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This talk I1s dedicated to Lev Lipatov [940-201/



The title of this talk might be:

Why physicists make such complex , lenghty and cumbersome
calculations ¢

or; as In Cicero’s "De Oratore || 367,

Historia magistra vitae (est)

Chistory s lile s teadhicr )

Historia vero testis temporum, lux veritatis, vita memoriae, magistra vitae, nuntia vetustatis,
qua voce alia nisi oratoris iImmortalitati commendatur?
Elecro B @hatore |l 56
(By what other voice, too, than that of the orator, Is history, the witness of time, the light of
truth, the life of memory, the directress of life, the herald of antiquity, committed to
immortality? )



ASTRONOMIA NOVA
WAITIOAOTrHTOX,

SEV
PHYSICA COELESTIS,

tradita commentarits

DE MQTIBVS STELL &

st R I BT

Ex obfervationibus G. V.
"TTCHONIS BRAHE:

]uffu & {umptibus

KVDOLPHI Il

ROMANORYVYVM

IMPERATORIS &c:

Plunum annorum pertinaci {tudio
claborata Pragz ,

,Ozgg-;‘;g;’;’;ﬁmg; 5 Brahe collected a huge amount of
observation ( at naked eye ) data

& (em ejusdem C4. X3 privilegio [pecials

Axxo =zrx Dionyfianz clo Ioc 1x.



Brahe was not a “copernican” nevertheless

| Kepler’s Work

= Tycho Brahe led a team which »He took 20 years of data on
collected data on the position position and relative distance.
of the planets (1580-1600 with «No calculus, no graph paper,
no telescopes). no log tables.

= Mathematician Johannes =Both Ptolemy and Copernicus
Kepler was hired by Brahe to were wrong,

analyze the data. »He determined 3 laws of

planetary motion (1600-1630).




Keplers laws ( starting in 1618 )

Toannis Kcl)plcri

HARMONICES
MV ND I

LIBRI V. Qvorvym

Primus G rosernicys, DeFigurarum Regularium, qux Proportia.
nes Harmonicas cosfticuunc, oreu & demonitrationibus,

Secundus ARCmTICTOR 1ICVS, fenexGromeraia Fravaara, De Fi.
gurarum Regularium Congrucntia inplano velfolido::

Tertius propric HARMONICYS, ! Je P:u{.\omonum Harmonicarumor-
tuex Frguris; deque Naturd & Datferenciis rerum ad cantom per-
tineatum, contra Vereres:

Quartus METaruysicys, Psychoroaicys & Asrxorosicys, De Har.
moniaram meotali Effentid carumque genertbus in Mundo:prafer.
tins de Flarmonia radiorum, excorponbus cadeftibosin Tersam de-
fceadenubas, citfque effeu in Nawra feu Anima fublunari &
Homana:

Quintus AsTaoNoMmicys & MrrAruysicys , De Harmoniis sbfolatiii-
mis mozaum ceelelbivm, ortaque Eccentricititum ex proportioni-
bus Harmonicis.

Appendix haber comparatonem huins Operis cuny Harmonices Cl.,
Prolemxs Libro 1l Lcumque Robertide Flo@ibus,didti Flud Medic
Oxonienfis fpeculationibus Harmonicis, opeti de Macrocoling &
Microcolmo mfescis.

Cuns 5. C.M", Priwslegioad anses X,

Lincii Auftriz,
SumptibusGoposxrgnt TamracHiBiblF
Excudebac IoANNES PLancys, | rancof,

vINNOo M. DC. XIX.




Iwo pages
from the
Kepler's
logbook
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PHILOSOPHI A

NATURALIS

PRINCIPIA
MATHEMATICA

Autore 7S. NEWTON, Trin. Coll. Cantab. Soc. Mathefcos
| Profeflore Lucafiano, & Societatis Regalis Sodali.

IMPRIMATUR:

S. PEPYS, RegSc. PR AESES
Fulic . 1686.

LONDINI,

Juffu Socictatis Regie ac Typis Tofepbi Streater. Proftat apud
plures Bibliopolas. Amo MDCLXXXVIL




: ‘- .\ ; :i gh s> 5 .0‘ r bR :0 :.41..‘-..'.. .0 :i :.....v.'o'.. - ;:- .:'.. S T oy - Yo . 2
e LR L RS T fINT FESTR LTI T PLTIRNT P BN e
£ %gt I IFT F T SE Ty Y YT TFETS TSSO LS “%#-“"7'7‘“--&? -
;‘ 3. x £ A 888 2 4L et O('-,oan).-..).}‘."{:‘z,. ax "
V. .\"7'.' P Sy T S N P L PP IV B L I T RN T . . @
v S ATIT I 23T Y3935 FEIFLIy#E -
SEXXF S 3133 ¥ 31 PPrsstiiiés kb
LI AR TSRS ! - i :
e onnar o 7S a33,3333333,23333.33233,1 3313,
R o B ' 7’3‘;":;2; 772172¢; IESRETT R
. € s 2 99%73722.2? 22227772
Ly e Bl g M{\I."gifr.l‘b*;&ﬁ(‘ 5 & 66
vig L BRSNS 0O o, of i 664
- 21 809527308097, 7R W e 4
B 3 N30T E RS ':?.'8.\10.19 340,12,
o ’ ’
TSRS E RN
7 o P b -:' '-*-'30.'")14! '3' 0. o’
JFU A 1 ;
5 §§,361 45258, 4852 b

3\Vr‘o:-— Fon b

8 J
§ ® ol ats a9, ~ We ot 1 16| 6, 13,490,137 } L
- ’ 279CTRINT A=
:6]0'3 "(OO’,&O‘J?qua ﬂé‘jO(ﬂ 03 2.,83 ;.. o _ =8 v faxos | 2 : 40
;Bf’gf;;:’ﬁgij’acoo:,B?f’-a.zz:sqsm.azz .cnéj}”“‘-ﬁ "'.-31’ ey s 8,95 7, 28, 48, %° ) m’“
-~ - - Lndntion & P ATy t ) r - y: 9. O - . L i
e 33339373333313333333333331233 3 1 dimax T 455 xr il A L A=
"rx "41‘¢.’7‘4‘ .'-|4l,‘f? l“t‘f'7'ﬂ‘b AR & ¥ — x® . MM’ e X
42897, s AAARSEAGRITITM ISR T ol e Oas g [0 0¥
i oo G F TR R b ; A RS
v, 21,07 _ Hasgtisé ¥ $- v - ) gzl 4,28 1840 10y 150, 1% v [
9 ‘. £ ‘1 .¢2 "o‘l “ ioc’ 24 4 : } ! % 2 - e
S St e e 61193000, 0, 57loronsn | PR
' 47256 $ 18,4240 0, 0,31,27.0,1543, (6.

6679167660y
’5.0'7 Q1E7C6sy

’ ,19’5‘3-' '.;0 y 0?’91 8- 0729'%’6.
S Sp— “ \1..4‘ ‘.’. Lf?!o

\
- p— |
vooonI 43 ,3,33,1)’.30, 1,36,8./1,18.3,59. \\

)

o

-

S

'

‘-

. .

4
-

'™
O,

A
;db
-

b s
’."‘. -
,,
}

offrrtorers - . v ‘ 452,46,
=~ A R . ' o\ ) _". ¢ ,'f,,a, 0.’074‘,5)12‘!:})10 12.
ALT 009 clad 1AL G‘.f’(.,~.‘11;9.‘f,' ¢s 86>y A'_“;‘!:'(‘ Le e 4 (-r.fi s idiviall \fcr-’&kui of, \\
- Ty, 0',. AL=rLor. :"\ L !.*“ 3;; < &x‘q“;“,‘ oy Jisbane, ofd \
o -y - o'd e i
- Ly i e =P d / fy,,.,,“ > b shay of ANVESL '
AC1005033 78S I eo144\187T488575S Nrro.ec.an.hoozo%6wm?-..f . BT olr'x}as bl of
- il A ‘70’“ e ‘( - "O’ Lo S Qbo [ sy 3 { ‘;,.
"033’5-0338 §3168082 84821 53575 26074)1688,296099490%, ' <t & LR e Sehede Akl
: 2180476190476) 904761 9e416 19047819 mansglenlge. W00 (5,0, i 19215 G277
W,, 3’,"”’”’”’{ . Lyyit2oaole ta‘zo?- Lodole,be 2l s e e gl ARl we.ThH | '
< i d TAY Y = y vé f 9129, ¢ B By R T : ;
AT IRY FV e 47500 a7 gy "’"'c‘:?z.x °'22{.’“~%c g ’60." s Guines B30T Y
P S - s ’,.'.z ‘ “..0.6 "o ‘.Q“--‘. G‘S’wt‘ ”o,r .‘ Lf ('m l"l, 3f’ 1=. - u—‘h
& ”&"""""N.ooov‘w"‘?-‘)'°°ﬁ7““ﬁ7*‘“49";' 0420673 0% 8fa0tunmm, o BB EI AR’ €,y I Y D Gy g ol
| 0}.)1, ,3, ; “1”1) : ".'_ e e : ‘9 - VT 2 ?“‘/fv 30, 47V, “,.d l‘-‘l | “""‘_‘1
95005 3 j 088 %3 39 ' 1y Sac o AL=Q99) & WL ealions of 4C PR O
**OPHRR IIIITII I ° . gl 1
I T334 75 v avm ae =000 at any bme. N Sfov, Sxanf .‘
oo . SJELL Wy 4 . Lk ¢
T fopee LeP00000 1 666666 7’916 u‘uv&.‘ e ww of 4% Cardh < ;_,..,JL 8% o iz

o . 995002 23 17¢8) ,":i’;:?;Zlm‘

s03g,

i ] g 1( ‘,,}/Wm{ .

