Hadronic Leading Order Contribution to the Muon g-2

Daisuke Nomura (Nat'l Inst. Tech., Kagawa)

talk at FCCP 2017 @ Capri Island, Italy

September 7, 2017

Based on collaboration with Alex Keshavarzi and Thomas Teubner (KNT)

http://www-conf.kek.jp/muonHVPws/index.html Workshop on hadronic vacuum polarization contributions to muon g-2 February 12-14, 2018

KEK, Tsukuba, Japan

The muon g-2 is arguably one of the most important observables in contemporary particle physics. The longstanding anomaly at the level of 3 standard deviations between the experimental value and the Standard Model (SM) prediction of the muon q-2 may indicate the existence of new physics beyond the SM, which has

February 12-14, 2018 at KEK, Japan an activity of the q-2 Theory Initiative

D. Nomura (Nat'l Inst. Tech., Kagawa) Hadronic LO contribution to $(q-2)_{\mu}$ Links

Muon g-2: introduction

Lepton magnetic moment $\vec{\mu}$:

$$\vec{\mu} = -g \frac{e}{2m} \vec{s}$$
, $(\vec{s} = \frac{1}{2} \vec{\sigma}$ (spin), $g = 2 + 2F_2(0)$)

where

$$\overline{u}(p+q)\Gamma^{\mu}u(p) = \overline{u}(p+q)\left(\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_{2}(q^{2})\right)u(p)$$

Anomalous magnetic moment: $a \equiv (g-2)/2 \ (=F_2(0))$

Historically,

★ g = 2 (tree level, Dirac) ★ $a = \alpha/(2\pi)$ (1-loop QED, Schwinger)

Today, still important, since...

★ One of the most precisely measured quantities:

 $a_{\mu}^{\exp} = 11\ 659\ 208.9(6.3) \times 10^{-10}$ [0.5ppm] (Bennett *et al*)

★ Extremely useful in probing/constraining physics beyond the SM

a_{μ}^{SM} : update HLMNT11 \rightarrow KNT17 presented @ TGM2

	<u>2011</u>		2017	*to be discussed
QED	11658471.81 (0.02)	\longrightarrow	11658471.90 (0.01)	[Phys. Rev. Lett. 109 (2012) 111808]
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10)	[Phys. Rev. D 88 (2013) 053005]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60)	[EPJ Web Conf. 118 (2016) 01016]
NLO HLbL			0.30 (0.20)	[Phys. Lett. B 735 (2014) 90]*
	HLMNT11		<u>KNT17</u>	Davier et al (2017)
LO HVP	694.91 (4.27)	\longrightarrow	692.23 (2.54)	this work* 693.1 (3.4
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.83 (0.04)	this work*
NNLO HVP			1.24 (0.01)	[Phys. Lett. B 734 (2014) 144] *
Theory total	11659182.80 (4.94)	\longrightarrow	11659181.00 (3.62)	this work
Experiment			11659209.10 (6.33)	world avg
Exp - Theory	26.1 (8.0)	\longrightarrow	28.1 (7.3)	this work
Δa_{μ}	3.3σ	\rightarrow	3 .9 <i>σ</i>	this work
	Slide by T. Teul	oner (Li	verpool), at PhiPsi17,	June 26-29, 2017
mura (Nat'l Inst. Tech.	, Kagawa) Hadronic LO contril	oution to ($(q-2)_{\mu}$ Sep	otember 7, 2017 4 / 32

Introduction for $a_{\mu}^{had,LO}$

The diagram to be evaluated:

pQCD not useful. Use the dispersion relation and the optical theorem.

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$

Question:

		Alex Keshavarzi	(UoL)		KNT17: a_{μ}^{had}	^{VP} update		3 rd June 2	017	2 / 23	
Slide	e by A.	Keshavarzi	(Liverpool),	at '1st	Workshop	of Muon g –	- 2 Theory	Initiative'	June	3-6, 2	01
D.	Nomura	(Nat'l Inst. Tec	h., Kagawa)	Hadronio	c LO contributi	on to $(g-2)_{\mu}$		September 7	, 2017	6 /	32

Question:

To ensure reliable results with increasing levels of precision, what are *now* the main points of concern when correcting, combining and integrating data to evaluate a_{μ}^{had} , VP?

