HLbL contribution to $(g-2)_{\mu}$ on the lattice

Christoph Lehner (BNL)

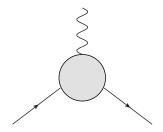
September 7, 2017 - FCCP2017

Collaborators (RBC/UKQCD)

Tom Blum (Connecticut) Norman Christ (Columbia) Masashi Hayakawa (Nagoya) Taku Izubuchi (BNL/RBRC) Luchang Jin (BNL \rightarrow Connecticut) Christoph Lehner (BNL) Chulwoo Jung (BNL)

The anomalous magnetic moment

The anomalous magnetic moment *a* can be expressed in terms of scattering of particle off a classical photon background



For external photon index μ with momentum q the scattering amplitude can be generally written as

$$(-ie)\left[\gamma_{\mu}F_1(q^2)+rac{i\sigma^{\mu
u}q^{
u}}{2m}F_2(q^2)
ight]$$

with $F_2(0) = a$.

Theory status – summary

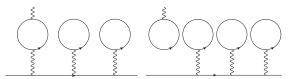
Contribution	Value $ imes 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		pprox 1.6

A reduction of uncertainty for HVP and HLbL is needed. A systematically improvable first-principles calculation is desired.

The Hadronic Light-by-Light contribution

Quark-connected piece (charge factor of up/down quark contribution: $\frac{17}{81}$)

Dominant quark-disconnected piece (charge factor of up/down quark contribution: $\frac{25}{81}$)



Sub-dominant quark-disconnected pieces (charge factors of up/down quark contribution: $\frac{5}{81}$ and $\frac{1}{81}$)

Recent progress on the lattice – Overview

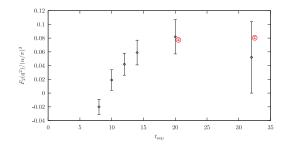
- a_{μ}^{HLbL} in finite-volume QCD and QED:
 - ► PRD93(2016)014503 (RBC/UKQCD): Connected diagram with $m_{\pi} = 171$ MeV; $a_{\mu}^{\text{HLbL}} = 13.21(68) \times 10^{-10}$
 - ▶ PRL118(2017)022005 (RBC/UKQCD): Connected and leading disconnected diagram with $m_{\pi} = 139$ MeV; $a_{\mu}^{\text{HLbL}} = 5.35(1.35) \times 10^{-10}$ (potentially large finite-volume systematics)

• a_{μ}^{HLbL} in finite-volume QCD and infinite-volume QED:

- Method proposed and successfully tested against the lepton-loop analytic result: arXiv:1510.08384 (Mainz), arXiv:1609.08454 (Mainz)
- Similar method plus subtraction scheme to reduce systematic errors; successfully tested against lepton-loop analytic result: PRD96(2017)034515 (RBC/UKQCD)
- The pion pole contribution to a_{μ}^{HLbL} :
 - ▶ PRD94(2016)074507 (Mainz): $a_{\mu;\text{LMD+V}}^{\text{HLbL};\pi^0} = 6.50(83) \times 10^{-10}$

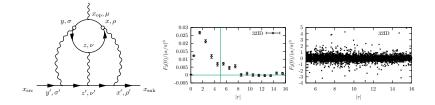
T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., Phys. Rev. D 93, 014503 (2016)

Compute quark-connected contribution with new computational strategy



yields more than an order-of-magnitude improvement (red symbols) over previous method (black symbols) for a factor of \approx 4 smaller cost.

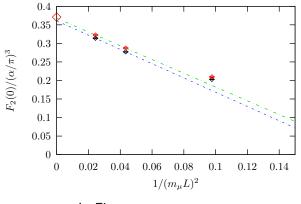
New stochastic sampling method



Stochastically evaluate the sum over vertices x and y:

- Pick random point x on lattice
- Sample all points y up to a specific distance r = |x − y|, see vertical red line
- ► Pick y following a distribution P(|x y|) that is peaked at short distances