173 4STNCTEN) s fan
F  AK R4l f ff “"W* > Cambridge University Library

bution<NonvCommercial 3.0 Unoorted License (CC BYNC 3.0



(ropt: 1A% s

..{ﬂ 28
..-..m.,..Mw
AT
SEEES
SR ENNES
FEPr o LA e ? uhmuu_»..-u
Gy A ¢ s3SRdES S CEE
:o. e 4 ""i.ﬁ- g
m.n.m(. “ ' & ,w.:w.. .nm._mm,m s um
S S : : E ! AR T
S5 e ..xm .,.%“ a FiSidEag A R0 ]
ML . 8% Jc3S3 s 1
s LT NER At . mmw.#.,f
oo »MH Mm.mw 1%\ %
*“.Ll.i. 3-4 ) v vf .
S o T ,
N % R~ ” =% 9 3 WU P : A . '
e ¥ 1 O R I
r ) \ ,... 0. . » -
e . e o b el oy g ol
DG g 6 RS e 1T @ frdeie o Bk L R 1. R
RUE N0 O RO 4 DD o d QO 0 2 Ml M ot S AT
YO~ 0¢sf68n30o~i 09 -ma[® Q! ! : ot R b i ¥
Colmamr Gl 4 hyy of e I ,. m w3 {
S - e ¥y ..30«074.3‘; N el AT 1) ‘..
R I Ao LT LoD e ngle >, o 3 i, b .\smvmm iE M rxw“ |
" S o9 — " ~" ' \
C../ o R 0?046%230!730 «7“ . newmf i e_ozlan.a . 2 _
.vbo A0 AN oLLvOﬁl_*.uﬁ’)fJu~1 4 CTL 90L 0 QMOS&?GO )‘D z.:.'g “—“
GUODReme G4 OG-, 3 b et Oy d ... (CH) mugdeitmniach M,w)..rif
VoY pim DL P g s 579002F4 hﬂﬁ e o..r.éf.b‘ua* L N .‘..;.
L O 00172)34:u.?..m.}..wf.&..o..a.._ Q M~ . U thf.
cofao.ln..v Gllen~moariny eqm’ - - N Ty FRLNCR B
D090 MBoGl e o s r it o Wi "o T 3
OVQOORH 0L DL YW tng #.:fe.m@. o | 1 L A
' Qb 0.o~— 01 40.‘0&—5~*‘..’4~6./Q; ;..”:..J MAJ“MQ. 9(101 ~\l '.\Qr“ MO
T useubmeag C:clq..i.;lT _qc.... g (o ™ « + Oy O e I
o.»...’)%f .').wo olc M N bl w
;%eooa NOL O T g Ty Ty L el tm 0o + e
O.bOo.)POA\OQroTI:)D’. ‘Z . T .da,h L - e fo "W
50\ G by ¢ lo o Sl ¥ ool g LI A
’ T - s by .
Q090 DL G otay 7?9?& L MWk v Stk 3 W
b ﬂvudﬁlﬂéo.fymn.r. y To.s....ﬁ o - 3 5+ cENER] ..).c.. o HOY R SN .8«....0 :
: beCvqu 0 -,.vhs.OSs?J ‘l’ .. Lo 2 % A. )Ounwaj ”m W) anw/.f;ﬁv_
' b-.!)d.)- LG 'S it . . : w.’.._d. v. I n)ocﬂ = 4
‘. . cc.ooozoﬁ\arh 6?’-’\3 ) : .., $ -o'1_4 aﬁf‘qz. . - N Qb\ - “
Vo GYROGnw O ~ tninfis TR A oWk faseit e B
X BN .aaa.)..a.ouc?pu.o .s._n ¥ y .n.w“_.w37 wm.u.w ¢+~ U fe .
) 00d1;&9¢¢.4.0& vl . 35 ey e -v.k... b QnH»J Mo. M. 7&7
co.vocoo ,dﬂ\:c?‘s -‘ ’ " ., ) 2 o . MLt X 3 " N 7n 'Aw w
T 58 ot Jrele S
Co.eGon).sc?O.! TR : ~ '3 uq«; > e &..w '
ek s S LS o o TR Hop AT o W = i
AL e SN ¢ u : Dt LR Y S, Y i A €
TG UTLE & | )™ o 5™ o g 77 N
SelaMbmtubat i ) /w. .N?:M.)S ol AN ke €y
Lo,ao..x«a Clo m.a 3 m . T SRR 11l o e S
.vv M »°l A,Mv rﬁ-q w. Y p v
L 0ateDUMY D ¢ \.0- 4 Gl P ¥t .OUn. ,u. R
Dranom L .._....\.. * ~ Whog o - ..._u .,,ﬁb/...f B
CQ.JOOQNQAJQJ?" -..tfa . oMol u ._cllm “03 n -~ “ — ..“ ' ! m, .r-.wwq
GobO oyl - ofk 2L TS e oy e kil
DB e ds {0 ‘. _M..‘..nn.f « ] 2 @ "1 8




IO [he presentdays



Physics Lerrers B 772 (2017) 232-238

Contents lists available at ScienceDirect

PHYSICS LETTERS B

Physics Letters B

EIL.SEVIER www.elsevier.com/locate/physletb

High-precision calculation of the 4-loop contribution to the electron @ CroseMark
g-2 in QED

Stefano Laporta

Dipartimento di Fisica, Universitd di Bologne, Istituro Nazionale Fisice Nucleare, Sezione di Bologne, Via Irnerio 46, 1-40126 Bologne, Itcly

ARTICLE INFO ABSTRACT
Aricle history: | have evaluated up to 1100 digits of precision the contribution of the 891 4-loop Feynman diagrams
Received 17 May 2017 contributing to the electron g-2 in QED. The total mass-independent 4-loop contribution is

Accepred 18 June 2017

Available online 22 2017 o4
ey e = —1.912245764926445574152647167439830054060873390658725345....( = ) .
Keywords; | have fit a semi-analytical expression to the numerical value. The expression contains harmonic
Quantum electrodypamics polylogarithms of argument e"'}, e%l, e"f‘, one-dimensional integrals of products of complete elliptic
Anomalou;-magnenc moment integrals and six finite parts of master integrals, evaluated up to 4800 digits.

mgfﬂ,[;gf m @© 2017 The Author(s). Published by Elsevier BV. This is an open access article under the CC BY license
High-precision calculation (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP>.

Analyrical fit
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Fig. 1. The 4-lcop self-mass diagrams.
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Table 1
First 1100 digirs of ¢'¥,

—191224576492644557415264716743983005406087 339065872534517 13298480060
3844308065170614276089270000363158375584153314732700563785149128545391
0028043270502738223043455789570455627 293099412966997 602777822115784720
3390641519081665270979708674381150121551479722743221642734319279759586
0740500578373849607018743283140248380251922494607422985589304635061404
0225266343100442400023563568812806206454940132249775943004292888367617
4889923691518087808698970526357853375377696411702453619601349757440436
1268486175162606832387 186747303831505962741878015305514879400536977798
3694642786843269184311758895811597435669504330483490736134265864995311
6387811743475385423488364085584441882237217456706871041823307430517443
0557394506117155085896114899526126606124699407311840392747 234002346496
0531735482584817998224007373710773657404645135211230912425281111372153
0215445372101481112115984897088422327987972048420144512282845151658523
6561786594592600991733031721302865467 212345340500349104700728924487200
6160442613254490690004319151982300474881814943110384953782994062967586
7875385249781946989793132162197975750676701142904897962085050785592. ..

Table 2
Contribution to @ of the 25 gauge-invarianr sets of Fig. 2.

1 —1.071075616835818043645690655337264406080
2 _0.142487379700872157235045201 684857370004
3 —0.621921063535072522104001223479317643540 one finds
4 1.086698304475818687601061404600600072373 l
5 —1.040542410012582012530438620004249955004 —
6 0.512462047067986870470054030000104465565 a "(ae) =137.035999 1596(27)(18)(331) ,
7 0.600448347501261501528101600354802517732
8 —0.056336000170533315010050439910250505039

9 0.400217028479188586590553833614638435425

10 0.374357934811800040081053855414043578750

1 —0.0013058400686967734264705660457 88826481

12 0.017853686549808578110601748056565640168

13 —0.0341793760785627292101918800967 26218580

14 0.0065041483818146400003657618097425802288

15 —0.572471862104781916152750849945181037311

16 0.151980500685819630625280516106513042070

17 0.0008768658588800006970137489307 13726165

18 0.01532528200201338084440747 1345160318673

19 0.011130013087517388830056500020570148123

20 0.049513202559526235110472234651204851710

21 —1.138822876450074505563154431181111707424

22 0.598842072031421820464649513201747727836

23 0.822284485811034346710804048700508422606

24 —0.872657302077131517978401082381415610384

N
v

—0.117949868787420797062780493486346339820




A renowned paper



65 years ago. ..

Freeman |. Dyson

PHYSICAL REVIEW VOLUME 85, NUMBER 4 FEBRUARY 15, 1952

Divergence of Perturbation Theory in Quantum Electrodynamics

F. J. Dyson
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received November 5, 1951)

An argument is presented which leads tentatively to the conclusion that all the power-series expansions
currently in use in quantum electrodynamics are divergent after the renormalization of mass and charge.
The divergence in no way restricts the accuracy of practical calculations that can be made with the theory,
but raises important questions of principle concerning the nature of the physical concepts upon which the

theory is built.
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MASSES OF LEAD AND BISMUTH 631

The indicated limit of error in this latter value is the
standard deviation derived from seven measurements.

The fact that the difference Bi™—oPh™ s 5 mMU
larger than unity Indicates a sharp increase in the slope
af the packing fraction curve. This agrees with the
expectation since Bi™ has one proton more than the

magic number 82. The addition of this single proton
adds, in this case, only 3 Mev to the binding energy of
the nucleus, This result is in reasonable agreement with
the difference of 1.004 mass units derived from the
disintegration dats of Harvey*

* J. A. Harvey, Phys. Rev. 81, 353 (1951),
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An argament & preseated which leads tentatively to the conclusion that all the power-series expansions
currently In wse in guantum electrodynamics are dnmu-l aftor the renormakzation of mass and charpe,

'l'hdvummlnnowaymmm the accaracy of

cakculations that can be made wilh the theory,

bt radses important questions of principle concerning the mture of the physical concepts upsa which the

theory is built,

LL existing methods of handling problems in
quantum electrodynamics give results in the form
of power-series in ¢, The individual coefficients in these
series are finite after mass and charge renormalization.
The technique of remormalization can 8t present be
applied only to the separate coefficients, and not to the
series as a whole. If the series converges, its sum s a
alculable physical quantity, But if the series diverges,
we bave no method of calculating or even of defining
the quantity which is supposed to be represented by
the series,
Several authors have remarked’ that the series after
repormalization will be divergent in a trivial way, if the
series represents a scattering amplitude of & free particle,

in circumstances where the particle has a possibility of

being captured into a permanently bound system. In
this situation a perturbation expansion of the scattering
amplitude will diverge, even in nonrelativistic quantum
mechanics,? and in the relativistic theory the serfes will
diverge for the same reazon, It s to be expected that
sach trivial divergences will not impose any funda-
mental limitations on the use of the renormalization
method. In fact, 8 new method of carrying through the
renormalization progmm has been developed! a
method which is applicable to problems involving bound
systems and in which divergences of this elementary
pature cannot occur. In the new method the series
expansion arises from a formal integration of the
equations of motion over & finite interval of time, and
in an elementary nonrelativistic theory such a perturba-
tion expansion would necessarily be convergent, For this
reason it was claimed as probable! that the power series

1 B- Ferretti, Nuovo cimento 8, 108 (1951); X. Nihi fua, Prog

Phyu 31 mn
Rm.sz,uomsn
Rejy London) ANT, 395 (1951). Phys

ys Rw 83 (1951), Section XII.

ariging from the application of the new method in
quantum eclectrodynamics would always converge. If
the claim had been accompanied by a proof of conver-
gence, then the theoretical framework of quantum elec-
trodynamics could have been considered closed, being
within its limits a complete and consistent theory.

