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Abbiamo sviluppato una tecnologia per…

• Knowledge extraction from Magnetic Resonance Images: 

• Find new biomarkers [1] 
for tumor staging  

• Impact on treatment plan  

• Rectal cancer as a case study
[1] R. J. Gillies, P. E. Kinahan, and H. 

Hricak, “Radiomics: images are more 
than pictures, they are data,” 
Radiology, vol. 278, no. 2, pp. 563–
577, 2015.
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Il problema è…

• Colorectal cancer (CRC)  
is the third most common 
cancer worldwide [1] 

• The therapy is:  
neoadjuvant chemo-radiotherapy (CRT) followed by radical 
surgery 

• This therapeutic approach is an over-treatment of many 
patients 

• Define novel MRI biomarkers  
to tailor the treatment

With a lag period of 20 to 30 years, patterns of lung cancer
incidence closely follow smoking prevalence. Although lung cancer
incidence currently is more common in the developed world, this
pattern is expected to change in the next two decades. A dramatic
rise in the incidence of lung cancer in China has been predicted,
where smoking rates have markedly increased.19 Estimates indicate
that by 2030, 70% of tobacco-related deaths will occur in develop-
ing countries.20

Despite therapeutic advances, little gain has been achieved in
overall lung cancer survival over the past 30 years, with approximately
15% 5-year survival rates for all stages combined.21 Thus, conven-
tional treatment remains an unsatisfactory means by which to de-
crease global lung cancer burden. Chemoprevention is theoretically
possible for primary lung cancer prevention, although clinical trials
have been disappointing to date.22 Results from ongoing clinical trials
to determine whether screening strategies will favorably impact lung
cancer survival are awaited.23

Currently the most effective and important approach to reduce
lung cancer burden worldwide is to reduce smoking rates through
behavioral interventions and public health policy. Smoking cessation
methods that are sensitive to country-specific needs and customs will

be important to ensure successful outcomes.20 To this end, in 2003 the
World Health Assembly adopted the World Health Organization
Framework Convention on Tobacco Control,24 the first international
treaty designed to enhance national and international coordination to
control the tobacco epidemic. Entering into force in February 2005,
the World Health Organization Framework Convention on Tobacco
Control incorporates a variety of measures to counter the tobacco
epidemic, including both concrete obligations or requirements and
recommendations.25 Requirements include restrictions on advertis-
ing, sponsorship, and promotion of tobacco products, and enforce-
ment of packaging and labeling specifications. Recommendations
include establishing clean indoor air controls and strengthening legis-
lation against tobacco smuggling.

Female Breast Cancer
With an estimated 1,152,161 new cases each year, female breast

cancer is the second most common cancer in the world and the most
common cancer among women, accounting for 411,093 cancer
deaths per year (Fig 2). Breast cancer incidence rates increased in all
regions of the world included in this study during the years 1973 and
1997 (Fig 4), with the highest rates in Surveillance, Epidemiology, and

Fig 2. Worldwide annual number of cancer cases and cancer deaths, incidence rates (IRs), mortality rates (MRs), and mortality-to-incidence rate ratios (MR:IR; adjacent
to bars) according to cancer site and sex (1993-2001). Reporting sources for IRs and MRs differ.
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[1] Kamangar F, Dores GM, Anderson WF. 
Patterns of cancer incidence, mortality, and 
prevalence across five continents: defining 

priorities to reduce cancer disparities in 
different geographic regions of the world. J 

Clin Oncol 2006; 24:2137-2150.
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Noi affrontiamo il problema così…

• We are developing a software to 
segment and analyze the MRI 

• using library developed for medical 
application  
(such as ITK) 

• and tools from Physics 
and Data Science
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Gli altri che hanno provato a risolvere il problema 
hanno queste performance

• There are efforts on other tumors 

• for example: D. Fehr et al.  
“Automatic classification of  
prostate cancer…” achieved an  
accuracy greater than 90%  

• It is a fast growing field:  
• H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest 

Editorial Deep Learning in Medical Imaging: Overview and 
Future Promise of an Exciting New Technique” IEEE Trans. 
Med. Imaging, vol. 35, no. 5, pp. 1153–1159, May 2016