 \Rightarrow Radiative corrections of data and the corresponding error estimate

		Alex Keshavarz	zi (UoL)		KNT17: a_{μ}^{had}	VP update		3^{rd} June 2	017	2 / 23	
Slide	e by A.	Keshavarzi	(Liverpool),	at '1st	Workshop	of Muon g -	- 2 Theory	/ Initiative'	June	3-6, 2	2017
D.	Nomura	(Nat'l Inst. Te	ech., Kagawa)	Hadronio	c LO contributi	on to $(g-2)_{ m c}$	L	September 7	, 2017	7 /	32

Question:

- \Rightarrow Radiative corrections of data and the corresponding error estimate
- \Rightarrow When combining data...
 - \rightarrow ...how to best amalgamate large amounts of data from different experiments

		Alex Keshavarzi	(U₀L)		KNT17: a_{μ}^{had} ,	^{VP} update			3 rd June 20)17	2 / 23	1
Slide	e by A.	Keshavarzi	(Liverpool),	at '1st	Workshop	of Muon	g-2	Theory	Initiative'	June	3-6,	2017
D.	Nomura	(Nat'l Inst. Teo	ch., Kagawa)	Hadronic	: LO contribut	on to $(g - $	$2)_{\mu}$		September 7	2017	8	/ 32

Question:

- \Rightarrow Radiative corrections of data and the corresponding error estimate
- \Rightarrow When combining data...
 - \rightarrow ...how to best amalgamate large amounts of data from different experiments
 - \rightarrow ...the correct implementation of correlated uncertainties (statistical and systematic)

		Alex Keshav	arzi (UoL)		KNT17: a_{μ}^{had}	^{VP} update			3 rd June 20	017	2 / 2	3	
Slide	e by A.	Keshavar	zi (Liverpoo	l), at '1st	Workshop	of Muon	g-2	Theory	Initiative'	June	3-6,	201	7
D.	Nomura	(Nat'l Inst.	Tech., Kagawa)	Hadroni	c LO contribut	ion to $(g -$	$2)_{\mu}$		September 7	, 2017	9	/ 32	

Question:

- \Rightarrow Radiative corrections of data and the corresponding error estimate
- \Rightarrow When combining data...
 - \rightarrow ...how to best amalgamate large amounts of data from different experiments
 - \rightarrow ...the correct implementation of correlated uncertainties (statistical and systematic)
 - \rightarrow ...finding a solution that is free from bias

		Alex Keshav	arzi (l	JoL)			KNT17: a_{μ}^{had}	, VP ,	update				3^{rd} .	June 2	017	2 / 2	23	
Slide	e by A.	Keshavar	rzi (L	.iverpool)	, at '	1st	Workshop	of	Muon	g -	2 T	Theory	Initiat	tive'	June	3-6,	20	17
D.	Nomura	(Nat'l Inst.	Tech.,	Kagawa)	Had	Ironic	LO contribut	tion t	to (g —	2)			Septeml	ber 7,	2017	10	/ 3	32

Question:

- \Rightarrow Radiative corrections of data and the corresponding error estimate
- \Rightarrow When combining data...
 - \rightarrow ...how to best amalgamate large amounts of data from different experiments
 - \rightarrow ...the correct implementation of correlated uncertainties (statistical and systematic)
 - \rightarrow ...finding a solution that is free from bias
- \Rightarrow The reliability of the integral and error estimate

		Alex Keshavarzi (UoL)		KNT17: $a_{\mu}^{had, VP}$ i	update		3 rd June 2	2017	2 / 2	3
Slide	e by A.	Keshavarzi (Liverpoo	l), at '1st	Workshop of	Muon $g-2$	2 Theory	Initiative'	June	3-6,	2017
D.	Nomura	(Nat'l Inst. Tech., Kagawa)	Hadroni	c LO contribution	to $(g-2)_{\mu}$		September 7,	2017	11	/ 32