The purpase of this note is to present a simple argu-
ment which indicates that the power-serics expansions
obtained by integrating the equations of motion in
quantum electrodynambcs will be divergent after re-
normalization, The divergence is of a basic chamcter,
different from the trivial divergences mentioned above,
arwd 3 present equally in the results obtained from the
new and the older methods of calculation. The argument
here presented = lncking in mathematical nigor and in
physical precizion. It is intended only to be sugpestive,
to serve as & basis for further discussions. To me it
seems convincing enough to merit publication in its
present incomplete form; also T am glad to have this
oppartunity to withdraw the erroneous argument pre-
vipusly put forward® to support the claim that the power
seedes should converge.

The argument for divergence is as follows. According
to Feynman,' quantum electrodynamics 2 equivalent
to & theory of the motion of charges acting on each
other by a direct action at a distance, the interaction
between two like charges being given by the formula

'8y (0:r"), (1)

where e 1 the electron charge, The action-at-a<listance
formulation is precisely equivalent to the usial formula-
tion of the theory, in circumstances where all emitted
radiation is ultimately absorbed. We shall suppose that
'Seeu!ummd.‘l’hemulntbemmthylnuﬂwthe
“the number MUmnlhlummunncpand’hnn
mhnlwc wed i

SR.P. Fie :’Q-.m. ﬁnmmummmw,m‘.m
90, $40 (1920}, Ap
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conditions are such as to justify the use of the Feynman
formulation of the theory, Then et

F(é) =y 4 0084 a8t 4+ - (2)

be a physical quantity which is calculated as a formal
power series in & by integrating the equations of motion
of the theory over a finite or an infinite time. Suppose,
if possible, that the series (2) converges for some posi-
tive value of &; this implies that F(¢') is an analytic
function of ¢ at e=0, Then for sufficiently small values
of e, P{~ &) will als0 be & well-behaved analytic function
with a convergent power-series expansan.

But for F{—¢) we can also make a physical interpre-
tation, Namely, F(~#) is the value that would be
obtained far F in a fictitious workd where the interaction
between like charges & [— 60, (,5°) ] instead of (1), In
the fictitious workd, like charges attesct each other, The
potential between static charges, in the classical limit of
large dstances and large numbers of elementary changes,
will be just the classical Coulomb potential with the
sign reversed. But it is clear that in the fictitbous world
the vacuum state as ordinarily defined is not the state of
Jowest energy, By creating a lange number V of electron-
positron pairs, bringing the electrons together in one
region of space and the positrons in another separate
region, [t 2 easy to construct a “pathological state in
which the negative poteatial energy of the Coulomb
forces i much greater than the total rest energy and
kinetic energy of the particles. This can be done without
using particularly small regions or high charge densities,
=o that the validity of the classical Coulomb potential
is not in doubt. Suppose that in the fictitious world the
state of a system is known at a certain time to be an
ordinary physical state with only a few particles present.
Theee i3 & high potential barrier separating the physical
state from the pathological states of equal energy;
to overcome the barrier it is necessary to supply the
rest-energy for the creation of many particles. Never-
theless, because of the quantum-mechanical tunnel
effect, there will always be a finite probability that in
any finite time-interval the system will find itself in &
pathological state. Thus every physical state is unstable
against the spontanecus creation of large numbers of
particles, Further, a system once in a pathological state
will not remain steady; there will be a mpid creation of
more arxd more particles, an explosive disintegration of
the vacuum by spontaneous polarization. In these
circumstances it is impossible that the integration of the
equations of motion of the theory over any finite or
infinite time interval, starting from & given atate of the
fictitions world, should lead to well-defined analytic
functions. Therefore F(—¢') cannot be analytic and the
the series (2) cannot be convergent.

The divergence of the series in the real world is
associated with virtual processes in which large numbers
of particles are involved. Therefore the divergence
will only become noticeable when terms of very high
order in the expansion (2) are considered. A crude
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quantitative estimate indicates that the terms of (2)
will decreaze to & minimum and then Incresse again
without limit, the index of the minimum term being
roughly of the arder of magnitude 137. This estimate
assumes the system to be such that the trivisl kind of
divergence discussed earlier does not occur. The non-
trivial and unavoklable divergence will not prevent
practical calculations being made with the serdes (2), to
an accuracy far bevond anything at present required or
contemplated. Only if similar arguments should be
found to be applicable to meson theory, the divergence
might impose a severe limitation on the possible ac-
curacy of practical cakulations in that field.?

If the conclusion of the foregoing argument is ac-
cepted, then there are two alternative passibilities for
the future development of quantum electrodynamics.
Alternative A: There may be discovered s new method
of carrying through the renormalization program, not
making use of power series expansions. In th's cise every
physical guantity F(e*) will be well-defined and cakul-
ahle, and the series (2) will be an asymptotic expansion
for it in the limit of small & Since F(¢f) 1 not analytic
at e=0, the asymptotic expanzion will not be sufficient
to determine the function uniquely. The additional in-
formation necessiry to determine F(e”) will be obtained
from the exiting formalism, using no new physical
hypotheses but only some improved mathematical
methods. Altemative B: All the information that can
in principle be obtained from the formalism of quantum
clectrodynamics is contained in the coefficients aq, as, a4,

- +of series such as (2). In this case the quantity Fie')
is neither physically well-defined nor mathematically
calculable, except in so far as the asymptotic expansion
(2) gives some workable appraximation to it. In order
to define F(€f) precisely, not merely new mathematical
methods but a new physical theory is neaded.

1 wish to call attention to the attractive features of
alternative B in the present state of physics. If B were
true, it would imply that quantum electrodynamics is
in its mathematical nature not a closed theory, but
only a half-theory giving insufficient Information for
the exact prediction of events. Experimentally we know
that the world contains one group of phenomena which
is accurately in agreement with the results of quantum
electrodynamics, and another group of phenomena
which is not undernstood at all. We need to develop new
physical ideas to understand the second group, and still
we cannot abandon the theory which successfully
accounts for the first. If quantum electrodynamics were
a cdosed theory, this would be a difficult dilemma. But
if the theory itself leaves room for new ¥leas, no such
dilemma arses. In conclusion, I wish to thank Pro-
fessars Pauli, Bethe, Pals, and Oppenbeimer for valuable
di.swssiom of these problems.

“VC, A Hurstina private communication informs me that he
has discovered by direct calcalation the fact that the S-matrix
d\unulnthewhendmhtbecnuohnndemn

n theory, assuming that certain terms which are not yet
ulmhmddomtdeddvely chmthbehuioroldnudu“



Silvan S. Schweber in
“QED and the men who made it: Dyson, Feynman, Scwinger and Tomonaga”,
Princeton University Press, 1994.

The paper on the divergence of perturbation theory in QED marked the
end of Dyson’s involvement with QED. Although during 1952/53 Dyson was
deeply involved in the Cornell project analyzing meson-nucleon scattering us-
ing field-theoretic methods (Dyson 1954), Dyson confesses “my heart was not
in this Tamm-Dancoff work. There were no grand hopes.”?*? Dyson had been
deeply hurt by the reception of his extended hard work in QED. The community
had not appreciated what he had done and “being a practical person, [he] didn’t
feel like going on all by [himself] into the wilderness and wait for the world to catch

up.” The difference between Feynman, Schwinger, and Dyson was that Feynman
and Schwinger had “stopped at the crest of the wave.” Dyson had been more coura-
geous, only to find “the river disappearing into sand.”?%

Thereafter he never invested the same amount of energy and commit-
ment into any fundamental physics program. “I wasn’t so much disappointed that
these papers were not noticed,” Dyson claims. “I thought to myself: well really it
was silly of me to have worked so hard on something which turned out not to be
important.”204



Quantum electrodynamics occupies a unique position in con-
temporary physics. It 1s the only part of our science which has
been completely reduced to a set of precise equations. It is the
only field in which we can choose a hypothetical experiment and
predict the result to five places of decimals confident that the the-
ory takes into account all the factors that are involved. Quantum
electrodynamics gives us a complete description of what an elec-
tron does; therefore in a certain sense it gives us an understand-
ing of what an electron is. It is only in quantum electrodynamics
that our knowledge is so exact that we can feel we have some
grasp of the nature of an elementary particle. (Dyson 1953a)

[ always felt it was a miracle that electrons actually behaved the
way the theory said. To me it was always an amazing experi-
mental fact that this perturbation series was somehow real, and
everything the perturbation series said turned out to be right. I
never felt that we really had understood the theory in the philo-
sophical sense—where by understood I mean having a well de-
fined and consistent mathematical scheme. [Nonetheless] I al-
ways felt that it was obviously true, true even with a big T. Truth
to me, means agreeing with the experiments. . . . For a theory to
be true it has to describe accurately what really happens in the
experiments.2’

qn7 C;I\ Via W Y C Cf‘l/\\Alf'\L\f'\I/‘ Elr\ ;V'\+f'\|/’\ I;I\\AI ;V\ “mEr\ ’WV'\/J +I’\f'\ MW\ /A \ A

.0 made it”’



For Dyson the function of theories is to account for experimental phenom-
ena. Should a theory fail to do so, it will be replaced. Moreover, “The nature of a

future theory 1s not a profitable subject for theoretical speculation. [A] future the-

ory will be built, first of all upon the results of future experiments” (Dyson 1949b,
p. 1755).



PA.M. Dirac at the Tahlasse conference
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DOES RENORMALIZATION MAKE SENSE?

P. A. M. Dirac
Florida State University, Tallahassee, F1l. 32306

The physics of elementary People have developed a technique for handling the
steady progress but there is no re

| basis for it, oOne has a well-defi 1Nfinities in certain theories. For these theories the
quantum mechanics, built up from 1 3 S : P .
tions of Heisenberg and schrsai Lhfinities can all be collected into certain parameters

attempts to make it conform to spc representing physical constants, which are then

always gets infinities appearin

except in trivial cases. Such e« L€NOrMalized to their experimental values, and so the

sense. infinities get discarded. The resulting equations are
People have developed a techn: .

infinities in certain theories. r¢ W€ll~defined and can be used to calculate results that
infinities can all be collected int can be compared with experiment, The agreement is often
representing physical constant . . . . .

renormalized to their experimenta VEry good, and many physicists are well-satisfied with

infinities get discarded. The res

well-defined and can be used to ca _t_:Ah_l__SL51tuat10n.

can be compared with experiment, 1 However there is no logical justification for it.
very good, and many physicists are . . " . . 5 .
| this situation. )ne 1s discarding certain infinitely large terms simply

However there is no logical j

| One is discarding certain infinite) '€Cause one does not want them in the equations., It is
because one does not want them in fujte correct to discard terms that are small, but to

quite correct to discard terms th

| neglect large terms is not allowed. l€QleCt large terms is not allowed. The whole perturba-

tion procedure used for solving t

| down. 1In these circumstances ¢ -1ON Procedure used for solving the equations breaks

. mathematical theory, but just a set jown, In these circumstances one does not have a
: Some physicists may be happy

| working rules leading to resuit: lathematical theory, but just a set of working rules,
| observation., They may think that - - : ’
physics. But it is not enough. One wants to understand
i how Nature works. There is strong reason to believe
 that Nature works according to mathematical laws. All
the substantial progress of science supports this view.
 In elementary particle physics we do not have these
| mathematical laws, only working rules, One should not
i be satisfied with them, but should continue to search
! for laws based on sound mathematics.

