects $m_{h'}$ (1 TeV?) but not m_h

Is this why nothing new has been seen so far at LHC?

A deviation from the SM, finally?									
$R_{D^{(*)}} = \frac{BR(B \rightarrow D^{(*)}\tau\nu)}{BR(B \rightarrow D^{(*)}l\nu, l = \mu, e)}$									
$R_D^{ au/l}$	$\begin{array}{c} \mathbf{exp} \\ 0.403 \pm 0.047 \end{array}$	SM 0.300(8)	$\frac{\mathbf{Pull}}{2 \sigma}$						
$R_{D^*}^{ au/l}$	0.310 ± 0.017	0.252(3)	3.4σ						
	$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)}$								
,	exp	SM	Pull						
$R_K^{\mu/e}$	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01	2.6σ						
$R_{K^*(low \ q^2)}^{\mu/e}$	$0.660^{+0.110}_{-0.070} \pm 0.024$	0.906 ± 0.028	2.3σ						
$R^{\mu/e}_{K^*(high~q^2)}$	$0.685^{+0.113}_{-0.069} \pm 0.047$	1.00 ± 0.01	2.4σ						
			LHO	СЬ 2017					

 $P'_5(B \to K^* \mu \mu); \ BR(B \to \phi \mu \mu)$

3.9 σ if D and D* combined

general caveats

$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}l\nu, l = \mu, e)} \qquad R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)}$$

Difficult experiments

Lepton Flavour Violation never seen before in charged leptons

In case one wants to see them correlated: $b \rightarrow c \ l \nu$ tree level, $b \rightarrow s \ l l$ loop level

more specific slight caveats

Why I like them

1. A $U(2)^n$ flavour symmetry as approximately observed in the quarks (spectrum and mixings) and in the charged leptons basically distinguish the q_3 , l_3 singlets from the (q_1, q_2) , (l_1, l_2) doublets

2. If due to a leptoquark exchange, singlet under $U(2)^n$ $U_{\mu}(\bar{q}_3\gamma_{\mu}l_3), \ S(\bar{q}_3l_3)$ only allowed by exact $U(2)^n$

> 3. After (small) $U(2)^n$ -breaking, mixing gives $b \rightarrow c \ \tau \nu$ (once suppressed) $b \rightarrow s \ \mu \mu$ (3 times suppressed)

EFT-type considerations [U(2)ⁿ flavor symmetry]

This coherent picture leads to several testable predictions in other low-energy observables:

• b \rightarrow c(u) lv	$BR(B \to D^*\tau v)/BR_{SM} = BR(B \to D\tau v)/BR_{SM} = BR(\Lambda_b \to \Lambda_c \tau v)/BR_{SM}$ $= BR(B \to \pi \tau v)/BR_{SM} = BR(\Lambda_b \to p \tau v)/BR_{SM} = BR(B_u \to \tau v)/BR_{SM}$
∙b→s μμ	$\Delta C_9^{\mu} = -\Delta C_{10}^{\mu} (\rightarrow \text{ to be checked in several other modes})$
$b \rightarrow s \tau \tau$	$ NP \sim SM \rightarrow large enhancement (easily 10 \times SM)$
$b \rightarrow s vv$	~ $O(1)$ deviation from SM in the rate
$K \rightarrow \pi \nu \nu$	$\sim O(1)$ deviation from SM in the rate
• Meson mixing	~ 10% deviations from SM both in $\Delta M_{Bs} \& \Delta M_{Bd}$
• τ decays	$\tau \rightarrow 3\mu$ not far from present exp. Bound (BR ~ 10 ⁻⁹)

Signals

from the <Phase-II LHCb Upgrade>

CERN-LHCC-2017-003

Conclusions

The Standard Model is NOT a complete story (although any deeper theory will include it as a relevant limit)

Precision in Higgs and flavour physics is a must

Pictures that go **Beyond the SM** are not lacking, but – fair to say – we don't know which one is right

The very nature of Particle Physics and the current uncertain situation REQUIRE highly diverse frontiers of research

For question time

comparing Higgs with EW precision

Consider any theory where the hVV-coupling κ_V deviates from the SM

EW precision in principle more constraining on κ_V

Need to specify the cutoff
 Be sure of no other contribution

however:

Successful FN models

SU(5) $Q, \bar{u}, \bar{e}: (4, 2, 0), \bar{d}, L: (4, 3, 3).$ B1 $Q: (3, 2, 0), \bar{u}: (4, 2, 0), \bar{e}: (4, 2, 0), \bar{d}, L: (4, 3, 3)$

B2 $Q: (3,2,0), \ \bar{u}: (4,2,0), \ \bar{e}: (4,2,0), \ \bar{d}, L: (3,2,2)$

model	$rac{m_b}{m_t}$	$rac{m_{ au}}{m_t}$	$rac{m_c}{m_t}$	$rac{m_s}{m_t}$	$rac{m_{\mu}}{m_t}$	$rac{m_u}{m_t}$	$\left rac{m_d}{m_t} ight $	$rac{m_e}{m_t}$		V_{us}	V_{cb}	V_{ub}
SU(5)	$1.6\epsilon^3$	$1.1\epsilon^3$	$1.8\epsilon^4$	$1.0\epsilon^5$	$1.25\epsilon^5$	$2.5\epsilon^8$	$4.5\epsilon^8$	$0.6\epsilon^8$	4	$4.5\epsilon^2$	$1.0\epsilon^2$	$2.3\epsilon^4$
B1	$1.6\epsilon^3$	$1.1\epsilon^3$	$1.8\epsilon^4$	$1.0\epsilon^5$	$1.25\epsilon^5$	$0.55\epsilon^7$	$1.0\epsilon^7$	$0.6\epsilon^8$		1.0ϵ	$1.0\epsilon^2$	$0.5\epsilon^3$
B2	$0.5\epsilon^2$	$0.4\epsilon^2$	$4.0\epsilon^4$	$0.45\epsilon^4$	$0.6\epsilon^4$	$2.2\epsilon^7$	$0.7\epsilon^6$	$0.5\epsilon^7$		1.2ϵ	$1.5\epsilon^2$	$1.8\epsilon^3$

Why $|Q_p + Q_e| < 10^{-21}e$? (recall Einstein's lesson from $m_{in} = m_{grav}$)

 $\Psi = Q(3,2)_{1/6} \quad u(\bar{3},1)_{-2/3} \quad d(\bar{3},1)_{1/3} \quad L(1,2)_{-1/2} \quad e(1,1)_1$

 Ψ = next-to-simplest rep of ${\cal G}$: chiral, anomaly-free, vector-like under $SU(3)\times U(1)_{em}$

However:

1. A simpler rep: $\Xi = (3,2)_0 (\overline{3},1)_{1/2} (\overline{3},1)_{-1/2}$

2. What if ν_R are added? $\tilde{\Psi} = Q(3,2)_y \ u(\bar{3},1)_{-y-1/2} \ d(\bar{3},1)_{-y+1/2} \ L(1,2)_{-3y} \ e(1,1)_{5y+1/2} \ \nu^c(1,1)_{3y-1/2}$ (An important hint for "algebraic" Unification?)

3 - cosmology (large scale structures) $\Sigma = m_1 + m_2 + m_3$

Relic abundance of the QCD axion

(Axion Like Particles: m and f unrelated)

The dynamical field, a, is the "axion"

Olive et al, 2104

and is very intensively searched for

(with the most interesting region still unaccessible)

An alternative definition of the SM (equally precise!)

1. Symmetry group $\mathcal{L} \times \mathcal{G}$

- \mathcal{L} = Lorentz (rigid, exact)
- $\mathcal{G} = SU(3) \times SU(2) \times U(1)$ (local, spontaneously broken)

2. Particle content (rep.s of $\mathcal{L} \times \mathcal{G}$)

3. All "operators" (products of $\Phi, \partial_{\mu} \Phi$) in \mathcal{L} of dimension \leq 4 with a single exception $\theta G_{\mu\nu} \tilde{G}^{\mu\nu}$

$$\hbar = c = 1 \Rightarrow [A_{\mu}] = [\phi] = [\partial_{\mu}] = M, \quad [\Psi] = M^{3/2}, \quad [\mathcal{L}] = M^4$$

Which direction to take in flavour?

Lepton Flavour Violation at least equally motivated

2. Indirect signals of new physics at the TeV scale