Question:

- \Rightarrow Radiative corrections of data and the corresponding error estimate
- \Rightarrow When combining data...
 - \rightarrow ...how to best amalgamate large amounts of data from different experiments
 - \rightarrow ...the correct implementation of correlated uncertainties (statistical and systematic)
 - \rightarrow ...finding a solution that is free from bias
- \Rightarrow The reliability of the integral and error estimate
- \Rightarrow The choices when estimating unmeasured hadronic final states

		Alex Keshavarzi	(UoL)		KNT17: $a_{\mu}^{had,}$	^{VP} update			3 rd June 2	017	2 / 23	3
Slide	by A.	Keshavarzi	(Liverpool),	at '1st	Workshop	of Muon	g-2	Theory	Initiative'	June	3-6,	2017
D.	Nomura	(Nat'l Inst. Tec	:h., Kagawa)	Hadronio	: LO contribut	ion to (<i>g</i> –	$(-2)_{\mu}$		September 7,	2017	12	/ 32

The previous analysis... [HLMNT(11), J. Phys. G38 (2011), 085003]

 $\Rightarrow \text{Back in 2011...}$ $\Rightarrow \text{Cross section measurements from radiative return}$ $\Rightarrow \text{Correlated experimental uncertainties* !!}$ $\Rightarrow \text{Large radiative correction uncertainties*}$ $\Rightarrow \text{Constant cross section clusters*}$ $\Rightarrow \text{Non-linear } \chi^2 \text{ minimisation fitting nuisance parameters*}$ $\Rightarrow \text{Trapezoidal rule integration}$ $\Rightarrow \text{Reliance on isospin estimates* !!}$ $a_{\mu}^{\text{had,LOVP}} = 694.9 \pm 3.7_{\text{exp}} \pm 2.1_{\text{rad}} = 694.9 \pm 4.3_{\text{tot}}$ $a_{\mu}^{\text{had,NLOVP}} = -9.8 \pm 0.1$

* Areas for improvement!!

 \Rightarrow Changes in any of these areas can have drastic effect on mean value and error

!! e.g. - KNT 16/03/17 result -
$$693.9 \pm 2.6_{\mathrm{tot}}$$
 !!

		Alex Keshavarzi (UoL)	KNT17: $a_{\mu}^{had, VP}$ update	3^{rd} June 2017	3 / 23
Slide	e by A.	Keshavarzi (Liverpool),	at '1st Workshop of Muon $g-2$	2 Theory Initiative' June	e 3-6, 201
D.	Nomura	(Nat'l Inst. Tech., Kagawa)	Hadronic LO contribution to $(q-2)_{\mu}$	September 7, 2017	13 / 32

Vacuum polarisation corrections (!!)

- \Rightarrow Fully updated, self-consistent VP routine: [vp_knt_v3_0]
 - \rightarrow Cross sections undressed with full photon propagator (must include imaginary part), $\sigma^0_{\rm had}(s) = \sigma_{\rm had}(s) |1 \Pi(s)|^2$

\Rightarrow Applied to all dressed experimental data in all channels

ightarrow Accurate to $\mathcal{O}(1\%)$ precision

 \Rightarrow If correcting data, apply corresponding radiative correction uncertainty

 \rightarrow Take $\frac{1}{3}$ of total correction per channel as conservative extra uncertainty \Rightarrow Influence/need for VP corrections has changed over time

 \rightarrow Less prominent in some dominant channels

 \Rightarrow Undressing of narrow resonances must be done excluding the contribution from the resonance

 \rightarrow ...or would double count contribution

		Alex Keshavarzi	(UoL)		KNT17: $a_{\mu}^{had, V}$	^P update		3^{rd} June 2	2017	4 / 2	3	
Slide	e by A.	Keshavarzi	(Liverpool),	at '1st	Workshop o	of Muon g –	2 Theor	y Initiative'	June	3-6,	20	17
D.	Nomura	(Nat'l Inst. Teo	:h., Kagawa)	Hadroni	c LO contributio	n to $(g-2)_{\mu}$		September 7	2017	14	/ 3	2

Final state radiation corrections

- \Rightarrow For $\pi^+\pi^-,$ FSR more frequently included
 - \rightarrow If not, must include through sQED approximation [Eur. Phys. J. C 24 (2002) 51,

Eur. Phys. J. C 28 (2003) 261]

 \Rightarrow For K^+K^- , is there available phase space for the creation of hard photons?