j In defense of working rules one could say that the
| whole history of atomic physical theory has been built
. up in terms of them, with continual improvements being
t made. It began with the Balmer formula, which was at
} first simply a rule with no justification. Then Bohr
| obtained a justification for it, in terms of an atomic
t model based on various assumptions of the nature of
i working rules,

34-243X/81/740129-02$1.50 Copyright 1981 American Institute of Physics



With Heisenberg and Schrddinger one had a true
mathematical theory. But it turned out to be inadequate
to include relativistic effects. One again has to bring
in working rules. It means that the fundamental laws of
physics have not yet been found,

In the case of electrodynamics one can get a
logical mathematical theory by intreducing a cut-off
inte the interaction between the charged particles and
the electromagnetic field for the high frequencies of
the field. The infinities then becone finite, and can
be made small by suitably choosing the point of cut-off.
This is possible owing to the smallness of the coupling
constant 1/137., Of course if we do this the theory
ceases to be accurately relativistic, but remains
approximately so, We can then use a perturbation method
for solving the equations. We have restored the logic
at the expense of the relativity,

The resulting theory gives correctly the first
order effects, but nct the higher orders. But the
ordinary theory with infinite renormalization does give
the higher order effects for QED in agreement with
observation. So the working rules are superior to the
cut-off theory. Also the cut-off is ugly and is not to
be recommended,

Some further changes are needed in the foundations
of atomic theory, perhaps just as drastic as the change
from Bohr orhite +o Heisenhara'e ~yantum mechanics. The

The resulting theory gives correctly the first | '21090ous to the Bohr-
order effects, but not the higher orders. BRut the
ordinary theory with infinite renormalization does give
the higher order effects for QED in agreement with
observation. So the working rules are superior to the
cut-off theory. Also the cut-off is ugly and is not to
be recommended,

Some further changes are needed in the foundations
of atomic theory, perhaps just as drastic as the change
from Bohr orbits to Heisenberg's quantum mechanics. The
present situation is in some ways analogous to the Bohr-
orbit era. We then had Bohr orbits, giving good results

- - - -

representations are all known,

B e e W e W

giving good results
ms in which only one
ole, Theoretical

in the problem of how

Jer succes,

e quite ineffective,

n methods, which was

apid development of

dequate to solve the

hrough was finally
from an entirely

! ' mathematics.
" lifficulties will get
. oment involving new

resentations of the
The irreducible
but among the non-

irreducible ones there is a wide field for further

investigation,
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New Determination of the Fine Structure Constant and Test of the Quantum Electrodynamics

Rym Bouchendira,' Pierre Cladé,' Saida Guellati-Khélifa,

Francois Nez,' and Francois Biraben'
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4 place Jussieu, 75252 Paris Cedex 05, France
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We reportasnammasaunamen ¢ AFf tha vatin h/m  hataraan Tan Dlcnl oottt amd thn cmano ~F 87D
atom. A n . L 5% PROTR, o By 87
unceraint VVe report a new measurement of the ratio h /mgp, betwees > mass of *’Rb
anomaly | atom. A new value of the fine structure constant is dedu ith a relative
Gabrielse | uncertainty of 6.6 X 107!%. Using this determination, we el S 9t the electron
Le;;rgflitch: anomaly a, = 0.001 159 652 181 13(84), which is in agreement W1th the expenmental measurement of
. Gabrielse [a, = 0.001 159 652 18073(28)]. The comparison of these values provides the most stringent

test of the QED. Moreover, the precision is large enough to verify for the first time the muonic and

hadronic contributions to this anomaly.

The fine structure ¢ =
of the electromagnetic 1nteract10n ThlS dimensionless
quantity is defined as: a = e?/4mweyhc, where €, is the
permittivity of vacuum, c the speed of light, e the electron
charge and 7 the reduced Planck constant (& = h/27). It
appears in the expressions of the ionization energy of
hydrogen atom, of the fine and hyperfine structures of
atomic energy levels, and it is the parameter of the quan-
tum electrodynamics (QED) calculations. Its measurement
in different domains of physics is a test of the consistency
of the theory. The most accurate value is deduced from the
combination of the measurement of the electron anomaly
a, with a very difficult QED calculation. The last result, by
Gabrielse at Harvard University, gives a value of a with a
relative uncertainty of 3.7 X 10710 [1,2]. This impressive
result depends completely upon QED calculations. Thus,
when in 2007 Aoyama et al. detected an error, the « value
shifted by 4.7 X 10~° [2—4]. Consequently, to check these
calculations, another determination of « is required. Up to
now all values of « that depend upon QED much less were

e — -~ —— - —— O -

o - ——————-

surement of Gabrielse by comparison with the value ob-
tained by Dehmelt at the University of Washington [8] and
the recent correction found in the calculation of the elec-
tron anomaly [2]. The discussion on this agreement will be
presented at the end of this Letter.

The fine structure constant is deduced from the mea-
surement of i/mygy, thanks to the relation

N = e e |

2R+ h
o = TR L )
¢ m, Mgp

where m, is the electron mass. In Eq. (2), the Rydberg
constant R, and the mass ratio mg;,/m, are known with an
accuracy of 7 X 10712 [5,9,10] and 4.4 X 1071° [11,12],
respectively: the limiting factor is the ratio i/mygy,. In our

a, (UW) 1987
h/m(Cs) 2002 ¢ .

h/m(BRPhY 20NA




Alpha i1s not a constant !



Radiative corrections start to (take) play a prominent role when
the field becomes assessed and mature
and when, eventually, the collection of experimental
data becomes abundant and accurate on the same time
(as a solid base for further developments)



Aot

0. 15—
0. 10-
0.051
0.00] #4

-0.05]

Running of Olem

0.0 2.0 L0 6.0

E (GeV)

time-like

A (M)

aM’ b

37

Ao

JT

0.035 ¢

003 ;

0,025
002
0015 ~

0.01 ~

leptonic

hadronic

R(s)

) v-t/ (';eV
space-like

ood
4f2 SS(

S_

M —ig)



Tysacs Letters B 746 (2015) 325-329

Contents lists available at ScienceDirect

2. Theoretical framework .
Physics Letters B
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The leading-order hadronic contribution to t
given by the well-known formula [4,15]

A new approach to evaluate the leading hadronic corrections to the @wm N
00 muon g-2
HLO o ds K ImIT . C.M. Carloni Calame **, M. Passera”, L Trentadue %, G. Venanzoni*®
au = 2 - (s) m had (s + le ) ’ * Dipertimento di Misicy, Universitd & Movig Povic, Mcly
T S » ININ, Sexione &i Pedeve, Podove, Faly

© Diperrimento di Fisice ¢ Soieze dells Terre “M. Mellond®, Universind di Pormg, Formg, iraly
0 4 ININ, Sezione &i Milane Bicocca, Milens, licly
* IVIN Lebororon Neziamoll & Froscotl, Frascett, Roly

where I1j,q(S) is the hadronic part of the photon vacuum polar-
ization, € > 0,

1

x2(1 —x)
e _0/ T a—nem) 2

1S a positive kernel function, and m, is the muon mass. As the
total cross section for hadron production in low-energy e*e~ anni-
hilations is related to the imaginary part of Ily,4(S) via the optical
theorem, the dispersion integral in Eq. (1) is computed integrat-
ing experimental time-like (s > 0) data up to a certain value of
s [2,18,19]. The high-energy tail of the integral is calculated using
perturbative QCD [20].

Alternatively, if we exchange the x and s integrations in Eq. (1)
we obtain [21]

1
a,’ = % / dx (x — 1) Mpaq[t (x)], (3)
0

where IMhaq(t) = MMpag(t) — Mpaq(0) and
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Experimental approach:

Use of a 150 GeV u beam on Be target at
CERN (elastic scatteringue 2 u e)

w
n 1

150 GeV

target

o, 1-Aa(t)

G. Venanzoni, u-e Theory Workshop, Padova, 4 September 2017



The talks in this Workshop by Umberto (Marconi)

"Measurements of alpha and proposal for amu”HLO space-like”

as well as by Marina (Marinkovic ), Pierpaolo ( Mastrolia ) and
Fulvio ( Piccinini)



Our proposal therefore has to deal with some
exXperiinental issties



Experimental Issues

Using Bhabha at small angle (to emphasize t-channel
contribution) to extract Aq:

> J Where do®vc is the MC prediction for Bhabha process with
(@) = Oee;ee(t) a(t) — a(()) and there are corrections due to RC...
a(0) do,,-(t) .
a(t)
A o |1 &g
a(0)

since AO(Iep(t) IS theoretically well knowr

Which experimental accuracy we are aiming at !
0AQpad = |/2 fractional accuracy on dor(t)/davc(t).

If we assume to measure dANnag at 0.5% at the peak of the integrand (A®ha
~]03 at x=0.92) fractional accuracy on

do(t)/dovc(t) ~ | 0'5



Vacuum Polarization makes dem running
assuming a well defined “effective’” value at N\ ) yd
any scale P20 N ANy

vacuum polarization and the “effective
charge” are defined by:

¢ 2y __(0) 2
= . Aa=-Re(Il(¢g>)-T1
o . Re(M(g*)-11(0))

e’ —e’(q’)=

Aa takes contributions from leptonic and hadronic and gauge bosons
elementary states
Among these the non-perturbative At

Ad = Aaleptonic -+ Aagb + Aanad + A top
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large t-values are depressed by x-| denominaﬂ:r

The integrand is peaked at ~x=0.92
t=-0.1 1 GeV? (~330 MeV) for which

AGhaa(0.92)~ 107



The running of alpha in the space-like region
some years ago
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Abstract

A method to determine the running of o from a measurement of small-angle Bhabha scattering
is proposed and worked out. The method is suited to high statistics experiments at e e~ colliders,
which are equipped with luminometers in the appropriate angular region. A new simulation code
predicting small-angle Bhabha scattering 1s also presented.
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The method to measure the running of a exploits the fact that the cross section for the process
ete” — eTe” can be conveniently decomposed into three factors :

7= (5) arar) 3)

each one of them known with an accuracy of at least 0.1%

| st factor B

At 282
do® do® [a(0))?
A&t T At \a(t))

_ (s (54 2c+c? 2(9%2 + g2)(5 + 2¢ + ¢?)
i (t) {<1—H(t>)2+f (1 - T1(0))

Born cross section
+ £ (4(93 + 92+ (1 +0)%(gs + 95 + 69393)) }

contains all the soft and

. 20+ (1—c)*(g5 — g2) + (1 +¢)*(g2 + g2)
virtual Be = nomep T 1 —11(s)
corrections + X*[(1—¢)*(g2 —g2)* + (1 +¢)*(g5 + g2 +69292)]

1
(1 —1II(2))(1 — II(s))

£ X
; <gs+gz>(1_n(s)+1_n(t))

B, = 2%(1 +c)2{

+ (g% +6g252 +g;*)€x}



2
( a(t) ) Vacuum polarization effects

O’(O) contains the running of alpha

(1+ Ar(t))

contains all the real and virtual effects not incorporated in the running
of alpha



s the Sommerfeld
2\ Q(O) Oz(O) fine structure constant
a(q ) _ 1 — Aa(qz) ) measured with a precision of

O(107?)