Cross-check against analytic result where quark loop is replaced by muon loop



In Figure: $m_{\text{loop}} = m_{\text{line}}$

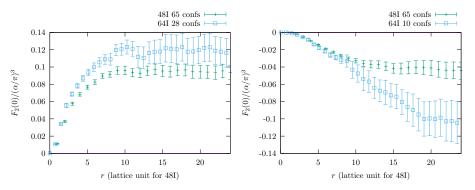
T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., PRL118(2017)022005

$$\begin{aligned} a_{\mu}^{\text{cHLbL}} &= \left. \frac{g_{\mu} - 2}{2} \right|_{\text{cHLbL}} = (0.0926 \pm 0.0077) \left(\frac{\alpha}{\pi} \right)^3 \\ &= (11.60 \pm 0.96) \times 10^{-10} \ (11) \\ a_{\mu}^{\text{dHLbL}} &= \left. \frac{g_{\mu} - 2}{2} \right|_{\text{dHLbL}} = (-0.0498 \pm 0.0064) \left(\frac{\alpha}{\pi} \right)^3 \\ &= (-6.25 \pm 0.80) \times 10^{-10} \ (12) \\ a_{\mu}^{\text{HLbL}} &= \left. \frac{g_{\mu} - 2}{2} \right|_{\text{HLbL}} = (0.0427 \pm 0.0108) \left(\frac{\alpha}{\pi} \right)^3 \\ &= (5.35 \pm 1.35) \times 10^{-10} \ (13) \end{aligned}$$

Makes HLbL an unlikely candidate to explain the discrepancy!

Next need to address finite-volume and lattice-spacing systematics and sub-leading diagrams

Update on lattice-spacing systematics:



- Left: connected diagrams contribution. Right: leading disconnected diagrams contribution.
- $48^3 \times 96$ lattice, with $a^{-1} = 1.73$ GeV, $m_{\pi} = 139$ MeV, $m_{\mu} = 106$ MeV.
- $64^3 \times 128$ lattice, with $a^{-1} = 2.36$ GeV, $m_{\pi} = 135$ MeV, $m_{\mu} = 106$ MeV.

Waiting for more statistics on the fine lattice ensemble

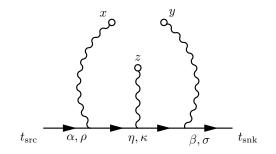
Finite-volume errors of the HLbL



Remove power-law like finite-volume errors by computing the muonphoton part of the diagram in infinite volume (C.L. talk at lattice 2015 and Green et al. 2015, PRL115(2015)222003; Asmussen et al. 2016, PoS,LATTICE2016 164)

Now completed PRD96(2017)034515 with improved weighting function.

Details:



We define

 $i^3 \mathcal{G}_{\rho,\sigma,\kappa}(x,y,z) \ = \ \mathfrak{G}_{\rho,\sigma,\kappa}(x,y,z) + \mathfrak{G}_{\sigma,\kappa,\rho}(y,z,x) + \text{other 4 permutations} \, .$

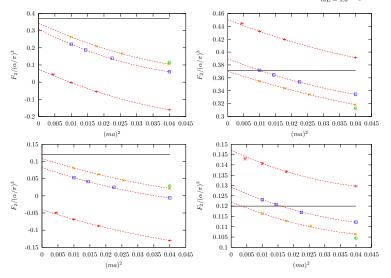
and add the Hermitian conjugate with permuted indices (does not alter F_2 but makes this kernel infrared finite)

$$\mathfrak{G}^{(1)}_{\rho,\sigma,\kappa}(x,y,z) \quad = \quad \frac{1}{2}\mathfrak{G}_{\rho,\sigma,\kappa}(x,y,z) + \frac{1}{2}[\mathfrak{G}_{\kappa,\sigma,\rho}(z,y,x)]^{\dagger}$$