- \Rightarrow Choose to no longer apply FSR correction for K^+K^-
- \Rightarrow For higher multiplicity states, difficult to estimate correction
 - : Apply conservative uncertainty

Need new, more developed tools to increase precision here

(e.g. - CARLOMAT 3.1 [Eur.Phys.J. C77 (2017) no.4, 254]?)

		Alex Keshavarzi (UoL)	KNT17: $a_{\mu}^{had, VP}$ update		3^{rd} June 2	017	5 / 23	
Slide	by A.	Keshavarzi (Liverpool),	at '1st Workshop of Muon $g-1$	2 Theory	Initiative'	June	3-6, 2	017
D.	Nomura	(Nat'l Inst. Tech., Kagawa)	Hadronic LO contribution to $(g-2)_{\mu}$		September 7,	2017	15 /	32

Clustering

Clustering data

 \Rightarrow Re-bin data into *clusters*

Better representation of data combination through adaptive clustering algorithm

 \rightarrow More and more data \Rightarrow risk of over clustering

 \Rightarrow loss of information on resonance

 $\label{eq:scan} \rightarrow \mbox{Scan cluster sizes for optimum solution (error, χ^2, check by sight...)}$ $<math display="block"> \Rightarrow \mbox{Scanning/sampling by varying bin widths}$

 \rightarrow Clustering algorithm now adaptive to points at cluster boundaries

Correlation and covariance matrices

- \Rightarrow Correlated data beginning to dominate full data compilation...
 - \rightarrow Non-trivial, energy dependent influence on both mean value and error estimate

KNT17 prescription

- Construct full covariance matrices for each channel & entire compilation
 ⇒ Framework available for inclusion of any and all inter-experimental correlations
- If experiment does not provide matrices...
 - \rightarrow Statistics occupy diagonal elements only
 - \rightarrow Systematics are 100% correlated
- If experiment does provide matrices...
 - \rightarrow Matrices **must** satisfy properties of a covariance matrix
- e.g. KLOE $\pi^+\pi^-(\gamma)$ combination covariance matrices update
- ⇒ Originally, NOT a positive semi-definite matrix:

(This is not an example of bias)

		Alex Keshava	rzi (UoL)		KNT17: $a_{\mu}^{had,}$				3 rd June 2	2017	7 / 2	3	
Slide	e by A.	Keshavarz	i (Liverpool),	at '1st	: Workshop	of Muon	g-2	Theory	Initiative'	June	3-6,	20	17
D.	Nomura	(Nat'l Inst. T	ech., Kagawa)	Hadroni	ic LO contribut	tion to $(g$ —	$(-2)_{\mu}$		September 7,	2017	17	/ 3	2

KLOE as an example: Constructing the KLOE $\pi^+\pi^-(\gamma)$ combination covariance matrices (!!) [preliminary]

- \Rightarrow Three measurements of $\sigma^0_{\pi\pi(\gamma)}$ by KLOE
 - \rightarrow KLOE08, KLOE10 and KLOE12
- ⇒ They are, in part, highly correlated → must be incorporated → e.g. - KLOE08 and KLOE12 share the same $\pi\pi(\gamma)$ data, with KLOE12 normalised by the measured $\mu\mu(\gamma)$ cross section
- \Rightarrow Must ensure construction satisfies required properties of covariance matrices

e.g. - KLOE0810

- \rightarrow Correlated statistic and systematics
- \rightarrow Correlations must cover entire data range
- \rightarrow KLOE08 is more precise than KLOE10
 - $\Rightarrow {\rm Expected \ influence \ on \ non-} \\ {\rm overlapping \ data \ region}$

