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Direct searches at the LHC have not yielded any positive so far

It’s likely any new resonances could be just outside the reach of LHC

However, these NP states could manifest in terms of additional 
contributions to any SM process/ flavour changing process 

Observation of anomalies in the B  sector have fuelled a lot of hope in 
this sector
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Models of extra-dimensions are one of the widely pursued NP 
candidates

Motivated as solutions to the hierarchy problem

RS model is a strong candidate-not only for this feature

It has interesting flavour effects-leptonic and hadronic
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ds

2 = e

�2ky
⌘µ⌫dx

µ
dx

⌫ + dy

2

Randall Sundrum Model
S1/Z2 compactified

Hierarchy 
problem Solved!!

Mew = e�kLMPl

effective 4D scale depends on the position in 
the bulk 

One Fundamental gravity scale!!

Provides insight on strongly coupled 
theories 

Solution to the Yukawa hierarchy problem 
#win

#win

Randall, Sundrum 
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Fermions in RS

Bulk fermionic lagrangian in a warped background is written as 

where � = k|y|. Expanding the bulk field as 

Gherghetta, Pomarol

2 Bulk Fermion and Localization of Zero Mode

The five-dimensional Lagrangian for a free massless fermion Ψ(x, y) can be written

as

e−1Lfermion = Ψ iΓA eA
A
(
∂A +

1

8
ωA

B C
[
ΓB, ΓC

])
Ψ , (4)

where eA
A is the inverse of the fünfbein, and the gamma matrices in five-dimensions

are given by ΓM = (γµ, iγ5), satisfying {ΓM , ΓN} = 2ηM N = 2diag (+,−,−,−,−).

In the RS background (1), which respects the four-dimensional Poincaré invariance,

only non-vanishing component of the spin connection ωA
B C is given by

ωµ
ν 5 = − eµ

ν e5 5∂5σ = + e−σσ′ δµ
ν , (5)

where σ′ = ∂5σ. Therefore we obtain

Lfermion = e−3σΨ
[
iγµ∂µ − γ5 e−σ (∂5 − 2σ′)

]
Ψ (6)

= e−
3

2
σΨ

[
iγµ∂µ − γ5 e−σ

(
∂5 −

1

2
σ′
)]

e−
3

2
σΨ .

Interestingly, the mass operator γ5 e−σ (∂5 − 2σ′) for Ψ receives such a piece from

the spin connection that has a kink profile with a gap

∆σ′
i ≡ σ′(yi + 0) − σ′(yi − 0) =

2Vi

24M3
5d

, (7)

where Vi is a tension of the brane located at y = yi. To pursue an analogy with

domain wall fermion [17] is another motivation to consider the bulk fermions in the

RS background.

Before going into any details, let us first consider the fermion zero mode Ψ(x, y) =

Ψ0(x) e3σ(y)/2 ζ̂(y) with iγµ∂µΨ0(x) = 0, where a factor e3σ(y)/2 brings the kinetic term

in Eq. (6) into the canonical form. By solving the five-dimensional Dirac equation,

we find that the zero mode is localized near the brane with a negative tension V1 < 0 ;

ζ̂(y) = ζ̂(πrc) e−
k

2
|πrc−y| . (8)

We should remark that our mechanism for localizing fermion zero modes quite resem-

bles many earlier attempts [18, 2, 17, 19] which utilizes a kink background induced

3

 (x, y) =
1p
⇡R

X

n

h
 

(n)
L (x)f (n)

L (y) +  

(n)
R (x)f (n)

R (y)
i

5D theory is  non-chiral

But
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How do we reproduce 
 chiral SM ?

Z2

 =


 L(+)
 R(�)

�
even  -massless zero mode

odd -no zero mode

Zero mode for the Z2 even field say f
(0)
L satisfies

Introducing a bulk mass term m1/2 = c�0 = ck modifies the solution to

Split fermions in RS

Introduce bulk masses for fermions mi = cik

The zero mode solution now becomes

f
(0)
L = Ne(0.5�c)�(y) (1)

Thus c > 0.5 (c < 0.5) the zero modes are localized towards
y = ⇡R (y = 0)

The e↵ective 4D Yukawa coupling are then
Y (4)

= (Y 0
)ije

(1�cL�cE)kR⇡

The higher modes are independent of the value of c and are always
localized twoards the IR brane.

The KK states for any spin field 0, 12and2 are always localized
towards the IR brane

13 / 55

e�� (@y � 2�0) f (0)
L = 0

field re-definitions

Using orthonormality 

Localized profiles!!

f (0)
L = Nek0.5(y�⇡R)
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c>0.5

Higgs

Gauge Boson

c<0.5

y

f(y
,c
)

UV IR

SM Couplings are 
given by the 

`overlap’ of these 
profiles: 

Y (4) = Y (5)

Z ⇡R

0
dy f (0)

0 (b, y)f (0)
1/2(cL, y)f

(0)
1/2(cR, y)

Yukawa 
hierarchy 
solved!!

Gherghetta, Pomarol
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The fermion coupling 
to the gauge bosons 

get modified

Also induced due to 
mixing of gauge boson 
with corresponding KK 

states

↵ ⇠
Z ⇡R

0
f (1)
1 (y)f (0)

1/2(c, y)f
(0)
1/2(c, y)

The bads of the old RS: S parameter

Light fermions are 
localized near the 

UV brane

Constant (non-zero) 
couplings to Gauge 
Boson KK modes

Can be reabsorbed 
into a (moderate)  

S parameter

light fermions
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FIG. 11: Tree level contribution to µ ! eee due to exchange of Z 0(1). The e↵ective Z(0) contribution is

proportional to this graph.

where pe ⇠ Ee ⇠ mµ. GF is the Fermi constant, ↵ is the electromagnetic coupling. The most

stringent constraint for µ�e conversion comes from Titanium (T i4822). Atomic constants are defined

as: QN = vu(2Z +N) + vd(2N + Z) with N being the neutron number, Zeff = 17.61, form factor

Fp = 0.55, �capt = 2.6⇥ 106 s�1 for Titanium [53].

