PAUL SCHERRER INSTITUT

Dario Müller

Theory Group of the Laboratory for Particle Physics

Leptoquarks in Flavor Physics

Based on:

E. Leskov, G. D'Ambrosio, A. Crivellin, DM, 1612.06858 A. Crivellin, T. Ota, DM, 1703.09226 A. Crivellin, A. Signer, Y. Ulrich, DM, 1706.08511

Outline

- Introduction:
 - Review of flavor anomalies
 - Leptoquark (LQ) representations
- Explanation of
 - $-\delta a_{\mu}$ and correlations with $Z \rightarrow \mu^{+}\mu^{-}$
 - $-\,b \rightarrow s \ell^+ \ell^-$ and effects in $\ell \rightarrow \ell' \gamma$
 - $-b \rightarrow c \tau \nu$
- Simultaneous explanation
- Conclusions

Capdevilla et al., 1704.05340 Altmannshofer et al., 1503.06199 Page 3

Introduction: $R(D^{(*)})$

Tree-level NP $\approx 4\sigma$

Introduction: δa_{μ}

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (28 \pm 9) \times 10^{-10}$$

Jegerlehner et al., 0902.3360

Enhanced loop-level NP $\approx 3\sigma$

Motivation for Leptoquarks

$$b \rightarrow s \mu \mu$$

•
$$C_9 = -C_{10}$$
-contribution

Becirevic et al., 1503.09024 Grejlo et al, 1506.01705 Calibbi et al., 1506.02661 Alonso et al., 1505.05164 Fajfer et al., 1511.06024 Barbieri et al., 1512.01560

$$R(D^{(*)})$$

Tree-level contribution
q²-Distribution unchanged

• m_t -enhancement

Bauer et al., 1511.01900 Djouhadi et al., Z. Phys. C46 679 Chakraverty et al., Phys. Lett. B506 103 Cheung, Phys. Rev. D64 033001

Fajfer et al., 1206.1872 Deshpande et al., 1208.4134 Dumont et al., 1603.05248 Das et al., 1605.06313 Sahoo et al., 1609.04367 Barbieri et al., 1611.04930

•••

...

...

Leptoquark (LQ) representations

Buchmuller et al., Phys. Lett. B191, 442-448

Scalar LQs

Vector LQs

$$\begin{split} \Phi_{1} &: \left(3,1,-\frac{2}{3}\right) \quad \left(\lambda_{1}^{R}\overline{u^{c}}\ell + \lambda_{1}^{L}\overline{Q^{c}}i\tau_{2}L\right)\Phi_{1}^{\dagger} \qquad V_{1}^{\mu} :: \left(3,1,-\frac{4}{3}\right) \quad \left(\kappa_{1}^{R}\overline{d}\gamma_{\mu}\ell + \kappa_{1}^{L}\overline{Q}\gamma_{\mu}L\right)V_{1}^{\mu*} \\ \tilde{\Phi}_{1} &: \left(3,1,-\frac{8}{3}\right) \quad \tilde{\lambda}_{1}\overline{d^{c}}\ell\tilde{\Phi}_{1}^{\dagger} \qquad \tilde{V}_{1}^{\mu} :: \left(3,1,-\frac{10}{3}\right) \quad \tilde{\kappa}_{1}\overline{u}\gamma_{\mu}\ell\tilde{V}_{1}^{\mu*} \\ \Phi_{2} &: \left(\overline{3},2,-\frac{7}{3}\right) \quad \left(\lambda_{2}^{RL}\overline{u}L + \lambda_{2}^{LR}\overline{Q}i\tau_{2}\ell\right)\Phi_{2}^{\dagger} \qquad V_{2}^{\mu} :: \left(\overline{3},2,-\frac{5}{3}\right) \quad \left(\kappa_{2}^{RL}\overline{d^{c}}\gamma_{\mu}L + \kappa_{2}^{LR}\overline{Q^{c}}\gamma_{\mu}\ell\right)V_{2}^{\mu*} \\ \tilde{\Phi}_{2} &: \left(\overline{3},2,-\frac{1}{3}\right) \quad \tilde{\lambda}_{2}\overline{d}L\tilde{\Phi}_{2}^{\dagger} \qquad \tilde{V}_{2}^{\mu} :: \left(\overline{3},2,-\frac{1}{3}\right) \quad \tilde{\kappa}_{2}\overline{u^{c}}\gamma_{\mu}L\tilde{V}_{2}^{\mu*} \\ \Phi_{3} &: \left(3,3,-\frac{2}{3}\right) \quad \lambda_{3}\overline{Q^{c}}i\tau_{2}\left(\tau\cdot\Phi_{3}\right)^{\dagger}L \qquad V_{3}^{\mu} :: \left(3,3,-\frac{4}{3}\right) \quad \kappa_{3}\overline{Q}\gamma_{\mu}\left(\tau\cdot V_{3}^{\mu*}\right)^{\dagger}L \end{split}$$