1		 	
	KLOE08	 KLOE0810	 KLOE0812
	60×60	 60×75	 60×60
	KLOE1008	 KLOE10	 KLOE1012
	75×60	 75×75	 75×60
	•••• •••	 	
	•••• •••	 	
	•••• •••	 	
	KLOE1208	 KLOE1210	 KLOE12
	60×60	 60×75	 60×60
(•••• •••	 	

		Alex Keshavarzi	(UoL)		KNT17: a_{μ}^{had}				3 rd June 2	017	8 / 2	3	
Slide	e by A.	Keshavarzi	(Liverpool),	at '1st	Workshop	of Muon	g-2	heory	Initiative'	June	3-6,	20	17
D.	Nomura	(Nat'l Inst. Tec	h., Kagawa)	Hadronio	c LO contributi	on to (<i>g</i> –	- 2)		September 7,	2017	18	/ 3	2

Linear χ^2 minimisation

- \Rightarrow Redefine clusters to have linear cross section
 - \rightarrow Consistency with trapezoidal rule integration
 - \rightarrow Fix covariance matrix with linear interpolants at each iteration (extrapolate at boundary)

$$\chi^{2} = \sum_{i=1}^{N_{\text{tot}}} \sum_{j=1}^{N_{\text{tot}}} \left(R_{i}^{(m)} - \mathcal{R}_{m}^{i} \right) \mathbf{C}^{-1} \left(i^{(m)}, j^{(n)} \right) \left(R_{j}^{(n)} - \mathcal{R}_{n}^{j} \right)$$

- ⇒ Through correlations and linearisation, result is the minimised solution of all neighbouring clusters
 - \rightarrow ...and solution is the product of the influence of all correlated uncertainties

Integration

- \Rightarrow Trapezoidal rule integral
 - \rightarrow Consistency with linear cluster definition
 - \rightarrow High data population \therefore Accurate estimate from linear integral

- \rightarrow Higher order polynomial integrals give (at maximum) differences of $\sim 10\%$ of error
- \Rightarrow Estimates of error non-trivial at integral borders
 - \longrightarrow Extrapolate/interpolate covariance matrices

		Alex Keshavarzi	(UoL)		KNT17: $a_{\mu}^{had, \lambda}$	^{/P} update		3 rd June 20	017	12 / 23	3	
Slide	e by A.	Keshavarzi	(Liverpool),	at '1st	Workshop	of Muon $oldsymbol{g}$ –	2 Theor	y Initiative'	June	3-6,	201	7
D.	Nomura	(Nat'l Inst. Tec	:h., Kagawa)	Hadroni	c LO contributio	on to $(g-2)_{\mu}$		September 7	2017	20	/ 32	

KLOE as an example: the resulting KLOE $\pi^+\pi^-(\gamma)$ combination (!!) [preliminary]

 \Rightarrow Combination of KLOE08, KLOE10 and KLOE12 gives 85 distinct bins between $0.1 \leq s \leq 0.95~{\rm GeV^2}$

 \rightarrow Covariance matrix now correctly constructed

 \Rightarrow a positive semi-definite matrix

 \rightarrow Non-trivial influence of correlated uncertainties on resulting mean value

$$a_{\mu}^{\pi^{+}\pi^{-}}(0.1 \leq s' \leq 0.95 \,\, \mathrm{GeV}^{2}) = (489.9 \pm 2.0_{\mathrm{stat}} \pm 4.3_{\mathrm{sys}}) \times 10^{-10}$$

		Alex Keshavarzi (UoL)		KNT17: $a_{\mu}^{had, V}$			3 rd June 20)17	13 / 23	1
Slide	e by A.	Keshavarzi (Liver	pool), at '1	st Workshop o	of Muon $oldsymbol{g}$ –	- 2 Theor	y Initiative'	June	3-6,	2017
D.	Nomura	(Nat'l Inst. Tech., Kag	awa) Hadro	nic LO contributio	n to $(g-2)_{\mu}$		September 7,	2017	21	/ 32

Results from individual channels

$\pi^+\pi^-$ channel (!!)