Aa(qQ) from loop contributions to the photon propagator
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Abstract

Using the OPAL detector at LEP, the running of the effective QED coupling «af(t) is
measured for space-like momentum transfer from the angular distribution of small-angle

Bhabha scattering. In an almost ideal QED framework, with very favourable experimental
conditions, we obtain:

Aa(—6.07GeV?) — Aa(—1.81 GeV?) = (440 £ 58 £43 £ 30) x 10>,

where the first error is statistical, the second is the experimental systematic and the third

is the theoretical uncertainty. This agrees with current evaluations of «(t). The null
hypothesis that a remains constant within the above interval of —t is excluded with a

significance above 5. Similarly, our results are inconsistent at the level of 30 with the

hypothesis that only leptonic loops contribute to the running. This is currently the most
significant direct measurement where the running «a(t) is probed differentially within the

measured t range.



The method used follows the above parametrization/factorization
of the Bhabha cross-section

do  dol® (a(t)

2
1 1+a i)
= (52) ava a+5)+2

xp

do(® B 47ra%
dt ¢

We determined the effective slope of the Bhabha momentum transfer distribution which 1s
simply related to the average derivative of Aa as a function of Int in the range 2 GeV? < —t <
6 GeV2. The observed t-spectrum is in good agreement with Standard Model predictions. We

find:
Aa(—6.07GeV?) — Aa(—1.81 GeV?) = (440 £ 58 +£ 43 +30) x 107>,

where the first error is statistical, the second 1s the experimental systematic and the third 1s
the theoretical uncertainty.

This measurement is one of only a very few experimental tests of the running of a(t) in the
space-like region, where Aa has a smooth behaviour. We obtain the strongest direct evidence
for the running of the QED coupling ever achieved differentially in a single experiment, with
a significance above 5o. Moreover we report clear experimental evidence for the hadronic
contribution to the running in the space-like region, with a significance of 3 o.



Such an approach was possible
with a per-mille accuracy

of the Bhabha cross-section
99| D97 . -



all started in 1992 with a preprint:

Small angles Bhabha scattering: Two loop approximation

Victor S. Fadin (Novosibirsk, IYF), E.A. Kuraev (Dubna, JINR), L.N. Lipatov (St. Petersburg, INP) , N.P. Merenkov (Kharkov, KIPT), L. Trentadue (CERN)

Dec 1992 - 20 pages

JINR-E2-92-577

then the general program :

Generalized eikonal representation of the small angle e+ e- scattering amplitude at high-
energy

Victor S. Fadin, E.A. Kuraey, L. Trentadue (Dubna, JINR), L.N. Lipatov (St. Petersburg, INP), N.P. Merenkov (Kharkov, KIPT)

1993

Phys.Atom.Nucl. 56 (1993) 1537-1540
Yad.Fiz. 56N11 (1993) 145-150



After almost three years at a CERN workshop

( "Reports of the Working Group on Precision Calculations for the Z
esonalice CERN 95-03 Mareh | 75§

Small Angle Bhabha Scattering for LEP

A. Arbuzov ¢ V. Fadin ® E. Kuraev @
L. Lipatov ¢ N. Merenkov ¢ L. Trentadue

We present the results of our calculations to a one, two, and three loop approx-
imation of the eTe~™—e~e~ Bhabha scattering cross-section at small angles. All
terms contributing to the radiatively corrected cross-section, within an accuracy of
do /o = 0.1%, are explicitely evaluated and presented in an analytic form. O(«) and
O(o?) contributions are kept up to next-to-leading logarithmic accuracy, and O(a*)
terms are taken into account to the leading logarithmic approximation. We define
an experimentally measurable cross-section by integrating the calculated distribu-

tions over a given range of final-state energies and angles. The cross-sections for
exclusive channels as well as for the totally integrated distributions are also given.



and a few months later:

ELSEVIER Nuclear Physics B 485 (1997) 457-499

Small-angle electron—positron scattering with
a per mille accuracy *

A.B. Arbuzov?, V.S. Fadin®, E.A. Kuraev?®, LN. Lipatov®,
N.P. Merenkov ¢, L. Trentadue '

¥ Joint Institute for Nuclear Research, Dubna, Moscow region, 141980, Russia
® Budker Institute for Nuclear Physics, Novosibirsk State University, 630090, Novosibirsk, Russia
© St. Petersburg Institute of Nuclear Physics, Gatchina, Leningrad region, 188350, Russia
4 Institute of Physics and Technology, Kharkov, 310108, Ukraine
¢ Theoretical Physics Division, CERN, CH-1211 Geneva 23, Swirzerland

Received 22 December 1995; revised 25 June 1996; accepted 6 September 1996



The goal of the analytical result was aiming at a precision

1991 < 0.001
g

since the accuracy reached at the time was still iInadequate.
According to the evaluations the theoretical estimates were still incomplete, moreover, are
in disagreement with each other up to 0.5%, far from the required theoretical and experimental
accuracy

0 <0_=ppr =0<0s , Oy<b.=pspy <0y , 00156;<01rad, (2)

where pi, p1, (P2, Por ) represent the momenta of the initial and of the scattered electron
(positron) in the center-of-mass frame.



At small angles the main contribution comes from one photon exchanged In the t-
channel
( due to the eikonal approximation logarithmic terms from multiple-photon exchange
diagrams do cancel )

do

—4
o ~

Let us now estimate the correction of order 6% to this contribution. If

do _
ﬁ ~/ 9 4(1+C192) ]

then, after integration over #° in the angular range as Eq. (2), one obtains:

62
max dO' , 4 9 ogmax
2 E d9 ~ omin(l + €1 om;-" ln 92 ).

0 min
min

m2

Q?

i O~ eV may be omitted

Also terms of the type: m = Me, My,



2. Born cross section and one-loop virtual and soft corrections

The Born cross section for Bhabha scattering within the Standard Model is well
known [8]:

d B 2
d‘f{) =gs{43. +(1—=¢)’By+ (1 +¢)2B3}, (5)

where

2
B, =(§) 1+ (2 -g)é . Ba=|1+(2-gx| .

|l+ + (8 + &a) (§+)()‘ 2|I+ + (g — 8u) (f-i—x)r.

a As £ = At
X S om +iMoIy T ML
GrM?, . -2 1 1 . 2
A= = (sin26,,) " °, = —=, ,=—=(1—4sn“0,,),
2\/51,'0 ga 2 gl 2

1
s=(pr+p)' =4,  1=-Q'=(p—q)’=—5s(1-0),

c=cosé, 6 =pq,.

Here 6, is the Weinberg angle. In the small-angle limit (¢ =1 —6%/2+6%/24 + .. .),
expanding formula (5) leads to



the weak Interaction contribution

do? 8ma’ > 9 ,

2 40
where & = \/s5/2 is the electron or positron initial energy and the weak correction term
Sweak, connected with diagrams with Z%boson exchange, is given by the expression

% 6
Sueak = 2806 — (88 + g)Re x + (8l + 84 + 68180) [ x| (7)

One can see from Eq. (7) that the contribution ¢}’ of the weak correction Sy 1nto
the coefficient ¢, introduced in Eq. (3)

| "+ 22 )M 41 0%+ 6g202) M

~ 1. (8)
32 I‘%



virtual+soft photon contribution

dobpyp, dof
o = 2 (L Buin + Buon). (9)
where do§g, is the Born cross section in the pure QED case (it is equal to do® with
8. =8 =0) and
sin’(8/2)
a 4¢’ 0 £ dx
Ovirt +850n—2; [2(1 - In? +2ln( 2)) ln?‘—; -+ / —x-ln(l —X)
cos2(8/2)
23 11, 4¢*]  a 7
i 1 2¢* — 3¢ -1
9+6 nm2]+7r(3+02)2[ (2¢” — 3¢ 5¢)

7
+2(2¢* — 3¢ +9¢% + 3¢ + 21) In’ (sin 5)

0 7}
—4((:4 +c% - 2¢) In? cos 3~ 4(c3 +4c* +5¢c+ 6) In’ (tan 5)

+§(11c3+33c2+21c+ 111) In (sing)

+2(c3 —3¢24+7¢c—5)1n (cos g—)

+2(c® + 3¢ 4+ 3¢ +9)8, — 2(c* + 3¢)(1 - 0)8.9].



wher

The value 8, (8;) is defined by contributions to the photon vacuum polarization function
(1) ([T(s)) as follows:

a 1 5 1 a2
H(!)=;(5,+§L—§)+Z(;) L, (10)
where
L—an—2 0% =-1=2%(1-¢) (11)
e mzv - - ’

and we took into account the leading part of the two-loop contribution in the polarization
operator. In the Standard Model, 8, contains contributions of muons, tau-leptons, W-

bosons and hadrons:

S =08 +8+8)+81,  8=86(0"— ), (12)
the first three contributions are theoretically calculable and can be given as
1. Q% 5
o =-In= — -,
"3T9

[ 11 4M3
6:V=lvw(va—4)lnv“'+ _EU%V+—' vw=\/l+ i (13)



The contribution of hadrons cannot be calculated theoretically; instead, it can be given
as integration of the experimentally measurable cross section:

are—oh(x)
o= L [ T (19

dmi

For numerical calculations we will use for /7(r) the results of Eidelman Jegerlehner
In the small scattering angle limit we can present (9) in the following form:

do'l)
D - D (1 — 11(1)) "%(1 + 8),
de de
¢5=2E 2(1—L)ln—l-+§L—2 +202Aa+302ln4,
™ 4 2 w ™
3 7 19 1

=—2 iy R — — _5
=16+l T30 %)

2 2
A=-A—€. l=an—'::ln0—. (15)
e ) 4

This representation gives us a possibility to verify explicitly that the terms of relative
order 6% in the radiative corrections are small. Taking into account that the large con-

tribution proportional to In 4 disappears when we add the cross section for the hard
emission, we can verify again that such terms can be neglected.



Therefore we will omit
in higher orders the annihilation diagrams and multiple-photon exchange diagrams in
the scattering channel. The second simplification is justified by the generalized eikonal
representation for small-angle scattering amplitudes. In particular, for the case of elastic
processes we have [11)

a Q°

A(s, 1) =A0(5-t)F|2(')(l - ”(‘))—l e'#( [l +O(;T)] , S Qz > mz.