B. Dipole Transition l
j

! l
i

�

The dominant graph is due to scalar exchange in the loop. One of them is due to Higgs exchange

as shown in Fig.[12]. The amplitude for this process is given as

Mj!i� =
X

n,m

Z
d4k

(2⇡)4
ūi(p

0)⇤i
L
†
Y 0
E

p̂0 +Mn

p̂02 �M2
n

e�µ
p̂+Mn

p̂2 �M2
n

vY 0
E
† p̂+Mm

p̂2 �M2
m

Y 0
E⇤

j
Rui(p)

1

k2 �m2
H

✏µ

(46)

where p̂ = p� k, p̂0 = p0 � k and q = p� p0. ⇤i
L,R = F i

L,RDL,R and Mn denotes the mass of the nth

mode KK fermion. FL,E is a function of bulk masses which are taken to be diagonal in the flavour

space. It is given as

FL,R =

2

6664

fcL1 ,cE1
(⇡R) 0 0

0 fcL2 ,cE2
(⇡R) 0

0 0 fcL3 ,cE3
(⇡R)

3

7775
(47)

The amplitude for Eq.(46) can be rewritten as

M(j ! i�) = (eD†
LFLY

0
EY

0
E
†vY 0

EFRDR)ijJ(p̂, p̂
0, q) (48)

The expression J(p̂, p̂0, q) is the momentum integral in Eq.(46). It is log divergent owing to a double-

independent sum over two KK modes. We regularise it using a cuto↵ of ⇤ ⇠ 4⇡M (1)
kk ⇠ 15 TeV.

29

FIG. 12: Higgs mediated j ! i�. The dot represents the mass insertion. Flavour indices have been

suppressed in the internal charged KK lines. (L,R) represents the KK modes corresponding to the left and

right chiral zero modes.

The other dominant contribution is due to Fig.[19] is discussed in Appendix[B]. The Branching

fraction for the dipole decays lj ! li� is given as

BR(lj ! li�) =
12⇡2

(GFm2
j )

2
(A2

L +A2
R) (49)

where the coe�cient due to Figs.[12,19] is given as

AL = 2
emj

16⇡2

1

M2
KK

vp
2
D†

LFL(Y
0
NY 0

N
† + Y 0

EY
0
E
†)YEFRDR (50)

and AR = A†
L. The other dipole contributions are discussed in Appendix[B]. We now proceed to

discuss the LFV rates for the mass models discussed in Section[II]. The quantities, like the KK

masses of fermions, the rotation matrices DL,R etc. which determine the LFV rates are functions

of the bulk mass parameters. We compute these quantities for each point of the best fit parameter

space obtained earlier for the LHLH and the Dirac case and use it to constrain the parameter space

from flavour violation.

C. LHLH Case

The contributions to trilepton decays from graphs like Fig.[11] are highly suppressed in the

parameter space of interest. This is because the couplings of the zero mode fermions to the KK

gauge boson become universal for the fermions su�ciently localized towards IR and UV branes,

as can be seen in Fig.[13]. However, there could be other potentially large contributions. This

comes from the large mixing between zero mode charged singlet states and the first KK modes of

the lepton doublets; the corresponding Yukawa coupling is very large due to the large negative cE

values. Example of such a graph is shown in Fig.[14]. Exact value of the contribution, of course

30

where N is the normalization factor given by N =
p
⇡Rke�0.5�(⇡R). These solutions are consistent

with the boundary conditions. The neutrino mass matrix has a specific structure in this case,

as there are contributions from the first KK mode, which might be important. In the basis,

�T = {⌫(0)L , N (0), N (1)} the mass matrix takes the form

Lm = �1

2
�TM� ; M =

0

BBB@

0 m(0,0)
D m(0,1)

D

m(0,0)
D 0 0

m(0,1)
D 0 m(1)

1

CCCA
(38)

From the above, we see that at the zeroth level, light neutrino and singlet neutrinos form a pseudo-

Dirac structure, leading to maximal mixing between these two states. For the three flavor states,

we would have three light states which are sterile. We have not pursued the phenomenology of this

model further.

III. LEPTON FLAVOR VIOLATION

We now study lepton flavor violating constraints on the three neutrino mass models considered

in the present work. Lepton flavor violation within the RS framework has been studied in detail in

[30]. The localization of the fermions in the bulk at di↵erent places leads to non-zero flavour mixing

between the zero mode SM fermions and higher KK states, which contribute to flavor violating

processes both at the tree and the loop level. The tree level flavor violating decay modes of the

form li ! ljlklk are due to non-universal overlap of the zero mode fermions with the Z-boson KK

modes. At the 1-loop level, penguin graphs contribute to rare decays like lj ! li + �. The SM

states mix with their heavier KK states on the IR brane, and thus may give rise to significant

contributions to dipole processes in particular. The present LFV limits are very strong and are

listed in Table[VII]

In this section we calculate the Branching fractions for the leptonic FCNC. The e↵ective 4-D

lagrangian describing l ! l0 process is given by [30]

� Le↵ = AR(q
2)

1

2mµ
ēR�

µ⌫Fµ⌫µL +AL(q
2)

1

2mµ
ēL�

µ⌫Fµ⌫µR

+
4GFp

2
[a3(ēR�

µµR)(ēR�µeR) + a4(ēL�
µµL)(ēL�µeL)

+ a5(ēR�
µµR)(ēL�µeL) + a6(ēL�

µµL)(ēR�µeR)] + h.c. (39)

26

Non-universality leads to both tree level and loop level FCNC effects

Effects are visible in both the hadron and the lepton sector

17



of Minimal Flavour violation where the O(1) Yukawa couplings and the bulk mass matrices need

to be simultaneously diagonalizable. In Table(V), we presented two sample points. Point A has

all the ci > 1/2 where as Point B has cE2 , cE3 < 1/2. The corresponding Yukawa couplings are

given in Eqs.(20,21).

As before we use the holographic basis to comment on the partial compositeness of the bulk

fermions. The zero modes of singlet right handed neutrinos are dominantly elementary, with almost

zero component of compositeness. The composite component for the zero modes of the doublets

and the charged singlets becomes smaller as the corresponding c values becomes greater than 0.5.

Essentially they have partially composite nature.