ADC mean, 10th percentile, T2-w histogram-based skewness, and
k-trans were used to distinguish between cancer vs. benign and
between cancer GSs (21). Our work builds on the aforementioned
work by classifying GS 7ð3+ 4Þ vs. 7ð4+ 3Þ in addition to classifying
cancer vs. noncancerous prostate and GS 6ð3+ 3Þ vs. GS ≥7 with
texture-based features derived from ADC and T2-w MR images.
Furthermore, our work addresses an important problem of
obtaining highly accurate machine learning despite severe class
imbalance between the different groups of cancers by using sample
augmentation with feature selection.
Our work demonstrates that PCa diagnosis can be improved by

combining data-augmented classification together with more of the
latent information in standard MRIs (the so-called “radiomics
hypothesis”) (27, 28) compared with using ADC mean or T2 signal
intensities alone, thereby reducing the potential for under- or
overdiagnosis. Fig. 1 A and B show the ADC energy, ADC entropy,
T2 energy, and T2 entropy overlaid on a slice of the ADC and
corresponding T2-w MR image for two different patients: one with
a tumor of GS 6ð3+ 3Þ and the other with a tumor of GS 9ð4+ 5Þ.
As shown in Fig. 1 A and B, the energy and entropy values com-
puted from different tumor types appear to be very different, which
suggests that textures, in combination with ADC, can help to dif-
ferentiate between the cancer types.

Materials and Methods
The retrospective study used for the analysis in this workwas approved by the
Institutional Review Board, which waived written informed consent. The
study population used in this study was the same as the one used in our
previous work (29).

Study Population. The study population consisted of T2-w and ADC MR images
acquired from 217 men subjected to MR imaging with the following inclusion
criteria: (i) patients with biopsy-proved PCa, (ii) radical prostatectomy performed
in our institution between January and December 2011, (iii) endorectal 3T
prostate MRI performed within 6 mo of prostatectomy, and (iv) with whole-
mount step-section pathological tumor maps. Patients with prior treatment for
prostate cancer (n = 7), those with cancers <0.5 mL on histopathology (n = 51),
those with imaging artifacts making segmentation of cancer difficult (n = 8), and
those whose cancer location precluded segmentation of normal structures (n =
7) were excluded from study. The final number of male patients in the study
population was 147. More details about patient selection are provided in ref. 29.

MR Image Acquisition and Histopathological Image Analysis. All MR images
were acquired on a 3.0-T MR imaging system (Signa HDX; GE Medical Sys-
tems), with a pelvic phased-array coil in combination with an endorectal coil
(Medrad) for improved signal reception. Transverse T1-w images were acquired
by using the following parameters: repetition time (milliseconds)/echo time
(milliseconds), 467–1,349/6.6–10.2; section thickness, 5 mm; intersection gap,
1 mm; field of view, 22–40 cm; and matrix, 256 × 192–448 × 224. Transverse,

coronal, and sagittal T2-w fast spin-echo images were acquired with the fol-
lowing parameters: 2,500–7,700/83.3–143.5; section thickness, 3–4 mm; in-
tersection gap, 0–1 mm; field of view, 14–24 cm; and matrix, 288 × 288–448 × 224.
Diffusion-weighted sequences were performed in the transverse plane by using a
single-shot spin-echo echo-planar imaging sequence with two b values (0 and
1,000 s/mm2) (3,500–5,675/70.3–105.6; section thickness, 3–4 mm; no intersection
gap; field of view, 14–24 cm; matrix, 96 × 96–128 × 128) and with the same
orientation and location used to acquire transverse T2-w images. The ADCmaps
were computed from Advanced Workstation (GE Medical Systems). The excised
prostates, following the amputation of seminal vesicles, were serially sectioned
from apex to base at 3- to 5-mm intervals and submitted as whole-mount
sections for histopathologic examination. The Gleason grade patterns in each
lesion were determined, and the corresponding lesion borders were outlined
on each slide. More details of MR image acquisition and the histopathological
analysis are provided in ref. 29.

Image Segmentation. Tumors and normal structures were identified and
volumetrically segmented on both the T2-w and ADC MR images by three
readers in consensus: one genitourinary imaging research fellow (A.W.), one
clinical urology research fellow (T.G.), and one pathology research fellow (K.M.),
using 3DSlicer (30) as described in ref. 29. PCa foci ≥0.5 mL were first identified
from the pathology whole-mount step-section tumor images. Given the similar
slice thickness of the step-section (3–5 mm) and the MR images (5 mm), visual
coregistration was used to find the corresponding slices on the T2-w and ADC
MR images. Furthermore, anatomical landmarks including urethra, ejaculatory
ducts, prostatic capsule, and well-delineated hyperplastic nodules were used to
pinpoint the appropriate tumor. The draw tool available in the Editor module
of the 3DSlicer was used to delineate the tumors in multiple slices. In addition
to tumors, a noncancerous prostate region was delineated in both the pe-
ripheral zone (PZ) and the transition zone (TZ) of each patient and marked. To
avoid any errors from automatic registration, the tumors and normal structures
were drawn on both T2-w and ADC images.