(16)

where Ag(s,r) i1s the Born amplitude, F,(7) is the Dirac form factor and ¢(t) =
—aIn(Q?/A?%) is the Coulomb phase, A is the photon mass auxiliary parameter. The
eikonal representation is violated at a three-loop level, but, fortunately, the corresponding
contribution to the Bhabha cross section is small enough (~ a°) and can be neglected
for our purposes. We may consider the eikonal representation as correct within the
required accuracy. *



Let us now introduce the dimensionless quantity 3 = Q}cxp/ (47a®), with Q? = 267,
where oy, i1s the Bhabha-process cross section integrated over the typical experimental
energy and angular ranges: 4

dx; d)czé')(x]x;g—x()/d2
4770:-
et —e gy ) e (g )+ X
x/dquL@gd" ———s , (17)
dx;d“gj-dx2d g>

where x) 2, qﬁz are the energy fractions and the transverse components of the momenta
of the electron and positron in the final state, sx. is the experimental cut-off on their
invariant mass squared and the functions & do take into account the angular cuts (2):

o = @(G_Iq I) (Iql 9]) @g=@( [ I) iql _8). (18)
X|€ X1€ X2E

3 as the sum of various contributions:

S=S+ X+ 34300 433y
= So0(1 + 8+ 8 + 87 + 8¢ 487 +8°¢7),



3. Single hard-photon emission

In order to calculate the contribution to 2 due to the hard-photon emission we start
from the corresponding differential cross section written in terms of energy fractions
x1.2 and transverse components q;':z of the final particle momenta [13]:

doty© 7T 2a3{ R(x15 g, q,)8(1 — x5)
dx,d*gdx,d’qs w2 | (g3)*(1 - II(—(gy)?))?

R(x2;q3,q7) 8(1 — x1) } i
+ 1 +O69)), 24
(@)*( - M(—(ghy2))2 ' 7O (24)
where
. 1y 1+22[(g3)*(1 - x)? B 2mA(1 — x)%x (d, —dg)zJ
R(x’q#-,qz )= Il —x [ d\d> 1 + x2 d%d% , (25)

di=m?(1 —x)* + (¢ — ¢3)°,
dy=m*(1 — x)? + (g — xq3)2,



1—4

1 y)
st 2 & f dx % F(x. Dy, Dy Dy, Dy, (26)
T I - x
X,
with
D; D.;d
B ] —x -
F=/dz,/—‘-'—2-<1—n( 207)) 2{ ('t - xa; %)
Q1 — X2
D, Dy
4xa - ) -3
where
ar=(zy — 22)° + 42,07, a = (71 — x*72)° + 4x* 2007,
')
ot=—(1-1x)? (28)

Q2



[ —4 ¢

a 1+x? [dz _
z*’:;/dxl_xfﬂ(l—n(—fo)) ?
X¢ 1

X{[l+@(x2/02—z)] (L—-1) +k(x,z)},

2
k(x,z)z(} +’;3 [1 +@(x2p2—z)] + L

+0(x*p* — )Ly + O(z — x*p*) L, (30)

where L = In(zQ?/m?) and

x2(z = 1)(p* - 2)
(x —z)(xp? —2)
(z —x*)(xp* — 2)

(x —2)(x*p? - 2) | GD

(z = x*)(x*p? - 2)
x*(x —z)(xp?—z)

L;=|n \ L2=]n

L)

L3=ln

It is seen from Eq. (30) that 3" contains the auxiliary parameter 4. This parameter
disappears, as it should, in the sum XY = 3% + 3V*3 where 3V*3 is the contribution of
virtual and soft real photons which can be obtained using Eq. (15):



2
p

1
o dz

== /dx(l - H(-zQ?))‘z{(L - 1)P(x)

Xe

S

2
x[1+60(x*p* —2)] + ll“:’; k(x,z)—S(I-x)}, (32)

where

1 + x2
P(x)=(l—x)
+
1 + x

2

=lirn{ 0(1-—x—A)+(§+21nA)6(1-x)} (33)
-0 1 —x

2



4, Radiative corrections to O(a?)

A systematic treatment of all O(a?) contributions is absent up to now. This is mainly
due to the extreme complexity of the analysis (more than 100 Feynman diagrams are to
be taken into account considering elastic and inelastic processes). Nevertheless in the
case of small scattering angles we may restrict ourselves by considering only diagrams
of the scattering type. It is enough to make some rough estimates of other contributions.
Contributions of pure annihilation-type diagrams, describing some O(a?) RC, have so-
called double-logarithmical enhancement [25] but, fortunately, it is proportional to the
fourth power of the small scattering angle:

E - .
(Z'n)annih ~ (Ze ¢ )annih ~ 94 (%) £4— (34)

The contribution of interference of the scattering-type and the annihilation-type ampli-
tudes can be estimated as

w S

ty— 2 2
(5 Yimert ~ (3 inert ~ 67 (=) In® (9—). (35)



We consider first virtual two-loop corrections dois) to the elastic scattering cross
section. Using the representation (16) and the loop expansion for the Dirac form factor
1, |

@ a\?
F=1+=F"+ () F2, (36)
mT (i
one obtains
do'®  doy sa\2 _
W= 0 () (= ) T [6(FM) + 4F]. (37)
de de \m



A 3 1 |
(1 _ . Sy 72 _ -
Fi''=(L l)lnm+4L 4L l+2{2. (38)

The two-loop correction can be obtained from the results of Ref. [14]. Let us present
it in the form

FP =F +F'e, (39)

where the contribution F¢ ¢~ is related to the vacuum polarization by e*e~ pairs:

Fe'e = —%L3+;2L2 (;?2 é;z)L+0(1) (40)
e 2o e (D La)o e (B 3n ity

+§(L—1)2ln2:}+(L—l)[—ZLz+%L—l+§{2]|n'-§+0(l).

{2=§:':—5=§, {3=§:nl3'»t=l.202. (41)

The photon mass A entering Eqs. (38)-(41) is canceled in the expression do(? /dc
for the sum of the virtual and soft-photon corrections of the second order da,(,f,) /dc (see
Eq. (37)), do§y' /de and do) /dc.



The cross section dafg? /dc for the emission of two soft photons, each of energy
smaller than de = €4, 1s (4 K 1):

2

a2 _
dafé’:da-o(;) (1—I(t)) 28[(L—l)ln—)r+zlf—§{2

and the virtual correction da(z) /dc to the cross section of the single soft-photon emission
1S

(43)

md 1
A 4

dor?) = dog (3";)2 (1-11(1)) 16F," [(L ~)In— + <L - -;2

The contribution to X of this sum, excepting the part coming from F{ "¢ connected
with the vacuum polarization, contains no more than a second power of L. It has the
following form:

a\? [dz _
25+V-Zw+zvs+23_g— (-7-;) / Zz(l — Il (— ZQ] ) 2RS+V (44)
1

Thus for the contribution of the virtual and soft et e~ pairs to X we have

2

d
355 "(;) / zg(l — H(—20P)) 2RSS (47)

!
RGeS =RS +4F ¢

2 1 17 4 20
=L2(§lnd+§)+L( 3 ln A——g—lnA—-{z)-l—O(l).



5. Virtual and soft corrections to the hard-photon emission

By evaluating the corrections arising from the emission of virtual and real soft photons
which accompany a single hard photon we will consider two cases. The first case
corresponds to the emission of the photons by the same fermion. The second one occurs
when the hard photon is emitted by another fermion:

Aoy sipy =407V + dop(siyy +dofs,y, +dag . (48)

In the case when both fermions emit, one finds that

3
Sy + 35V =234 (2) [(L ~Dina+ZL-1], (49)

H(S+V) _ a*dxd’gitd’gy
4x(1 — x) (g5 )4

h=Ti(si, 1) + 2Ty (8, 51) +x(Tia(si, 01) + Tia(t, 1)),

11\2
(42u) — l)(ZlnA—lnx) —|—3L—ln2x—§,
)

do

((B11(s1,11) + x*Byy (11,5) ) h + T, (51)

p=2(L— In



The final result (see Appendix C for details) has the form

1%
ZH(S+ ) — EH(S+V)

1-A4

.
_lyan? fdz [ dx(1+x%) 3
_5(;) /2_2/ — L{(2lnA—lnx+§)

i X,

X[(L-=D(14+6)+k(x,z)] +%ln2x+(l +@)[—-2+Inx —2In 4]

|
+(1 — @) [ELlnx+2lnAlnx—lnxln(1 — X)

—In?x — Liy(1 — x) —

_ a2
x(1 x)+4xlnx] (1—1x) }, (52)

2(1 + x2) C2(1+x2)

A

Lip(x) E—/?In(l — 1),

0

where k(x,z) is given in Eq. (30) and ® = @(x?*p* —- 7).



6. Double hard-photon bremsstrahlung

We now consider the contribution given by the process of emission of two hard pho-
tons. We will distinguish two cases: (a) the double simultaneous bremsstrahlung in oppo-

site directions along electron and positron momenta, and (b) the double bremsstrahlung
in the same direction along electron or positron momentum. The differential cross sec-
tion in the first case can be obtained by using the factorization property of cross sections
within the impact parameter representation [16]. It takes the following form [13] (see
Appendix A):

e (et Y (eTy) A 2L
o -5 [ S - ey

dx;dquldxzdzqi'“ o ’TT(k_L)4
XxR(x1; ¢, kT )R(x2; 05, — k™), (53)
| sar2 [d
H _ a Z 2y =2
EH-Z(;) /Z_Z(I_H(_ZQ'))
0
I S S PR
y f dx, / Aoy 2L X g ) D(xa, 2), (54)
l—x11 —x
Xe Xc/x]

B(x,2)=(L-1)[O(z — DNO(p* - 2) +O(z - *)O(p*x* - 2))
+L3[-O(x* — z) + 0(z — x*p?)]
(1-x)?
1+ x?

+(Lz+ )G(z - xX)0(xp* - 2)

(1 - x)? :
2 -16O(p" -z
+(L.+ T2 )(-)( He(p )

(z=x)(p*—2)

@l —z2)=-60(z —p*))I )
+(&( ) ( P))In G- -1)

(55)




Let us now turn to the double hard-photon emission in the same direction and the hard
et e pair production. Here we use the method developed by one of us [17,18]. We will
distinguish the collinear and semi-collinear kinematics of final particles. In the first case
all produced particles move in the cones within the polar angles §; < 6y < 1 centered
along the charged-particle momenta (final or initial). In the semi-collinear region only
one produced particle moves inside those cones, while the other moves outside them.
For the totally inclusive cross section, such a distinction no longer has physical meaning
and the dependence on the auxiliary parameter 6y disappears. We underline that in this
way all double and single-logarithmical contributions may be extracted rigorously. The
contribution of the region when both the photons move outside the small cones does
not contain any large logarithm L. The systematic omission of those contributions in

The contribution of both collinear and semi-collinear regions (we consider for defi-
niteness the emission of both hard photons along the electron, since the contribution of
the emission along the positron is the same) has the form (see Appendix B for details)

p2

(2) [ Fa-mxoh)

a
I

| -24 | —x—4

e L
d d .
5 / ¥ f xlxl(l--Jl"'-Jf:)(l—xl)2
X, 4

1A = A @(x*p* - 2) + B+ C O((1 — x,)%p* — 7), (56)




- £ (p2x2_z)2
A_YB(2+1nx2(p2x(l—x|)-z)2)
o V2(] — x —
+(x2+(1—-x|)4)ln(1 071~ x xl)+7’A,
XX]
L (2 -D(p*=2)(z—x)(z = (1 = x))2(p*x(1 — x1) — 2)?
B = — +1
7’9(2 T =) ( — (1= )21 — 212 — 2)2(z — x(1 — x1))? )
_ 2
+(X2+ (1 =x)YH1n (1= x1)% + 8,

x(1 —x—x1)
x(p?(1—x1)? — z)?