TABLE V: Sample points with corresponding fits of observables for Normal Hierarchy in Dirac case with

O(1) Yukawas. The masses are in GeV

Parameter Point A Point B

�2 0.28 0.39

c
L1 0.6263 0.7166

c
L2 0.5932 0.6382

c
L3 0.5293 0.6126

c
E1 0.6704 0.5911

c
E2 0.5541 0.1939

c
E3 0.5131 0.2647

c
N1 1.2233 1.2791

c
N2 1.2692 1.1215

c
N3 1.2948 1.2343

m
e

5.09⇥ 10�4 5.09⇥ 10�4

m
µ

0.1055 0.1055

m
⌧

1.77 1.77

✓12 0.59 0.589

✓23 0.80 0.792

✓13 0.153 0.153

�m2
sol

7.49⇥ 10�23 7.49⇥ 10�23

�m2
atm

2.39⇥ 10�21 2.40⇥ 10�21

18

In the lepton sector the observables are 
µ ! e�, µ ! eee . . .

The non universality (in terms of the couplings) 
between the first two generations and third

16

Iyer, Vempati



where gL,R are the usual SM couplings. We can use the unitarity of UL,R to rewrite these as

g(1)µe
L,R = gL,R

[

UL,R
12 UL,R∗

22 (αµ − αe) + UL,R
13 UL,R∗

23 (ατ − αe)
]

,

g(1)τµ
L,R = gL,R

[

UL,R
21 UL,R∗

31 (αe − αµ) + UL,R
23 UL,R∗

33 (ατ − αµ)
]

,

g(1)τe
L,R = gL,R

[

UL,R
12 UL,R∗

32 (αµ − αe) + UL,R
13 UL,R∗

33 (ατ − αe)
]

. (32)

Using Eq. 28, the couplings to Z0 are obtained via multiplication by −fm2
Z/M2

KK : gµe
L,R =

−fm2
Z/M2

KKg(1)µe
L,R , etc. The couplings to Z1 are identical to those in Eq. 32, to leading order

in the gauge boson mixing.
We now use these to derive the flavor-violating couplings g3−6 of Eq. 27:

gµe
3 = 2gR

[

gµe
R + αeg

(1)µe
R

m2
Z

M2
KK

]

,

gµe
4 = 2gL

[

gµe
L + αeg

(1)µe
L

m2
Z

M2
KK

]

,

gµe
5 = 2gL

[

gµe
R + αeg

(1)µe
R

m2
Z

M2
KK

]

,

gµe
6 = 2gR

[

gµe
L + αeg

(1)µe
L

m2
Z

M2
KK

]

. (33)

These are for µ − e flavor violation; similar expressions hold for τ − µ and τ − e. The first
term on each line is from the Z0 coupling, while the second is from direct Z1 exchange.
Substituting in the expressions from Eq. 32, we find

gµe
3 = −2g2

R

m2
Z

M2
KK

(f − αe)
[

UR
12U

R∗
22 (αµ − αe) + UR

13U
R∗
23 (ατ − αe)

]

, (34)

and similar expressions for the other couplings. Since f ≫ |αe|, we can neglect the direct
KK exchange effect.

We will study the decays µ− → e−e+e−, τ− → µ−µ+µ−, τ− → e−e+e−, τ → µ−e+e−, and
τ → e−µ+µ−. The remaining rare τ decays studied at BABAR and BELLE, τ → e−µ+e−

and τ → µ−e+µ−, require an additional flavor-violating coupling than those above, and are
therefore highly suppressed. The relevant branching fractions from [21] are

BR(µ → 3e) = 2
(

|gµe
3 |2 + |gµe

4 |2
)

+ |gµe
5 |2 + |gµe

6 |2,
BR(τ → 3µ) =

{

2
(

|gτµ
3 |2 + |gτµ

4 |2
)

+ |gτµ
5 |2 + |gτµ

6 |2
}

BR(τ → eνν),

BR(τ → 3e) =
{

2
(

|gτe
3 |2 + |gτe

4 |2
)

+ |gτe
5 |2 + |gτe

6 |2
}

BR(τ → eνν),

BR(τ → µee) =
{

|gτµ
3 |2 + |gτµ

4 |2 + |gτµ
5 |2 + |gτµ

6 |2
}

BR(τ → eνν),

BR(τ → eµµ) =
{

|gτe
3 |2 + |gτe

4 |2 + |gτe
5 |2 + |gτe

6 |2
}

BR(τ → eνν). (35)

We have used the fact that BR(µ → eνν) = 1 in writing these expressions. The µ − e
conversion rate is given by [22]

Bconv =
2peEeG2

F m3
µα

3Z4
effQ

2
N

π2ZΓcapt

[

|gµe
R |2 + |gµe

L |2
]

, (36)
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III. TRI-LEPTON DECAYS AND µ − e CONVERSION

In this section and the next we study the predictions that the minimal RS model makes for
lepton flavor violation. We focus on processes in the muon sector, such as µ− → e+e−e− and
µ−e conversion in the presence of nuclei, and rare tau decays of the form τ → l1l̄2l3 currently
being studied at BABAR and BELLE. The dipole-mediated decays will be discussed in the
next section.

The dominant effects arise from flavor non-diagonal couplings of the zero-mode Z-boson.
Contributions from exchange of the Higgs boson are suppressed by small fermion masses,
and we will show later that those coming from direct KK exchange are suppressed by a
large fermion wave-function factor. There are also contributions to these processes from the
dipole exchanges denoted by CL,R in Eq. 27, but these are loop-suppressed and small in the
parameter space of interest. We also find that KK-fermion mixing effects are sub-dominant
in the parameter space of interest. We derive here the relevant couplings. We denote the
physical basis by Z0, Z1, and the gauge basis by Z(0), Z(1). For simplicity, we restrict our
discussion here to the first KK level; in our analysis we include the first several modes. After
diagonalizing the gauge boson mass matrix, we find that these are related via

Z(0) = Z0 + f
m2

Z

M2
KK

Z1, Z(1) = Z1 − f
m2

Z

M2
KK

Z0. (28)

f parameterizes the mixing between the zero and first KK level. With a brane Higgs field,
f =