Texture Features. First- and second-order texture features were computed
from the T2-w and ADC MR images following preprocessing and intensity
rescaling (0–255). The first-order features consisted of the moments of the
intensity volume histogram (mean, SD, skewness, and kurtosis) computed
from the structure ROI. The second-order features, namely the Haralick
features (31), were computed using the gray level co-occurrence matrix
(GLCM) with 128 bins and consisted of energy, entropy, correlation, homo-
geneity, and contrast. The first-order features were computed from an in-house
software implemented in Matlab (32) and the Haralick features from an in-
house software implemented in C++ using the Insight Toolkit (ITK) (33).

Sample Augmentation Through Oversampling. Class imbalance can adversely
impact the performance of a classifier wherein all of the samples are classified
as the majority class, thereby obtaining fairly good classification accuracy,
albeit with low specificity or sensitivity. Oversampling (34) and sample
weighting (35) are two solutions to address this problem. Our work builds on
ref. 34 and used two different sampling approaches: (i) sample generation
from joint weighting of multiparametric features using synthetic minority

Fig. 1. Example of (A) a GS 6ð3+ 3Þ tumor and (B) a GS 9ð4+ 5Þ tumor. The top row shows the ADC image with the computed energy and entropy values
overlaid on the tumor. The bottom row shows the T2-w MR image with the computed energy and entropy values overlaid on the same tumor on the
corresponding slice. The texture features were computed per voxel by using a 5× 5× 5 patch centered at each voxel.

E6266 | www.pnas.org/cgi/doi/10.1073/pnas.1505935112 Fehr et al.
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Finora siamo arrivati a questo punto…

• Abbiamo trovato alcune variabili la cui media campionaria è 
statisticamente diversa per CR (Complete Responder) e PR+NR 
(Partial e Non-Responder) 

• La larghezza delle distribuzioni è tale da non permettere una 
separazione paziente per paziente 

• Prossimi passi: 
• Normalizzazione 
• Analisi multivariata

-- CR 
-- PR+NR 
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E ora abbiamo bisogno di…

• Affinare l’analisi  

• Incrementare il database di casi clinici 

• Un database strutturato ed un portale per permettere ai 
clinici di popolarlo 

• Un’interfaccia (web?) per permettere l’uso dei nostri tool 
ai clinici
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Spettabile 
Lazio Innova S.p.A. 

Via Marco Aurelio, 26/A - 00198 Roma 

Lettera di supporto alla proposta di Progetto di Ricerca 
MaRIANNe - Magnetic Resonance Image Analysis with Neural Networks 
In relazione al bando “Progetti Gruppi di Ricerca, Conoscenza e cooperazione per un nuovo modello di 
sviluppo (L.R. 13/2008 - art. 4)” del Programma Strategico regionale per la ricerca, l’innovazione ed il 
trasferimento tecnologico della Regione Lazio, FHOSTER esprime un elevato interesse nelle potenziali 

applicazioni dei risultati del progetto in oggetto.  

FHOSTER è un’azienda italiana, partecipata da investitori internazionali e da Lazio Innova S.p.A., 

specializzata nella realizzazione rapida di soluzioni su misura per consolidare centralmente, gestire in 

sicurezza e condividere dati strutturati e file (immagini e documenti), nel rispetto dei diritti assegnati a 

ciascun profilo utente e delle regole impostate a salvaguardia della qualità dei dati stessi. 

Alla base dell’efficienza e della qualità delle soluzioni offerte da Fhoster è una innovativa piattaforma, 

denominata Livebase, che consente di disegnare in modo rapido e intuitivo il modello dei dati da gestire 

(senza necessità di scrivere codice), e di generare quindi in modo automatico (con un approccio model-

driven) applicazioni virtualmente prive di difetti e immediatamente utilizzabili. La piattaforma integra inoltre 

tutti gli strumenti necessari dispiegare, manutenere ed amministrare le applicazioni generate. 