C=78 (L+2]n (1 —x1)2(p*x(1 —x1) — 2)(pH1 —x1) — 2)
=2(1 —x1) B —2x(1 — x1)y,

)

The total expression 327, which describes the contribution to (20) from the two-
photon (real and virtual) emission processes is determined by expressions (43), (47),
(49), (51), (53) and (55). Furthermore it does not depend on the auxiliary parameter
4 and has the form

=30 42370 L o5d , + 3H 4230

2 202
=+ 3+ (2) Lo+, L=mlL (58)



The leading contributions 377, 37 have the following forms (see Appendix D):

/ = L*(1 = H(—Qjz))*

X /dx{il’m(x)[ﬁ(xzpz —z)+1]

/‘”P(:)P( YO(Pp )}. (59)

X

PP (x)= QP(t)P( )

X

3 2
=Ai_r’1}){[(2ln4+ 5) —4{2]5(1 —X)

3) +%(l+x)lnx—l+x]

] 2
+2[ rx (2ln(l —x) —Inx+

| —x 2
x&(1 —x—A)}, (60)
, d 1 1
.';:Z(;) L2 - 1I( Qz))“2/¢r| /dsz(x.)P(xz)
0 Xe Xe/ Xy
x[0(z — 1)O(p* — 2) + O(z — x1)O(xip’ — 2)]
x[0(z — 1)0(p* —2) +O(z — 3)O(x3p” — 2)]. (61)

We see that the leading contributions to 3?7 may be expressed in terms of kernels for
the evolution equation for structure functions.



i.e. the scattering diagrams.

7. Pair production

The method, developed by one of us [ 17,18], of calculating the real hard pair produc-
tion cross section within logarithmic accuracy (see the discussion in Section 6) consists
in separating the contributions of the collinear and semi-collinear kinematical regions. In
the first one (CK) we suggest that both electron and positron from the created pair go in
the narrow cone around the direction of one charged particle [the projectile (scattered)
electron p, (g,) or the projectile (scattered) positron p, (g,)]:

p.p_~p_p~p.p<bol, ehp/m>1,  p=p.pq. q (62)

The contribution of the CK contains terms of order (aL/7)?, (a/m)*LIn(6y/6) and
(a/m)?L, where 6 = ff:?, is the scattering angle. In the semi-collinear region only one
of conditions (62) on the angles is fulfilled:

ﬁ:<00. @>00; or ﬁ<0o, ﬁ,->00: (63)
or m>00, ﬁ:]\),-<90.

iThe contribution of the SCK contains terms of the form

2 p 2
(5) 2 (5) L (64)
T ) T
The auxiliary parameter ¢y drops out in the total sum of the CK and SCK contributions.
All possible mechanisms for pair creation (singlet and non-singlet) and the identity
of the particles in the final state are taken into account [221. In the case of small-angle

Bhabha scattering only a part of the total 36 tree-type Feynman diagrams are relevant,
5



Consider first the collinear kinematics. There are four different CK regions, when
the created pair goes in the direction of the incident (scattered) electron or positron.
We will consider only two of them, corresponding to the initial and the final electron
directions. For the case of pair emission parallel to the initial electron, it is useful to
decompose the particle momenta into longitudinal and transverse components:

pr=x1p1 + pr, p— = xap) + p=, g = xpi + 41 (66)
x=1—x; - X2, g ~ pa, pi‘+pi‘+q,l=0.

where p;- are the two-dimensional momenta of the final particles, which are trans-
verse with respect to the initial electron beam direction. It is convenient to introduce
dimensionless quantities for the relevant kinematical invariants:

2 2
zi= (8_0‘> ., 0<z< (8—09> > 1, (67)
m m
2
A= P :;2;)_) = (xix2) (1 = 0)? + x5 (21 + 22 = 2V/Tzz cos B)]
2pip- _ ¢ 2PiPy _ -

A|=T=xz’[l+x§+x§zz], Ay = m2+=x|'[l+x%+x%z|].
C=(P| p-) ~2 - A, D= (pr —qi)

—1l=A—- A — Ay,

m?

where ¢ is the azimuthal angle between the (p,p1) and (p,p") planes.



Keeping only the terms from the sum over spin states of the square of the absolute
value of the matrix element, which give non-zero contributions to the cross section in
the limit 6y — 0, we find that only 8 from the total 36 Feynman diagrams are essential

[22].
The result has the factorized form
1
Z; _Z|M°'227 2,22 (68)
spins pep-llps spins

where one of the multipliers corresponds to the matrix element in the Born approximation
(without pair production):

S Mot =2 (S bt ) (69)
s<t

spins

s=2p1p2, t=——Q2x, Uu=-—5-—1,

I=(1 _xz)—2 (A(l—xz)+Dx2)2+“ —x)_z (C(l — %) —Dx2)2

DC AD
+2::]40 [2(] - x2|)2__x(] k. x:x__x“:’ +3(x2 - x)]
e[ T )
o 2 3
547~ pici * e [(Xl;(f)_( L:) 2 2 :x] - (70)

We rewrite the phase volume of the final particles as

dqdq
(2m) 52423
d¢

xm"2"31r'4x;x2dx1dx2dz|d22g . (71)

dr= Qm* sV (pix+pr— g — @)
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w0}
1
+4Ro(x) lnx+20f(x)+2f1(x)}. A= 9‘? , (72)
min
1 x*p* >z
= 2.2 L.y = X’pt >z,
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2 14+ x2 (l—x)
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[sz — 10x = 10 4 ] Inx
| - x

2 _
-(1 +x)ln2x+4(l +x)InxIn(l — x) — 2(': x3)Li2(l —X),

Q1 = e0min, L =In2L.



Consider now semi-collinear kinematical regions. We will restrict ourselves again to
the case in which the created pair goes close to the electron momentum (initial or final).
A similar treatment applies in the CM system in the case in which the pair follows the
positron momentum. There are three different semi-collinear regions, which contribute
to the cross section within the required accuracy. The first region includes the events for
which the created pair has very small invariant mass:

am* < (py +p-)* < |4,

and the pair escapes the narrow cones (defined by &) in both the incident and scattered
electron momentum directions. We will refer to this SCK region as p, || p_. The reason
is the smallness (in comparison with s) of the square of the four-momentum of the
virtual photon converting to the pair [22].

The second SCK region includes the events for which the invariant mass of the
created positron and the scattered electron is small, 4m? < (p. + q1)° < |g*|, with
the restriction that the positron should escape the narrow cone in the initial electron
momentum direction. We refer to itas p, || ¢, [22].



The third SCK region includes the events in which the created electron goes inside
the narrow cone in the initial electron momentum direction, but the created positron

does not. We refer to it as p_ || p, [22].
The differential cross section takes the following form:

_a IM|? dx dxadx
S 8ats? ¢t xjxx

x8 (pr+pi4q +q). (73)

do dzpidzpfdzq;"dzqfé(l —X] = X3 — X)

where x; (x2), x and p- (pl), ¢ are the energy fractions and the perpendicular
momenta of the created positron (electron) and the scattered electron (positron) re-
spectively; s = (py + p2)? and ¢* = —Q% = (p2 — ¢2)* = —&#? are the center-of-mass
energy squared and the momentum transferred squared; the matrix element squared |M|°
takes different forms according to the different SCK regions.



For the differential cross section in the p. || p_ region we have (see, for details,
Ref. [21])

a d(gy)? d(gi)?
=—14d d
da’lhlll’_ R X dx2 (q.2L)2 (qlJ. +qiL)2
d¢ | 2 2 dxxyxz
>-<277(qiL+xq%)2 (1 =x1)"+ (1 —x3) T (74)

where ¢ is the angle between the two-dimensional vectors ¢~ and g5, ¢;", are the
transverse momentum components of the final electrons, x;; are their energy fractions
(x = | — x; — x3). At this stage it is necessary to use the restrictions on the two-
dimensional momenta q,l and ¢5 . They appear when the contribution of the CK region
(which here represents the narrow cones with opening angle fp in the momentum
directions of both incident and scattered electrons) is excluded:

Py 4
e

L
P
&2

€.

> fo, 'T'L|= > #p, (75)

where €. and &; are the energies of the created positron and the scattered electron
respectively. In order to exclude p from the above equation we use the conservation
of the perpendicular momentum, in this case:

X
py =0.

r 1
q +q¢y +—
Al



In the semi-collinear region p, | ¢, we obtain

o’ d(ql)Z d(q.:. 2
dop |lg, = —L dx dx;— '
plla = “(g5)? (q})?
do 1 x* 5 s 4xxpx;
l —x) 4+ (1l —x;)" - ~it
><2';7'(q|l+.1rqf,-)2(l—xg)2 ( ¥)° 4 (1=x) (1 —x7)?
(76)
Finally for the p_ || p, semi-collinear region we get
a d(gy)*d(g")’
do = —Ldxdx
PP T 4o 2 (qzl )2 (qll )2
(Ao 1 [(1 -2+ (1-x)* dxxx (78)
2 (g + g3 ) (1-x2)? (1-x2)%]



In order to obtain the finite expression for the cross section we have to add dop , +
dop |g, +dop_|ip, to the contribution of the collinear kinematics region (72) and those
due to the production of virtual and soft pairs. Taking into account the leading and
next-to-leading terms we can write the full hard pair contribution including also the pair
emission along the positron direction, after the integration over x; as

(81)
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The contribution to the cross section of the small-angle Bhabha scattering connected
with the real soft (with energy lower than 4g) and virtual pair production can be defined
[22] by the formula

2
4a* T dz [ .,(2 l 17 4 20
L vy 3 - Ind + - L| —— In"4A——1Ind— -
U soft+virt WQ?/ Z {L (3 n +2)+ ( 6 + n 9 n {2)}
|
(82)

Using Eqs. (80) and (82) it is easy to verify that the auxiliary parameter 4 is canceled
in the sum O pair = Ohard + Tsofi+vin- We can, therefore, write the total contribution o7pai

as
P’ 1
.2adz:24__gd__£
Tpair = WQ2/ {L(]+3ln(] Xe) 3/!_x@)+c[ 3
|
——{z—ﬂln(l—xc)+81n2(1—xc)+j dx @-(E—ﬁln(l—x)ﬂ
9 l —x 9
+/dx[L2(l +O@)R(x) + L(OC, (x) + Cz(x))]}.
R(x)=R(x) - 2 O=1-6 (83)
PVERY T30 Ty -

The right-hand side of Eq. (83) gives the contribution to the small-angle Bhabha
scattering cross section for pair production. It is finite and can be used for numerical
estimations. The leading term can be described by the electron structure function D¢( x)
[20].