√
2kπrc ∼ O(10). A plot of f for a bulk Higgs field is shown in Fig. 1. The couplings

between the zero-mode fermions and Z(1) are determined by the appropriate overlap integral.
We define the ratio of these couplings to the SM couplings as αe, αµ, and ατ , where g(1) =
αgSM ; the αi are then given by

αi = 2
√

2π

∫ π

0

dφ eσχ(1)[f (0)
i ]2. (29)

Since the fermion wave-functions are localized at different points in the bulk, the αi differ,
but they are all roughly O(0.1) in magnitude. We present a plot of the αi in Fig. 3. In the
fermion flavor basis, the matrix which describes the Z(1) couplings takes the form

gSM (ēF , µ̄F , τ̄F ) ̸Z(1)

⎛

⎝

αe 0 0
0 αµ 0
0 0 ατ

⎞

⎠

⎛

⎝

eF

µF

τF

⎞

⎠ . (30)

We must first rotate the fermions to the mass basis. As was explained in the last section, we
introduce unitary matrices UL, UR, so that LM = ULLF , RM = URRF , where LF denotes the
left-handed flavor basis-vector, LM the left-handed mass basis-vector, etc. The flavor-basis
coupling matrices CF

L,R = gL,R diag(αe,αµ,ατ ) are rotated to CL,R = UL,R CF
L,R U †

L,R. The
flavor-violating couplings are the off-diagonal entries of CL,R; we find

g(1)µe
L,R = gL,R

(

UL,R
11 UL,R∗

21 αe + UL,R
12 UL,R∗

22 αµ + UL,R
13 UL,R∗

23 ατ

)

,

g(1)τµ
L,R = gL,R

(

UL,R
21 UL,R∗

31 αe + UL,R
22 UL,R∗

32 αµ + UL,R
23 UL,R∗

33 ατ

)

,

g(1)τe
L,R = gL,R

(

UL,R
11 UL,R∗

31 αe + UL,R
12 UL,R∗

32 αµ + UL,R
13 UL,R∗

33 ατ

)

, (31)

9

The coupling in the flavour basis is given as

After rotating to the mass basis the flavour violating couplings are:

The coupling to the first two generation is nearly  
universal

The coupling to the first two generation is nearly  
universal

Non-universality!!

15



KK scales required to suppress 1-2 transitions in lepton sector are too High!!

30 TeV!!

Standard techniques are to use flavour symmetries like MFV
d’Ambrosio et al, Cirigliano et al. 

Sundrum Perez etc. 

The bulk mass are aligned with the Yukawa couplings

have lighter KK spectrum would essentially be ruled out. The misalignment between the Yukawa

coupling matrix and bulk mass terms which determine the profile is the cause of the large flavor

violating transitions leading to strong restrictions on these models. In [54] the authors imposed

discrete symmetries to constrain Flavour Changing Neutral Currents (FCNC). In this work we

adopt the Minimal Flavour violation ansatz which reduces the misalignment by demanding an

alignment between the Yukawa matrices and the bulk parameters.

The ansatz of Minimal Flavour violation was first proposed for the hadronic sector [55]. It

proposes that new physics adds no new flavor structures and thus entire flavor structure in Nature

is determined by the Standard Model Yukawa couplings. In the leptonic sector, MFV in not

uniquely defined due to the possibility of the seesaw mechanism. Several schemes of leptonic

minimal flavor violation are possible [56].

The proposal to use the MFV hypothesis in RS was first introduced in [31] in the quark sector.

There were subsequent extensions in the leptonic sector by [32, 35]. The MFV ansatz assumes that

the Yukawa couplings are the only sources of flavor violation. In the RS setting this would require

that the bulk mass terms should now be expressed in terms of the Yukawa couplings [31]. The

exact expression would depend on the particle content and the flavor symmetry assumed.

A. Dirac Neutrino Case

In the presence of right handed neutrinos the flavour group is SU(3)L ⇥ SU(3)E ⇥ SU(3)N ;

the lepton number is conserved. The YE transforms as YE ! (3, 3̄, 1) and YN transforms as

YN ! (3, 1, 3̄). The Yukawa couplings are aligned with the five dimensional bulk mass matrices.

The bulk masses can be expressed in terms of the Yukawas as

cL = a1I + a2Y
0
EY

0†
E + a3Y

0
NY 0†

N cE = bY 0†
E Y 0

E cN = cY 0†
N Y 0

N (51)

where a,b,c 2 < and Y 0
E,N are as defined earlier as Y 0

E,N = 2kYE,N . Owing to the flavor symmetry

we work in a basis in which Y 0
E is diagonal. We then rotate Y 0

N by the PMNS matrix i.e, writing

Y 0
N ! VPMNSDiag(Y 0

N ) where the Diag(Y 0
N ) = Diag(0.709, 0.709, 0.75). The cL value chosen

is 0.5802 for all three generations. The cN values chosen are respectively 1.17241, 1.172, 1.311

respectively. The bulk singlet mass parameters are cE = (0.7477, 0.58059, 0.401)

The simplest Yukawa combination transforming as (8,1,1) under the flavour group is given as

� = Y 0
NY 0†

N (52)

34

Reduces the misalignment between the fermion mass and the flavour violating 
operators

3 TeV!!

14



with their KK modes and the mixing of the SM gauge fields with the massive vector
resonances. We postpone a detailed discussion of these e↵ects to Sect. 4.