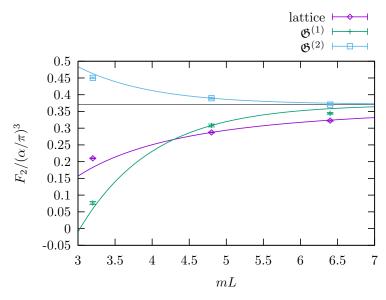
Due to current conservation, we can also devise a subtraction scheme that we found suppresses significantly finite-volume and discretization errors

$$\mathfrak{G}^{(2)}_{\rho,\sigma,\kappa}(x,y,z) \quad = \quad \mathfrak{G}^{(1)}_{\rho,\sigma,\kappa}(x,y,z) - \mathfrak{G}^{(1)}_{\rho,\sigma,\kappa}(y,y,z) - \mathfrak{G}^{(1)}_{\rho,\sigma,\kappa}(x,y,y) + \mathfrak{G}^{(1)}_{\rho,\sigma,\kappa}(y,y,y)$$

mL = 3.2 ······ mL = 4.8 ······ mL = 6.4 ······ mL = 9.6 ·····



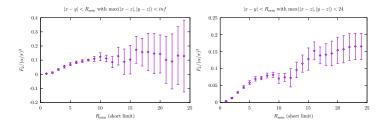
 $m_{\text{loop}} = m_{\text{line}}$ (top), $m_{\text{loop}} = 2m_{\text{lime}}$ (bottom) Without subtraction (left), with subtraction (right)



"Lattice" here refers to the previous finite-volume QED method

Preliminary combination of this infinite-volume kernel with lattice QCD data:

- QCD case with physical point quark mass,
- $48^3 \times 96$ lattice, with $a^{-1} = 1.73 \text{ GeV}$, $m_{\pi} = 139 \text{ MeV}$, $m_{\mu} = 106 \text{ MeV}$.



• c.f. QED_L case, $\frac{g_{\mu}-2}{2}\Big|_{\text{cHLbL}} = (0.0926 \pm 0.0077) \left(\frac{\alpha}{\pi}\right)^3$

Potentially large QCD FV effects (see also Andreas' talk): we are now starting measurements on a $(10 fm)^3$ QCD box.

What is left to be done:

Improve statistics of fine 64³ lattice run

Improve statistics with infinite-volume QED kernel

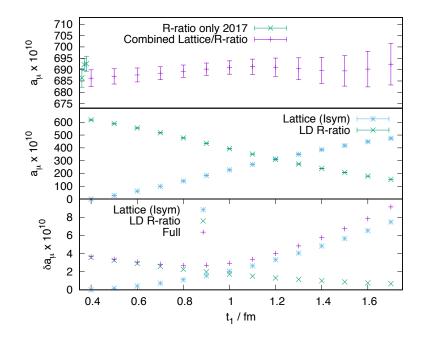
 Complete run with infinite-volume QED kernel on (10fm)³ QCD box

Summary and outlook

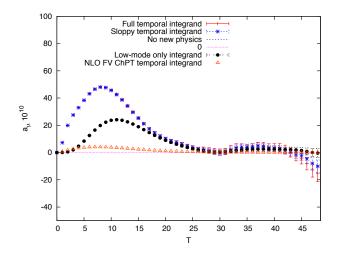
New methods allow for a complete first-principles calculation of the hadronic light-by-light contribution to the $(g - 2)_{\mu}$.

Control of all uncertainties on the 10% level over the next 1-2 years seems possible.

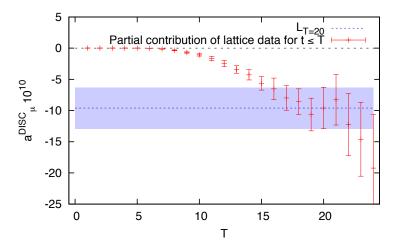
Thank you



Low-mode saturation for physical pion mass (here 2000 modes):

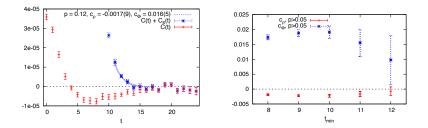


Result for partial sum $L_T = \sum_{t=0}^T w_t C(t)$:



For $t \ge 15 C(t)$ is consistent with zero but the stochastic noise is t-independent and $w_t \propto t^4$ such that it is difficult to identify a plateau region based only on this plot

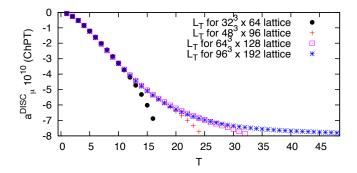
Resulting correlators and fit of $C(t) + C_s(t)$ to $c_{\rho}e^{-E_{\rho}t} + c_{\phi}e^{-E_{\phi}t}$ in the region $t \in [t_{\min}, \ldots, 17]$ with fixed energies $E_{\rho} = 770$ MeV and $E_{\phi} = 1020$. $C_s(t)$ is the strange connected correlator.