8. Terms of O(aLl)’

We may, therefore, limit ourselves to consider the emission by the initial electron and
positron. Three photons (virtual and real) contribution to 3 have the form

p | |
1l ra N} [dz 1
3y
ZY—Z (;ﬁ) /Z—Z/dX|/dX29(X|X2—xC) [65(] —-XQ) P(3)(X1)
| X X,
]
x@(xip® —z) + z—sz‘z’(xn)P(xz)GIGz] (14+0(x))), (83)
1

where P(x) and P‘®(x) are given by Eqs. (33) and (59) correspondingly,

2 2
@.@2=9( - "_;)a(pz"—g —z) ,
X X

P3(x)=86(1-x)4,+60(1l-x-4)6,,

1 1 3\ 1 3\’
A,—48[§{3— ifz(lnd-l-z) +6(lnd+ Z) J»
11+x2[9 1 3 3 1.,
@;-48{51_x[32—§{2+Z|H(I—I)—-8-II‘IX+§IH(]—X)
| I 1 |
+Eln x—:,z-lnxln(] -—x)] +§(l+x)lnxln(l—x)
I

| 1 L 5
4(l —x)In(1 —=x) +:—;—2-(5—3x)lnx— I6(1 - X) — 32(l + x)In“x

+%(l+x)Li2(l—x)}. (86)



The contribution to 2 of the process of pair production accompanied by photon emission
when both, pair and photons, may be real and virtual has the form (with respect to
Ref. [20] we include also the non-singlet mechanism of pair production)

e"'e_y_ 9__ 3 b =2 _
& - dz~ dx1 dxza(xlxz Xe)

]
{5 [R”(x.) — —R’(xl)] 8(1 — x2)@(xip* — 2)
+2_xf P(xz)R(x|)9192},

where

R(x)=R'(x) + 2P(x),  R'(x) = —
3 3x

R”(x) =R'(x) (-;— +21In(1 — x)) + (1 +x)(—lnzx+4Li2(l - X)

I 2 3 5 2
+=(=9 —3x+8x)Inx+=[ = —8+8x+3x*) + =P (x).
3 3 X 3

(87)
The total expression for X in Eq. (20) is the sum of the contributions in Egs. (21)

(32), (56), (60), (66) and (68). The quantity 2 depends on the parameters x,, p and
o7



9. Estimates of neglected terms and numerical results

The uncertainty of our calculations is defined by neglected terms. Let us list them.
(a) Terms of the first order RC coming from annihilation-type diagrams (15):
7
de |
50,2/—4,, <0.10 x 1074, (88)

T 4

o

(b) Similar terms in the second order do not exceed (see Section 4)

T

6;
2
(3) 9%/"—? *<0.23 % 1074,
9-
o

a2
(2) (o4 —ehrt<05x 107, (89)

ar
(c) We neglect terms which violate the eikonal approximation:

an

m S

< 0.3 x 107°, (90)

(d) We omit term of the second order which are not enhanced by large logarithms:

(%)2=0.5x 10-5. (91)

(e) Creation of heavy pairs (uu, 77, 7, ...) gives in sum at least one order of mag-
nitude smaller than the corresponding contribution due to light particle production [24]:

Son+ S+ 3 <013C¢ <0.5%x 1074, (92)

(1) Higher-order corrections, including soft and collinear multi-photon contributions,
can be neglected since they only give contributions of the type (aL/m)* < 0.2 x 1077

or less.
(g) The terms in the third order associated with the emission off the final particles:’



Let us define 28 to be equal to 2| ;-0 (see Eq. (21)), which corresponds to the Born
cross section obained by switching off the vacuum polarization contribution /7(¢). For
the experimentally observable cross section we obtain

47rat 5 o R tpm
o= S0(1+ 8+ 8" +87+8 ¢ +87T+86 ), (94)
[
where
30=3olp=0=1-p 7> + 3w + Zg|n=0 (95)
and
20—28 27 2 227
= . O = — , 0V = — ...
TR 2 3 0

The numerical results are presented in Table 1.



Table |

The values of & in per cent for /5 = 91.161 GeV, 6; = 1.61°, 6, = 2.8°, sin? Oy = 0.2283, I’z = 2.4857 GeV

2 $ - p— .
X 6 5 Seniiog O im0 seteTy g 55
0.1 4.120 —8918 0.657 0.162 -0.016 -=0017 —=0.019 —-4.03140.006
02 4.120 9226 0.636 0.156 —0.027 ~0.011] -0.016 —4.36840.006
03 4.120 —-9.626 0615 0.148 —-0.033 —-0.008 -0.013 —~4.79740.006
04 4120 —=10.147 0.586 0.139 -0.039 —0.005 —0.010 —5.35610.006
0S5 4120 —-10850 0.539 0.129 —0.044 ~-0.003 —0.006 —6.11540.006
06 4120 ~-11.866 0437 0.132 —0.049 —0.002 —0.00] ~7.22940.006
0.7 4120 -13.770 0379 0.130 —-0.057 -0.00] 0.005 -9.1944-0.006
08 4120 ~17.423 0608 0.089 —-0.069 0.001 0013 —=12.6614+0.006
09 4120 —=25.269 1.952 -().085 —().085 0.005 0017 —=19.37940.006
3
x(%) <03 x107% (for x. =0.5). (93)

Regarding all the uncertainties (a)-(g) and (82) as independent ones we conclude
the total theoretical uncertainty of our results to be 3+0.006%.

Each of these contributions to o has a sign that can change because of the interplay
between real and virtual corrections. The cross section corresponding to the Born dia-
grams for producing a real particle is always positive, whereas the sign of the radiative
corrections depends on the order of perturbation theory. For the virtual corrections at odd
orders it is negative, and at even orders it is positive. When the aperture of the counters
is small the compensation between real and virtual corrections is not complete. In the
limiting case of small aperture (p — 1, x. — 1) the virtual contributions dominate.



Some examples of subsequent work
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1. Introduction

High-energy electron-positron or Bhabha scattering [1] is
among the classical applications of the perturbative quantum elec-
trodynamics (QED). Beside its phenomenological importance as a
standard candle for luminosity calibration at the electron-positron
colliders, Bhabha scattering has become a testing ground for new
techniques of multiloop calculations. The analysis of high-order
corrections to this process often sheds new light on perturbative
structure of gauge theories. In general the radiative corrections
for the scattering of two massive particles are known only in
the one-loop approximation. Despite significant progress over the
last decade [2-7], the two-loop corrections have been computed
only in the high energy limit neglecting the terms suppressed by
the rario of the electron mass m. ro rhe cenfrer-of-mass enersv
Vs [8-15]." The logarithmically enhanced two-loop electroweak
corrections are available in this approximation as well [17-21].
At the same time the power-suppressed terms in two loops are
still beyond the reach of existing computational techniques. In
general the power-suppressed contributions are of great interest.
At intermediate energies the power corrections in many cases
are phenomenologically important. Moreover, in contrast to the
leading-power contribution very little is known about the infrared
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E-mail address: penin@ualberta.ca (A.A. Penin).
' For a review see Ref. [16].
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structure of the power-suppressed terms. This problem has been
stndied alreadv in earlv davs of OFD (771 and currentlv artracts
much attention in various context [23-27]. However, a systematic
renormalization group analysis of the high-energy behavior of on-
shell amplitudes beyond the leading-power approximation is still
elusive for the existing effective field theory methods.

In this paper we consider the O(mz/s) two-loop QED correc-
tions to the differential cross section of the high-energy large-angle
Bhabha scattering. The corrections are evaluated in the double-
logarithmic approximation i.e. retaining the terms enhanced by
two powers of the large logarithm In(s/mg) per each power of the
coupling constant. These terms dominate the power-suppressed
contribution and in a wide energy interval are numerically com-
parable to the nonlogarithmic leading-power terms. The leading
power-suppressed double-logarithmic corrections have been ob-
tained in Ref. [26] to all orders in fine structure constant « for the
electromagnetic form factor of electron. In this paper we elaborate
the approach [26] and apply it to the electron-positron scattering
amplitude in two-loop approximation. Our main result is given by
Fa_(24).

The paper is organized as follows. In the next section we de-
scribe the perturbative expansion of the cross section at high en-
ergy. In Sect. 3 we discuss the origin and general structure of the
double-logarithmic corrections. In Sect. 4 we describe the evalua-
tion of the one and two-loop double-logarithmic power-suppressed
corrections to Bhabha scattering. Sect. 5 is our summary and con-
clusion.
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Abstract

We derive the coefficient of the O(a?log(s/m.?)) fixed order contribution to
elastic large-angle Bhabha scattering. We adapt the classification of infrared
divergences, that was recently developed within dimensional regularization, and
apply it to the regularization scheme with a massive photon and electron.
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Abstract

We calculate the two-loop virtual, UV renormalized corrections at order a“(N F=1)in QED 10
the Bhabha scattering differential cross section, for arbitrary values of the squared ¢.m. energy s
and momentum transfer ¢, and on-shell electrons and positrons of finite mass m. The calculation is
carricd out within the dimensional regulanization scheme; the remaining IR divergences appear as
polar singularities in (D — 4). The result is presented in terms of 1- and 2-dimensional harmonic
polylogarithms, of maximum weight 3.
© 2004 Elsevier B.V. All rights reserved.



Al Asxilary functions for the ome-loop cross section
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Appendix B, Leading corrections at order o and order a*(Ny = 1)

In this appendix, we provide the explicit expressions of the Jeading radiative corrections
defined in Eq. (27):
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Two-loop Bhabha scattering in QED: Vertex and one-loop by one-
loop contributions

R. Bonciani and A. Ferroglia
Phys. Rev. D 72, 056004 - Published 22 September 2005

ABSTRACT -

In the context of pure QED, we obtain analytic expressions for the contributions to the Bhabha
scattering differential cross section at order a*, which originate from the interference of two-loop
photonic vertices with tree-level diagrams and from the interference of one-loop photonic diagrams
amongst themselves. The ultraviolet renormalization is carried out. The IR-divergent soft-photon
emission corrections are evaluated and added to the virtual cross section. The cross section obtained
in this manner is valid for on-shell electrons and positrons of finite mass and for arbitrary values of the
center of mass energy and momentum transfer. We provide the expansion of our results in powers of
the electron mass, and we compare them with the corresponding expansion of the complete order o*
photonic cross section, recently obtained by A.A. Penin [Phys. Rev. Lett. 95, 010408 (2005).]. As a by-
product, we obtain the contribution to the Bhabha scattering differential cross section of the
interference of the two-loop photonic boxes with the tree-level diagrams, up to terms suppressed by
positive powers of the electron mass. We evaluate numerically the various contributions to the cross
section, paying particular attention to the comparison between exact and expanded results.
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Quest for precision in hadronic cross sections at low energy:
Monte Carlo tools vs. experimental data
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Both experimental and theoretical improvements, tests, calculations, have
to be worked out.....and eventually the mission will be ... ...
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