3 The B ! K⇤µ+µ� anomaly

As we mentioned in the Introduction, the recent LHCb measurements of the angular
distributions in the decay B ! K⇤µ+µ� and the ⇠ 2.6 � deviation with respect to the SM
prediction in the value of BR(B ! Kµ+µ�)/BR(B ! Ke+e�) ' 0.745+0.090

�0.074 ± 0.036 [1]
suggest the possibility that universality deviations with respect to the Standard Model
expectations could be present. After EWSB the relevant four-fermion e↵ective operators
contributing to �F = 1 transitions can be mapped into the basis [24]

L
eff

=
G

F

↵p
2 ⇡

V ⇤
ts

V
tb

X

i

C
i

O
i

, (3.1)

where the Wilson coe�cients C
i

= CSM

i

+ �C
i

, are the sum of a SM contribution CSM

i

and of a new-physics one �C
i

. The sum in Eq. (3.1) includes the operators 6

O9 = (s̄
L

�
µ

b
L

)(µ̄�µµ) , O10 = (s̄
L

�
µ

b
L

)(µ̄�µ�5µ) ,

O0
9 = (s̄

R

�
µ

b
R

)(µ̄�µµ) , O0
10 = (s̄

R

�
µ

b
R

)(µ̄�µ�5µ) .
(3.2)

In our model contact interactions involving the SM fermions can be generated through
the exchange of the massive KK modes of the gauge fields. In particular interactions that
induce �F = 1 transitions can be induced by the exchange of the KK modes of the
Z-boson and of the photon. The schematic structure of the diagrams giving rise to these
contributions is shown in Fig. 3.

bL

sL

Zn
µ , �

n
µ

µ

µ

Figure 3: Feynman diagrams giving rise to the e↵ective operators of Eq. (3.2)

From the discussion in the previous section, it is easy to realize that lepton universality
can be broken in our scenario, provided that the localization of the various lepton genera-
tions is di↵erent. In particular, if the electron is an almost elementary state (c

eL,R & 0.6)

6Additional operators involving the electron field can also contribute to �F = 1 processes. In our
set-up, however, we assume that the first lepton generation is almost elementary, so that new contact
interactions involving the electron are negligible.
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definiteness we set c
µR = 0.7). This set-up leaves us with three relevant free parameters

which control the localization of the bottom components, c
bL,R , and that of the µ

L

field,
c
µL .

The preferred region in the parameter space is mostly determined by the value of
�C9, which needs to have non-vanishing new-physics contributions in order to fit the
experimental results (see Tab. 1). This constraint selects a relatively narrow region in
the (c

bL , cµL) plane. In particular, at least one of these two parameters is required to be
. 0.45, as can be seen from the left panel of Fig. 4. Additional constraints on the (c

bL , cµL)
plane can be extracted from the bounds on �C10. These constraints, however, are quite
mild and basically all points compatible with the fit of �C9 are also in agreement with
�C10.

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

� μ
�

Δ�� ∈ [-����� -����]
Δ��� ∈ [-����� ����]

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

� μ
�

Δ��′ ∈ [-����� ����]
Δ���′ ∈ [-����� ����]

Figure 4: Left panel: Region in the plane (c
bL , cµL) compatible with the fit of �C9 (band between

the black solid lines) and �C10 (band between the green solid lines) at the 3� level. Right panel:
Region in the plane (c

bR , cµL) compatible with �C 0
9 (the region above the black solid line) and

�C 0
10 (the region above the blue solid line). In both panels the white region denotes the points

allowed by the present data.

The �C 0
9,10 Wilson coe�cients, on the other hand, can be used to select a preferred

region in the (c
bR , cµL) plane. As can be seen from the right panel of Fig. 4, in this case

no strong constraint is found.
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quite non-generic form, which closely resembles a minimal flavor violation structure in
which all flavor-changing e↵ects are suppressed by the CKM elements involving the third
family. This is a direct consequence of the U(2) flavor symmetry for the light generation
quarks and of the unitarity of the CKM matrix. Would the U(2) symmetry be violated,
potentially large flavor-changing currents could be generated for the light quarks, and in
particular s ! d transitions could get sizable contributions.

The explicit expressions of the left- and right-handed couplings are

gZ
n

fL
= 2(t3L �Q

f

s2
W

)gf (n)(c
fL) g�

n

fL
= 2Q

f

s
W

c
W

gf (n)(c
fL)

gZ
n

fR
= �2Q

f

s2
W

gf (n)(c
fR) g�

n

fR
= 2Q

f

s
W

c
W

gf (n)(c
fR)

. (3.5)

From these expressions one can easily derive the vector and axial couplings, which we
denote by gX

n

fV,A
= (gX

n

fL
± gX

n

fR
)/2.

The couplings in Eqs. (3.3) and (3.4) give rise to the following contributions to the
Wilson coe�cients of the �F = 1 operators:

�C9 = �
X

X=Z,�

X

n

⇡gXn
µV

�
gXn
bL

� gXn
sL

�

2
p
2G

F

↵c2
W

M2
n

, �C 0
9 = �

X

X=Z,�

X

n

⇡gXn
µV

�
gXn
bR

� gXn
sR

�

2
p
2G

F

↵c2
W

M2
n

,

�C10 =
X

X=Z,�

X

n

⇡gXn
µA

�
gXn
bL

� gXn
sL

�

2
p
2G

F

↵c2
W

M2
n

, �C 0
10 =

X

X=Z,�

X

n

⇡gXn
µA

�
gXn
bR

� gXn
sR

�

2
p
2G

F

↵c2
W

M2
n

.

(3.6)

Since the size of the couplings gX
n

f

has only a small dependence on n, the largest contri-
butions to the Wilson coe�cients come from the e↵ects of the first vector KK excitations,
Z1

µ

and �1
µ

. The additional contributions coming from the exchange of the higher KK
modes are suppressed by their larger masses and we have checked that our results are
negligibly modified by their insertion.

Coe�cient �C9 �C 0
9 �C10 �C 0

10

Best fit value �1.09 0.46 0.56 �0.25

3� region [�1.67,�0.39] [�0.36, 1.31] [�0.12, 1.36] [�0.82, 0.31]

Table 1: Fitted values for Wilson coe�cients from Ref. [6].

The present experimental results allow to extract a fit of the Wilson coe�cients�C
(0)
9,10.

The ranges of values compatible with the current measurements at the 3� level are listed
in Tab. 1, where the fit includes, on top of the decay B ! K⇤µ+µ�, observables from
b ! sµ+µ�, b ! s� and b ! se+e� [6]. The experimental anomalies can be reproduced in
our scenario by assuming that the left-handed component of the muon has a sizable degree
of compositeness. The right-handed component can instead be almost elementary (for

13

b->s transitions (Neutral Current)

13
Disclaimer:RS model with a soft wall
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b->c transitions (Charged Current)

Like KK modes of Z, those of W also exist (Neutral Current)

Possibility of a unified description of R(k) and R(D*)

Explanation of R(D*) requires a composite tau, and may be in tension if Ztau tau  
data

Explanation of R(D*) requires a composite tau, and may be in tension if Ztau tau  
data, if wolfenstein like parametrization is assumed

After electroweak symmetry breaking the mass matrices for u and d-type quarks

are diagonalized by the unitary matrices VuL,R and VdL,R , and so their matrix elements,

unlike those of the CKM matrix, are not measured experimentally and moreover are

model dependent. In the absence of a general (UV) theory, providing the 5D Yukawa

couplings bYu,d, we will just consider the general form for these matrices by assuming

they reproduce the physical CKM matrix V , i.e. they satisfy the condition V ⌘ V †
uL
VdL .