\Rightarrow Large improvement for 2π estimate

→ BESIII [Phys.Lett. B753 (2016) 629-638] and KLOE combination provide downward influence to mean value

- ⇒ Correlated & experimentally corrected $\sigma^0_{\pi\pi(\gamma)}$ data now entirely dominant
 - $a_{\mu}^{\pi^{+}\pi^{-}}(0.305 < \sqrt{s} < 2.00 \text{ GeV})$:
 - HLMNT11: 505.77 + 3.09

KNT17: 502.85 ± 1.93 (!!) (no radiative correction uncertainties)

2rd June 2017

14 / 23

			$-\mu$		-		/	
Slide	e by A.	Keshavarzi (Liverpool),	at '1st Workshop	of Muon g –	2 Theory Init	tiative' June	3-6, 20)17
D.	Nomura	(Nat'l Inst. Tech., Kagawa)	Hadronic LO contribut	tion to $(g-2)_{\mu}$	Sept	ember 7, 2017	22 / 3	32

Other notable exclusive channels

$KK\pi$, $KK\pi\pi$ and isospin (!!)

 \Rightarrow **But**, still reliant on isospin estimates for $\pi^+\pi^-3\pi^0$, $\pi^+\pi^-4\pi^0$, $KK3\pi...$

		Alex Keshavarzi	(UoL)		KNT17: $a_{\mu}^{had,}$	^{VP} update			3 rd June 20	17	16 / 23	5
Slide	by A.	Keshavarzi	(Liverpool),	, at '1st	Workshop	of Muon	g-2	Theory	Initiative'	June	3-6, 2	2017
D.	Nomura	(Nat'l Inst. Tec	h., Kagawa)	Hadroni	c LO contributi	on to (g —	$(2)_{\mu}$		September 7,	2017	24	/ 32

Inclusive

 $\Rightarrow \text{New KEDR inclusive } R \text{ data ranging } 1.84 \leq \sqrt{s} \leq 3.05 \text{ GeV} \text{ [Phys.Lett. B770 (2017) 174-181]} \text{ and } 3.12 \leq \sqrt{s} \leq 3.72 \text{ GeV} \text{ [Phys.Lett. B753 (2016) 533-541]}$

 \implies Choose to adopt entirely data driven estimate from threshold to 11.2 GeV

		Alex Keshavarzi	(UoL)		KNT17: a_{μ}^{had} ,	VP update			3 rd June 20	17	17 / 2	3
Slide	e by A.	Keshavarzi	(Liverpool)	, at '1s	t Workshop	of Muon	g-2	Theory	Initiative'	June	3-6,	2017
D.	Nomura	(Nat'l Inst. Tec	:h., Kagawa)	Hadron	ic LO contribut	ion to $(g$ –	$-2)_{\mu}$		September 7,	2017	25	/ 32

R(s) for $m_{\pi} \leq \sqrt{s} < \infty$

 \Rightarrow Full compilation data set for hadronic *R*-ratio to be made available soon...

\implies ...complete with full covariance matrix

		Alex Keshavarzi	(UoL)		KNT17: $a_{\mu}^{had,}$	^{VP} update			3^{rd} June 20	17	18 / 2	3
Slide	e by A.	Keshavarzi	(Liverpool),	at '1st	Workshop	of Muon	g-2	Theory	Initiative'	June	3-6,	201
D.	Nomura	(Nat'l Inst. Tec	h., Kagawa)	Hadroni	c LO contribut	ion to $(g-$	$(2)_{\mu}$		September 7,	2017	26	/ 32

Contributions to mean value below 2GeV

		Alex Keshavarzi (UoL)	KNT17: $a_{\mu}^{had, VP}$ update	3 rd June 20	17	19 / 23	
Slide	by A.	Keshavarzi (Liverpool),	at '1st Workshop of Muon $g-1$	2 Theory Initiative'	June	3-6, 2	017
D.	Nomura	(Nat'l Inst. Tech., Kagawa)	Hadronic LO contribution to $(g-2)_{\mu}$	September 7,	2017	27 /	32

