Muon g-2 experiment at Fermilab.

International workshop on flavor changing and conserving processes, Sept. 7-9, 2017.

> Tim Gorringe, University of Kentucky, on behalf of muon g-2 collaboration

Muon g-2 experiment at Fermilab.

Italy

China:

Frascati,

Roma 2,

Udine

Pisa

Naples

Trieste

Shanghai

Groningen

Dresden

US Universities

- **Boston**
- Cornell
- Illinois
- **James Madison**
- Kentucky
- Massachusetts
- Michigan
- **Michigan State**
- Mississippi
- **Northern Illinois University**
- Northwestern
- Regis
- Virginia
- Washington
- **York College**
- **National Labs**
 - Argonne
 - **Brookhaven**
 - Fermilab

Russia:

Germany:

- Dubna
 - Novosibirsk

~33 institution, ~150 members D.W. Hertzog, C. Polly,

co-spokesperson

Outline

interest in muon's anomalous magnetic moment, a

what we measure — muon anomalous precession freq. ω and proton Lamor precession freq. ω

construction and installation of g-2 experiment and muon campus at FNAL

 highlights of June 2017 commissioning run and future plans

Penning trap for 3.094 GeV/c, polarized muons

muon "fills" are injected and stored in uniform vertical magnetic field with electrostatic quadrupoles for vertical confinement.

we measure two frequencies – the muon anomalous precession freq. and proton Lamor precession freq.

Penning trap for 3.094 GeV/c, polarized muons.

Self-analyzing muons, $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu}$

- relativistic boost from μ to lab frame yields higher energy positrons when emitted along $\mu\text{-}direction$
- relativistic boost from μ to lab frame yields lower energy positrons when emitted opposite $\ \mu\text{-direction}$

Self-analyzing muons, $\mu^+ \rightarrow e^+ \nu_e \nu_\mu$

• number of high energy e⁺s wiggles with freq. ω_a

• energy deposited by all e⁺s wiggles with freq. ω_a

ω, proton NMR and measuring <u>B</u>

Extracting the anomaly a_{μ} from ω_{μ} , ω_{p}

From BNL expt. to FNAL expt.

- 0.54ppm → 0.14 ppm in a_u
- x21 statistics of decay e's
- x2 reduction (to 0.07 ppm) in ω_a, ω_p systematic errors

From big move to first data

Bottom yoke installed

Magnet shimming

- 8 GeV protons to recycler ring for rebunching
- extracted bunch and strike the πproduction target
- decay of π's to polarized µ's in decay line
- Injection into delivery ring for μ, π, p separation
- Muons extracted to g-2 storage ring

•inflector null's storage ring 1.5T field in beamline entrance using superconducting double cosine theta coil.

•kicker displaces the injected beam by ~0.8 mrad to place on storage ring's central orbit.

Scintillating-fiber beam profile monitor – June 2017 commissioning run

IBMS 2 X Profile (0 radially out)

Twenty four, segmented PbF₂ calorimeters – June 2017 commissioning run

Horizontal / vertical, in-vacuum scintillating fiber arrays – June 2017 commissioning run

radially outward

middle fiber

radially inward

note

 ω_{c}, ω_{cbo}

14000

×10

750

700

In-vacuum, straw tube arrays for positron detection – June 2017 commissioning run

First fill – May 23, 2017 commissioning run

Wiggle plot – June 2017 commissioning run

Number of high energy positrons as a function of time

Schedule

Extras.

Physical frequency	Variable	Expression	Frequency	Period
Anomalous precession	f_a	$\frac{e}{2\pi m}a_{\mu}B$	0.23 MHz	$4.37~\mu {\rm s}$
Cyclotron	f_c	$\frac{v}{2\pi R_0}$	6.71 MHz	149 ns
Horizontal betatron	f_x	$\sqrt{1-n}f_c$	6.23 MHz	160 ns
Vertical betatron	f_y	$\sqrt{n}f_c$	2.48 MHz	402 ns
Horizontal CBO	$f_{\rm CBO}$	$f_c - f_x$	0.48 MHz	$2.10~\mu {\rm s}$
Vertical waist	$f_{ m VW}$	$f_c - 2f_y$	1.74 MHz	$0.57~\mu { m s}$

.- .