Given the hierarchical structure of the quark mass spectrum and mixing angles, we

will then assume for the matrices VdL and VuL Wolfenstein-like parametrizations as

VdL =

0

@
1� 1

2

�2

0

�
0

A�2�
0

(1� r)(⇢
0

� i⌘
0

)

��
0

1� 1

2

�2

0

A�2(1� r)

A�2�
0

(1� r)(1� ⇢
0

� i⌘
0

) �A�2(1� r) 1

1

A , (2.4)

with values of the parameters (r,�
0

, ⇢
0

, ⌘
0

) consistent with the hierarchical structure of

the matrix, and

VuL =

0

@
1� 1

2

(�� �
0

)2 (�
0

� �)
�
1 + 1

2

�
0

�
�
(VuL)13

�(�
0

� �)
�
1 + 1

2

�
0

�
�

1� 1

2

(�� �
0

)2 �A�2 r

(VuL)31 A�2 r 1

1

A , (2.5)

where

(VuL)31 = A�3(⇢+ i⌘) + A�2(1� r) [�
0

(1� ⇢
0

� i⌘
0

)� �]

(VuL)13 = A�3(1� ⇢+ i⌘) + A�2�
0

[(1� r)(⇢
0

� i⌘
0

)� 1] , (2.6)

(2.7)

and where [15]

� = 0.225, A = 0.811, ⇢ = 0.124, ⌘ = 0.356 (2.8)

are the parameters of the CKM matrix V in the Wolfenstein parametrization

V =

0

@
1� 1

2

�2 � A�3(⇢� i⌘)

�� 1� 1

2

�2 A�2

A�3(1� ⇢� i⌘) �A�2 1

1

A . (2.9)

The matrix forms of (2.4) and (2.5) guarantee the precise determination of the CKM

matrix elements in (2.9). In particular, in numerical calculations, we will make the

particular choice

�
0

' O(�), ⌘
0

' O(⌘), 0 . r . 1, 0 . ⇢
0

. 1 (2.10)
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are diagonalized by the unitary matrices VuL,R and VdL,R , and so their matrix elements,

unlike those of the CKM matrix, are not measured experimentally and moreover are

model dependent. In the absence of a general (UV) theory, providing the 5D Yukawa

couplings bYu,d, we will just consider the general form for these matrices by assuming

they reproduce the physical CKM matrix V , i.e. they satisfy the condition V ⌘ V †
uL
VdL .

Given the hierarchical structure of the quark mass spectrum and mixing angles, we

will then assume for the matrices VdL and VuL Wolfenstein-like parametrizations as
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0
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0
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0
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0
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0

)� �]
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0

[(1� r)(⇢
0

� i⌘
0

)� 1] , (2.6)

(2.7)

and where [15]

� = 0.225, A = 0.811, ⇢ = 0.124, ⌘ = 0.356 (2.8)

are the parameters of the CKM matrix V in the Wolfenstein parametrization

V =

0

@
1� 1
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�� 1� 1

2

�2 A�2
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1
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The matrix forms of (2.4) and (2.5) guarantee the precise determination of the CKM

matrix elements in (2.9). In particular, in numerical calculations, we will make the

particular choice

�
0

' O(�), ⌘
0

' O(⌘), 0 . r . 1, 0 . ⇢
0

. 1 (2.10)
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One possibility is to consider custodial models

SU(2)L ⇥ SU(2)R ! SU(2)L+R

Extra- contributions from the custodial gauge bosons

Consider a general computation without the assumption of a wolfenstein like 
parametrisation (Numerical Scan)

In progress with  D’Ambrosio

Consider correlations with other channels like s->d transitions

11



Modifications of RS

Large 
contributions to oblique 

parameters!!

Large contributions 
to FCNC

PUSH the KK scale 
very high!!

Is there a setup in which the KK scales are naturally high?

Little hierarchy 
problem!!

The KK masses are proportional to MPle
�kR⇡ ⇠ TeV

Depends on 
the choice of R!Depends on

✏ = e�kR⇡

10



Features of GUT RS model

✏ = 0.01

R is reduced to 
 R/6

warp factor Scale of physics on IR  
brane is GUT scale

Lowest KK scale is  
GUT scale

RS is no longer solution  
to hierarchy problem

Supersymmetrize!!

GUT scale RS framework

Choi et al., Dudas Gersdorff, Iyer Vempati..

9



UVIR

N=1 SUSY

Higgs Doublets

Matter and Gauge fields

Effective 4D theory contains N=2 supersymmetry

N=2 to N=1 (MSSM)

Z2

This scenario can explain the hierarchy of fermion masses 
 and mixing at the GUT scale.

8

FN Models Extra-dimensions

✏ Value of ✏ = 0.2 is set by the ratio
of the vev of S and mass of the
vector like fields

✏ = 10�kR⇡ ⇠ 0.02 is set by cur-
vature scale k and the compacti-
fication radius R

charges The FN charger are restricted to
be integers

The c parameters are real num-
bers.

UV scale E↵ective UV scale is at hSi '
MPl

E↵ective UV scale is
M̃uve

�kR⇡MPl i.e. mass of
KK gauge bosons.

UV completion HEavy fermions Profiles in 5D
Flavour Non-universal D term contribu-

tions to soft masses lead to
FCNC

Non-universal coupling of the
KK-gauge bosons to the fermions
lead to FCNC.

Table 1: Table showing comparison of gauged FN models and Extra-dimensional setup.

anomaly cancellation conditions are given as

A3 = A2 =
3

5
A1 (1.1)

where A3, A2, A1 are defined in Eq.(??). Due to the presence of the KK thresholds the unification
scale is pushed near the Planck scale.