 δa_{μ} and $Z \rightarrow \ell^+ \ell^-$

AMM with Scalar LQs

Modified $Z\mu\mu$ -Couplings

Scalar Leptoquarks in a_u

Scalar Leptoquarks in a_u

Effects in $\tau \rightarrow \mu \gamma$

$b \rightarrow s\ell^+\ell^-$
and
 $\mu \rightarrow e\gamma$

 $b \rightarrow s\ell\ell$ with LQs

	$C_9 C_{10}$		C'_9	C_{10}^{\prime}	$C_S^{fi} = C_P^{fi}$	$C_S^{\prime fi} = -C_P^{\prime fi}$	
V_1^{μ}	$-2\kappa_1^L\kappa_1^{L*}$	$2\kappa_1^L\kappa_1^{L*}$	$-2\kappa_1^R\kappa_1^{R*}$	$-2\kappa_1^R\kappa_1^{R*}$	$4\kappa_1^L\kappa_1^{R*}$	$4\kappa_1^L\kappa_1^{R*}$	
V_3^{μ}	$-2\kappa_3\kappa_3^*$	$2\kappa_3\kappa_3^*$	0	0	0	0	
V_2^{μ}	$2\kappa_2^{RL}\kappa_2^{RL*}$	$2\kappa_2^{RL}\kappa_2^{RL*}$	$2\kappa_2^{LR}\kappa_2^{LR*}$	$-2\kappa_2^{LR}\kappa_2^{LR*}$	$4\kappa_2^{LR}\kappa_2^{RL*}$	$4\kappa_2^{LR}\kappa_2^{RL*}$	
\tilde{V}_1^{μ}	0	0	0	0	0	0	
\tilde{V}_2^{μ}	0	0	0	0	0	0	

-1.0

-0.5

0.0

 $C_{9}^{\mu\mu} = -C_{10}^{\mu\mu}$

Dario Müller

1.0

0.5

 $\mu \to e\gamma \text{ and } B \to Ke\mu$

Simultaneous Explanation of $R(D), R(D^*), a_{\mu}$ and $b \rightarrow s \mu \mu$

and $b \rightarrow s\ell\ell$, $b \rightarrow s\nu\nu$

$b \to c \bar{\nu} \ell$	C_{VL}	C_{VR}	$b \to s \ell \ell$	C_9	C_{10}	C'_9	C_{10}^{\prime}
Φ_1	$-\lambda_1^L\lambda_1^{L*}V^{CKM}$	0	Φ_1	0	0	0	0
Φ_3	$\lambda_3 \lambda_3^* V^{CKM}$	0	Φ_3	$2\lambda_3\lambda_3^*$	$-2\lambda_3\lambda_3^*$	0	0

Impose a discrete symmetry:

The vector LQ V_1^{μ} has the same feature without this symmetry

Calibbi et al., 1709.00692 Di Luzio et al., 1708.08450 Barbieri et al., 1611.04930

Page 20

PAUL SCHERRER INSTITUT

$R(D^{(*)})$

- No effect in $b \rightarrow svv$
- Allow for sizable couplings to second quark generations
- Weak bounds from
 collider searches and
 EW precision data

Weighted sum of R(D) and $R(D^*)$:

Finetuning in our Model

 $R(D^{(*)})$ and $b \rightarrow s \tau \tau$

• Cancelation in b \rightarrow svv needed $C^{(1)} \sim C^{(3)}$

C. Bobeth et al., 1311.0903

$R(D^{(*)}), b \rightarrow s\mu\mu$ and a_{μ} with Leptoquarks Scalar leptoquark singlet + triplet with Y=-2/3 • Cancelation in $b \rightarrow svv$ imposed Br[B \rightarrow K $\tau\mu$]×10⁶ $Br[\tau \rightarrow \mu \gamma] \times 10^8$ 1.6 1.0 Οı 1.5 0.8 1.4 $R(D^{(*)})/R(D^{(*)})_{SM}$ **R**($D^{(\star)}$) 2 σ 06 1.3 🔳 a_μ 2σ 0.4 🔳 a_μ 1σ 1.2

2 out of 3 can be explained

Conclusions

- We can explain δa_{μ} by m_t -enhancement
 - $-Z\mu\mu$ -couplings as a future experimental check
- Three LQ representations give a good fit to

$$b \rightarrow s \mu \mu$$
 with $C_9 = -C_{10}$

- $R(D^{(*)})$ can be explained, giving a 10^3 -enhancement in $Br[B_s \rightarrow \tau^+ \tau^-]$
- One can explain any two of δa_{μ} , $b \rightarrow s \mu \mu$ and $R(D^{(*)})$ simultaneously