La piattaforma Livebase vanta già numerose applicazioni nel campo della ricerca clinica, tutte interamente 

realizzate e gestite da FHOSTER, con piena soddisfazione dei rispettivi committenti. 

x Dal 2011 la fondazione ICONA utilizza Livebase per raccogliere, da circa 50 strutture ospedaliere, 

informazioni cliniche opportunamente anonimizzate su oltre 17mila pazienti sieropositivi (anamnesi, dati 

fisiologici e genomici, stili di vita, risultati di analisi etc.), con un abbattimento di oltre il 60% sui costi di 

gestione del precedente sistema informatico. 

x Il Centro di Riferimento Oncologico di Aviano ha utilizzato Livebase per uno studio epidemiologico dei 
tumori nelle persone sottoposte a trapianto di organo, denominato “ADEVAM”. Il sistema è stato 

successivamente esteso per essere utilizzato anche dal Gruppo Oncologico Cooperativo del Nord-Est. 

x L’università Cattolica di Roma ha utilizzato Livebase per condurre un trial clinico di durata triennale 

sull’utilizzo combinato di farmaci anti-retrovirale nell’ambito di uno studio, denominato GUSTA, che ha 

coinvolto 10 centri di sperimentazione e oltre 260 pazienti. 

x L’Istituto Nazionale per le Malattie Infettive “Spallanzani” ha utilizzato Livebase per uno studio 

epidemiologico sui determinanti della tubercolosi. 

Il progetto MaRIANNe, presentato dall’Istituto Superiore di Sanità (ISS), si propone lo sviluppo, centrato su 
metodi innovativi di analisi di immagini cliniche, di strategie personalizzate di intervento in pazienti 

oncologici. I proponenti dichiarano di considerare il raggiungimento dell’obbiettivo come premessa per il 
successivo allestimento di un database centralizzato di immagini cliniche presso l’ISS, e di una piattaforma 
accessibile dall’esterno, tramite la quale il clinico possa sottoporre ad analisi un insieme di immagini, e 
ricevere informazioni quantitative derivanti dalla loro analisi, utili come supporto alla decisione clinica. 

Questa prospettiva si colloca perfettamente nell’orizzonte di attività di FHOSTER e, se il progetto avrà 
successo, costituirà molto probabilmente la base per una collaborazione operativa finalizzata allo sviluppo 

del database e della piattaforma.  

In fede, 

Roma, 10 Febbraio 2017 
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Riassumendo

• Stiamo sviluppando un’analisi 
di immagini RM 

• Per estrarre dei biomarker e 
personalizzare la terapia  

• Stiamo realizzando un 
database strutturato 

• Svilupperemo un’interfaccia 
web
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One more thing…



Monte Carlo Applications and Development

• FLUKA general purpose tool for calculations 
of particle transport and interactions in matter 

• Geant4, a comprehensive Monte Carlo toolkit 
that describes the passage and the interactions 
of particles through matter
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user example, named “extended/medical/dna/clustering”. To check
the consistency of this new clustering algorithm, results of
simulations performed under the same conditions as those of Francis
et al. are presented. A box of 1 μm × 1 μm × 0.5 μm made of liquid
water is irradiated with protons with energy ranging from 500 keV
to 50 MeV. Simulations are performed using the default
“G4EmDNAPhysics” physics constructor. The probability that an in-

teraction point falls within a sensitive region is fixed to 0.2 (Francis
et al. have used a value of 0.16), and the probability that the energy
deposit induces a damage varies linearly between 5 eV and 37.5 eV
(as in Francis et al.). The maximum limit distance to merge points
was tuned to reproduce the DSB/SSB ratio published for DBSCAN
[89] and PARTRAC [90]. We found that this distance could be set
at 3.3 nm to reproduce published data, as presented in Fig. 10a,
whereas Francis et al. used 3.2 nm. These differences may be at-
tributed to the difference between physical models as we found that
the distance criterion in our algorithm was dependent on the elastic
scattering model. In addition to the number of single, complex single
and double strand breaks, our clustering user application stores the
cluster size distribution corresponding to the result of the merging
procedure as presented in Fig. 10b.

Figure 7. The 5-compaction levels of the DNA molecule description used in the example “extended/medical/dna/wholeNuclearDNA”: double helix around the histone protein
(nucleosome) (two views on top row), B-type chromatin fiber (center row), chromatin loops (bottom left row) and chromosome territories within an ellipsoidal cell nucleus
(bottom right row). Geometry implementation is further described in [80].

Figure 8. Two linked nucleosomes in a newly developed Geant4 geometry of the
DNA molecule.

Figure 9. Rendering of the atomistic view of a dinucleosome irradiated by a single
100 keV proton using the “extended/medical/dna/pdb4dna” Geant4-DNA example
(see details in [81]).

871M.A. Bernal et al./Physica Medica 31 (2015) 861–874

atomistic view of a 
dinucleosome irradiated by a 

single 100 keV proton 
Image from M. A. Bernal et al 

Physica Medica, vol. 31, no. 8, pp. 
861–874, Dec. 2015.