The paper is organized as follows. In section 2 we consider the GS conditions and present it in a
form which is suitable for our analysis. In addition to giving analytic arguments on the constraints
imposed by the unification conditions we also present detailed numerical fit for all the four configu-
rations of Higgses in the bulk. In section 3 supersymmetry breaking is considered. We focus on the
scenarios where the SUSY breaking spurion could be either be localized on the brane or in the bulk.
The magnitude of the tachyonic contributions to the soft terms limits the choices of the localization
parameter.

2 Gauge coupling unification and fermion mass

In this section we discuss the relation between the fermion mass fits and the unification condition. In
5D, matter fermions are part of a hypermultiplet (� )which is composed of: � ⌘ (�1,�2, ) where �i
is a scalar and  = ( 1, 2) is a Dirac fermion. This can be rearranged in two-chiral multiplets as
�i ⌘ (�i i). The 5D action for a bulk hypermultiplet in terms of two chiral multiplets can be written
as []

S5 =

Z
d5x

Z
d4✓e�2ky

⇣
�1e

V �†
1 + �

†
2e

�V �2

⌘
+

Z
d2✓e�3ky�1(@y +M� � 1.5k � 1p

2
�)�2

�
(2.1)

where V and � are the vector and chiral-superfield constituents of the 5D vector super-multiplet.
M� = ck is the bulk mass term and c is dimensionless O(1) parameter. The presence of two chiral-
multiplets for a given bulk hypermultiplet maps to the spectrum of N=2 SUSY in 4D. However in
the presence of orbifolding, we can project either one of �i, such that only say �1 is retained at
the zero-mode level The lightest non-zero modes have mass O(MGUT ) and will not induce significant

– 3 –



Next question: How does one break SUSY?

Contact interactions 
on the IR (GUT) brane

Scalar masses

L(4)
breaking = �(y � ⇡R)

h
d4✓e�2k⇡Rk�2X†X

⇣
��,ij�

†
i�j

⌘
+

d2✓k�1XWA↵W↵
A + d2✓e�3kyk�1X

⇣
˜Au
ijHuQiuj + . . .

⌘i

where � have dimensional carrying negative mass dimensions of -1
� = U,D,Hu,d.

Assume X = ✓2F

48 / 55

Brane localized  
Interaction 

SUSY Breaking spurion X = ✓2 F

F term of X develops a vev giving a gravitino mass 

m3/2 =
hF i
k

⇠ TeV

7



Soft masses

The sfermion mass matrix is generated when the X fields get a
vacuum expectation value.

In the canonical basis

m1/2 = fm3/2

(m2
f̃
)ij = m2

3/2
ˆ�ij e(1�ci�cj)kR⇡⇠(ci)⇠(cj)

Au,d
ij = m3/2A

0
ije

(1�ci�c0j)kR⇡⇠(ci)⇠(c
0
j)

where ˆ�ij , A
0 are dimensionless O(1) parameters.

gravitino mass is defined as m2
3/2 =

<F>2

k2 =

<F>2

M2
Pl

49 / 55

Soft masses

The sfermion mass matrix is generated when the X fields get a
vacuum expectation value.

In the canonical basis

m1/2 = fm3/2

(m2
f̃
)ij = m2

3/2
ˆ�ij e(1�ci�cj)kR⇡⇠(ci)⇠(cj)

Au,d
ij = m3/2A

0
ije

(1�ci�c0j)kR⇡⇠(ci)⇠(c
0
j)

where ˆ�ij , A
0 are dimensionless O(1) parameters.
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<F>2

M2
Pl
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Some features:
Structure of the soft masses is predicted by the fits to the fermion masses.

The trilinear coupling for the third generation is naturally large.

Soft masses are flavourful may possibly lead to large FCNC

6



Structure of soft mass matrix
Typical soft mass matrix for the up type squarks looks like

Generic features of the model

Since the top multiplet is nearly composite, At terms are
naturally large

A typical soft mass texture for up type hadrons looks like

˜M2
Q,U = m2

3/2(0.5� cQ3,U3)

0

B@
✏↵ ✏� ✏

↵
2

✏� ✏� ✏
�
2

✏
↵
2 ✏

�
2

1

1

CA

↵ = 2c1 � 1, � = 2c2 � 1 and � = c2 + c1 � 1. Here c1 and c2
in general represents the first two generation bulk mass
parameters for both the doublet and the up type singlets.

At least one of the soft masses is tachyonic

Significant amount of flavour violation present at the high
scale.
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, c1 c2and are bulk mass 
parameters for first two generation squarks.

Significant amount of flavour violation present at the high 
scale!!

5



Running of Diagonal terms

Figure: Running of diagonal terms of squark and slepton mass matrices.
The red lines in both panels represents the evolution of the (MQ)33 and
(MU )33 for the squarks and (ML)33 and (ME)33 for the sleptons.
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Figure: Running of diagonal terms of squark and slepton mass matrices.
The red lines in both panels represents the evolution of the (MQ)33 and
(MU )33 for the squarks and (ML)33 and (ME)33 for the sleptons.
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\

Running of masses

Soft masses at High scale

m2
Q3

m2
U3

m2
light

m2
stau

m2
light

Dudas, Iyer Vempati 
to appear
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Figure 4: Flavour in the slepton sector

Figure 5: Correlation between µ ! e� and µ ! eee (left) and µ ! e� and ⌧ ! µ�

eventuality, computation to the flavour observables can be parametrised by � defined in the flavour
basis as:

�ij =
m̃2

ijq
m̃2

i m̃
2
j

i 6= j (3.9)

where the soft mass matrix m̃ is evaluated in the basis in which the down sector is diagonal. In this
limit, computation in the flavour basis exactly matches that in the mass basis. At the high scale,
however, owing to sequestering, the diagonal elements for the lighter generations are extremely small
and O(m2

ii) ' O(m2
ij;i 6=j). In such an eventuality the perturbation approximation breaks down and

� ⇠ O(1). This represents a potentially dangerous situation accompanied by a large amount of flavour
violation. However, it is to be noted that the diagonal elements receive large positive contributions due
to RGE e↵ects, primarily from the gauginos. The running of the o↵-diagonal elements on the other
is minimal and does not increase as significantly as the diagonal terms. Fig. 6 shows the running of
the hadronic � computed for the spectrum in Table[6]. Due to the smallness of the diagonal elements,
� are O(1) at the high scale. The RG runnning of the diagonal elements however, suppresses these
parameters to much smaller values.