Contributions to uncertainty below 2GeV

		Alex Keshavarzi (UoL)	KNT17: $a_{\mu}^{had, VP}$ update	3 rd June 2017	20 / 23
Slide	e by A.	Keshavarzi (Liverpool),	at '1st Workshop of Muon $g-1$	${f 2}$ Theory Initiative' June	3-6, 2017
D.	Nomura	(Nat'l Inst. Tech., Kagawa)	Hadronic LO contribution to $(g-2)_{\mu}$	September 7, 2017	28 / 32

	Resu	lts KNT	「17 update	
KNT17 a_{μ}^{SN}	^M update			
	<u>2011</u>		2017	*to be discussed
QED	11658471.81 (0.02)	\longrightarrow	11658471.90 (0.01) [Phys. R	ev. Lett. 109 (2012) 111808]
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10) [Phys. R	ev. D 88 (2013) 053005]
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ W	eb Conf. 118 (2016) 01016]
NLO HLbL			0.30 (0.20) [Phys. L	ett. B 735 (2014) 90]*
	HLMNT11		<u>KNT17</u>	
LO HVP	694.91 (4.27)	\longrightarrow	692.23 (2.54) this	work*
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.83 (0.04) this	work*

1.24 (0.01) [Phys. Lett. B 734 (2014) 144] * $11659182.80 (4.94) \longrightarrow 11659181.00 (3.62) \text{ this work}$

 Theory total
 11659182.80 (4.94)
 →
 11659181.00 (3.62) this work

 Experiment
 11659209.10 (6.33) world avg

NNLO HVP

Exp - Theory26.1 (8.0) \rightarrow 28.1 (7.3) this work Δa_{μ} 3.3σ \rightarrow 3.9σ this work

		Alex Keshavarzi	(UoL)		KNT17: $a_{\mu}^{had, V}$	^{/P} update			3^{rd} June 20	17	22 / 2	3	
Slide	by A.	Keshavarzi ((Liverpool),	at '1st	Workshop	of Muon	g-2	Theory	Initiative'	June	3-6,	20	17
D.	Nomura	(Nat'l Inst. Tech	n., Kagawa)	Hadroni	c LO contributi	on to $(g-$	$2)_{\mu}$		September 7,	2017	30	/ 32	2

Conclusions

Question:

To ensure reliable results with increasing levels of precision, what is the KNT17 approach when correcting, combining and integrating data to evaluate $a_{\mu}^{had, VP}$?

 \checkmark Necessary VP and FSR corrections carefully applied with conservative uncertainties

- \Rightarrow When combining data...
 - \checkmark ...adaptive clustering algorithm rebins data into appropriate clusters
 - \checkmark ...all covariance matrices are correctly constructed with a framework that can accommodate any available correlations
 - \checkmark ...employ a linear χ^2 minimisation that has been shown to be free from bias
- \checkmark Reliable trapezoidal rule integral with mean value and error on solid ground
- \checkmark Less reliance on isospin for estimated states with more measured final states
- \checkmark Continuously adapt and improve...

		Alex Keshav	arzi	(UoL)			KNT17: a_{μ}^{had}	VP	update				3^{rd} Ji	une 20	17	23 /	23	
Slide	e by A.	Keshava	rzi (Liverpool), at	'1st	Workshop	of	Muon	g -	2	Theory	Initia	tive'	June	3-6	, 20)17
D.	Nomura	(Nat'l Inst.	Tech	i., Kagawa)	Ha	dronic	LO contribut	ion	to (g -	$(2)_{\mu}$			Septem	ber 7,	2017		1 / :	32

http://www-conf.kek.jp/muonHVPws/index.html Workshop on hadronic vacuum polarization contributions to muon g-2 February 12-14, 2018

KEK, Tsukuba, Japan

The muon g-2 is arguably one of the most important observables in contemporary particle physics. The longstanding anomaly at the level of 3 standard deviations between the experimental value and the Standard Model (SM) prediction of the muon q-2 may indicate the existence of new physics beyond the SM, which has

February 12-14, 2018 at KEK, Japan an activity of the q-2 Theory Initiative

D. Nomura (Nat'l Inst. Tech., Kagawa) Hadronic LO contribution to $(q-2)_{\mu}$ Links