Statistics

Item	Estimate
Protons per fill on target	10 ¹² p
Positive-charged secondaries with $dp/p = \pm 2\%$	$4.8 imes 10^7$
π^+ fraction of secondaries	0.48
π^+ flux entering FODO decay line	$> 2 imes 10^7$
Pion decay to muons in $220 \text{ m of } M2/M3$ line	0.72
Muon capture fraction with $dp/p < \pm 0.5\%$	0.0036
Muon survive decay 1800 m to storage ring	0.90
Muons flux at inflector entrance (per fill)	4.7×10^{4}
Transmission and storage using $(dp/p)_{\mu} = \pm 0.5\%$	0.10 ± 0.04
Stored muons per fill	$(4.7 \pm 1.9) \times 10^3$
Positrons accepted per fill (factors $0.15 \ge 0.63$)	444 ± 180
Number of fills for 1.8×10^{11} events	$(4.1 \pm 1.7) \times 10^8$ fills
Time to collect statistics	(13 ± 5) months
Beam-on commissioning	2 months
Dedicated systematic studies periods	2 months
Net running time required	17 ± 5 months

ω_a systematics.

Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
changes	0.12	Better laser calibration; low-energy threshold;	
		temperature stability; segmentation to lower rates;	
		no hadronic flash	0.02
muons	0.09	Running at higher n -value to reduce losses; less	
		scattering due to material at injection; muons	
		reconstructed by calorimeters; tracking simulation	0.02
р	0.08	Low-energy samples recorded; calorimeter segmentation;	
		Cherenkov; improved analysis techniques; straw trackers	
		cross-calibrate pileup efficiency	0.04
	0.07	Higher n-value; straw trackers determine parameters	0.03
eld/Pitch	0.06	Straw trackers reconstruct muon distribution; better	
		collimator alignment; tracking simulation; better kick	0.03
Decay	0.05^{1}	better kicker; tracking simulation; apply correction	0.02
l	0.20		0.07
	Error changes muons p eld/Pitch Decay	Error Size [ppm] changes 0.12 muons 0.09 p 0.08 p 0.08 eld/Pitch 0.06 Decay 0.05 ¹ l 0.20	ErrorSize [ppm]Plan for the E989 $g - 2$ Experimentchanges0.12Better laser calibration; low-energy threshold; temperature stability; segmentation to lower rates; no hadronic flashmuons0.09Running at higher <i>n</i> -value to reduce losses; less scattering due to material at injection; muons reconstructed by calorimeters; tracking simulationp0.08Low-energy samples recorded; calorimeter segmentation; Cherenkov; improved analysis techniques; straw trackers cross-calibrate pileup efficiencyeld/Pitch0.06Straw trackers reconstruct muon distribution; better collimator alignment; tracking simulation; better kickDecay 0.05^1 better kicker; tracking simulation; apply correction

ω_{p} systematics.

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Absolute field	0.05	Special 1.45 T calibration magnet with thermal	
calibrations		enclosure; additional probes; better electronics	0.035
Trolley probe	0.09	Absolute cal probes that can calibrate off-central	
calibrations		probes; better position accuracy by physical stops	
		and/or optical survey; more frequent calibrations	0.03
Trolley measure-	0.05	Reduced rail irregularities; reduced position uncer-	
ments of B_0		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	0.03
Fixed probe	0.07	More frequent trolley runs; more fixed probes;	
interpolation		better temperature stability of the magnet	0.03
Muon distribution	0.03	Additional probes at larger radii; improved field	
		uniformity; improved muon tracking	0.01
Time-dependent	_	Direct measurement of external fields;	
external B fields		simulations of impact; active feedback	0.005
Others	0.10	Improved trolley power supply; trolley probes	
		extended to larger radii; reduced temperature	
		effects on trolley; measure kicker field transients	0.05
Total	0.17		0.07

BNL E821