– 15 –

Figure 6: Running of � for the hadronic sector.

4 Conclusions
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Figure 5: Correlation between µ ! e� and µ ! eee (left) and µ ! e� and ⌧ ! µ�

eventuality, computation to the flavour observables can be parametrised by � defined in the flavour
basis as:

�ij =
m̃2

ijq
m̃2

i m̃
2
j

i 6= j (3.9)

where the soft mass matrix m̃ is evaluated in the basis in which the down sector is diagonal. In this
limit, computation in the flavour basis exactly matches that in the mass basis. At the high scale,
however, owing to sequestering, the diagonal elements for the lighter generations are extremely small
and O(m2

ii) ' O(m2
ij;i 6=j). In such an eventuality the perturbation approximation breaks down and

� ⇠ O(1). This represents a potentially dangerous situation accompanied by a large amount of flavour
violation. However, it is to be noted that the diagonal elements receive large positive contributions due
to RGE e↵ects, primarily from the gauginos. The running of the o↵-diagonal elements on the other
is minimal and does not increase as significantly as the diagonal terms. Fig. 6 shows the running of
the hadronic � computed for the spectrum in Table[6]. Due to the smallness of the diagonal elements,
� are O(1) at the high scale. The RG runnning of the diagonal elements however, suppresses these
parameters to much smaller values.
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Reaction Present limit C.L. Experiment Year Reference

µ+ ! e+� < 4.2⇥ 10�13 90% MEG at PSI 2016 [48]
µ+ ! e+e�e+ < 1.0⇥ 10�12 90% SINDRUM 1988 [49]
µ�Ti ! e�Ti † < 6.1⇥ 10�13 90% SINDRUM II 1998 [50]
µ�Pb ! e�Pb † < 4.6⇥ 10�11 90% SINDRUM II 1996 [51]
µ�Au ! e�Au † < 7.0⇥ 10�13 90% SINDRUM II 2006 [53]
µ�Ti ! e+Ca⇤ † < 3.6⇥ 10�11 90% SINDRUM II 1998 [52]
µ+e� ! µ�e+ < 8.3⇥ 10�11 90% SINDRUM 1999 [54]
⌧ ! e� < 3.3⇥ 10�8 90% BaBar 2010 [55]
⌧ ! µ� < 4.4⇥ 10�8 90% BaBar 2010 [55]
⌧ ! eee < 2.7⇥ 10�8 90% Belle 2010 [56]
⌧ ! µµµ < 2.1⇥ 10�8 90% Belle 2010 [56]
⌧ ! ⇡0e < 8.0⇥ 10�8 90% Belle 2007 [57]
⌧ ! ⇡0µ < 1.1⇥ 10�7 90% BaBar 2007 [58]
⌧ ! ⇢0e < 1.8⇥ 10�8 90% Belle 2011 [59]
⌧ ! ⇢0µ < 1.2⇥ 10�8 90% Belle 2011 [59]

⇡0 ! µe < 3.6⇥ 10�10 90% KTeV 2008 [60]
K0

L ! µe < 4.7⇥ 10�12 90% BNL E871 1998 [61]
K0

L ! ⇡0µ+e� < 7.6⇥ 10�11 90% KTeV 2008 [60]
K+ ! ⇡+µ+e� < 1.3⇥ 10�11 90% BNL E865 2005 [62]
J/ ! µe < 1.5⇥ 10�7 90% BESIII 2013 [63]
J/ ! ⌧e < 8.3⇥ 10�6 90% BESII 2004 [64]
J/ ! ⌧µ < 2.0⇥ 10�6 90% BESII 2004 [64]
B0 ! µe < 2.8⇥ 10�9 90% LHCb 2013 [67]
B0 ! ⌧e < 2.8⇥ 10�5 90% BaBar 2008 [68]
B0 ! ⌧µ < 2.2⇥ 10�5 90% BaBar 2008 [68]
B ! Kµe ‡ < 3.8⇥ 10�8 90% BaBar 2006 [65]
B ! K⇤µe ‡ < 5.1⇥ 10�7 90% BaBar 2006 [65]
B+ ! K+⌧µ < 4.8⇥ 10�5 90% BaBar 2012 [66]
B+ ! K+⌧e < 3.0⇥ 10�5 90% BaBar 2012 [66]
B0

s ! µe < 1.1⇥ 10�8 90% LHCb 2013 [67]
⌥(1s) ! ⌧µ < 6.0⇥ 10�6 95% CLEO 2008 [69]

Z ! µe < 7.5⇥ 10�7 95% LHC ATLAS 2014 [70]
Z ! ⌧e < 9.8⇥ 10�6 95% LEP OPAL 1995 [71]
Z ! ⌧µ < 1.2⇥ 10�5 95% LEP DELPHI 1997 [72]
h ! eµ < 3.5⇥ 10�4 95% LHC CMS 2016 [73]
h ! ⌧µ < 2.5⇥ 10�3 95% LHC CMS 2017 [74]
h ! ⌧e < 6.1⇥ 10�3 95% LHC CMS 2017 [74]

Table II. – Limits for the branching ratio of charged lepton flavour violating processes of leptons,
mesons, and heavy bosons. More extensive lists of B-meson and ⌧ CLFV decays (including all
hadronic modes) can be found in [75, 76]. †Rate normalised to the muon capture rate by the
nucleus, see Eq. (99). ‡B-charge averaged modes.
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Flavour Physics offers an interesting mode to look for NP

RS models can be realised in many forms with different implications

Conventional RS Bulk  RS

Typically more constrained 
owing to precision/ fcnc data KK scales are naturally very high

Effective low energy theory has SM+SUSY

Imprints of RS may be visible in the flavour data.

End

Flavour symmetries required for 
the lepton sector