We fit to $C(t) + C_s(t)$ instead of C(t) since the former has a spectral representation.

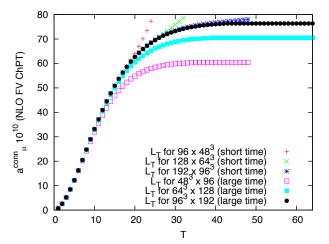
We could use this model alone for the long-distance tail to help identify a plateau but it would miss the two-pion tail

We therefore additionally calculate the two-pion tail for the disconnected diagram in ChPT:



A closer look at the NLO FV ChPT prediction (1-loop sQED):

We show the partial sum $\sum_{t=0}^{T} w_t C(t)$ for different geometries and volumes:



The dispersive approach to HVP LO

The dispersion relation

$$\Pi_{\mu\nu}(q) = i \left(q_{\mu}q_{\nu} - g_{\mu\nu}q^2 \right) \Pi(q^2)$$

$$\Pi(q^2) = -\frac{q^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} \frac{\mathrm{Im}\Pi(s)}{q^2 - s}.$$

allows for the determination of a_{μ}^{HVP} from experimental data via

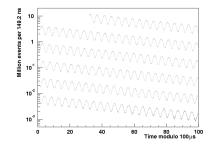
$$egin{aligned} &a^{\mathrm{HVP\ LO}}_{\mu} = \Big(rac{lpha m_{\mu}}{3\pi}\Big)^2 \left[\int_{4m_{\pi}^2}^{E_0^2} ds rac{R^{\mathrm{exp}}_{\gamma}(s)\hat{K}(s)}{s^2} + \int_{E_0^2}^{\infty} ds rac{R^{\mathrm{pQCD}}_{\gamma}(s)\hat{K}(s)}{s^2}
ight], \ &R_{\gamma}(s) = \sigma^{(0)}(e^+e^- o \gamma^* o \mathrm{hadrons})/rac{4\pilpha^2}{3s} \end{aligned}$$

Experimentally with or without additional hard photon (ISR: $e^+e^- \rightarrow \gamma^*(\rightarrow \text{hadrons})\gamma$)

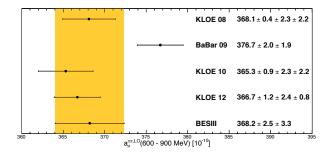
Experimental setup: muon storage ring with tuned momentum of muons to cancel leading coupling to electric field

$$\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

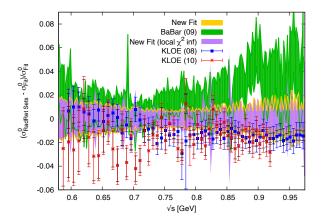
Because of parity violation in weak decay of muon, a correlation between muon spin and decay electron direction exists, which can be used to measure the anomalous precession frequency ω_a :

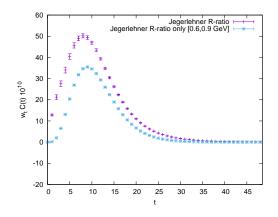


BESIII 2015 update:



Hagiwara et al. 2011:



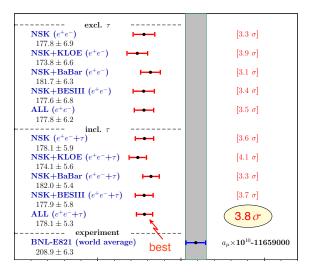


Problematic experimental region can readily be replaced by precise lattice data. Lattice also can be arbiter regarding different experimental data sets.

Jegerlehner FCCP2015 summary:

final state	range (GeV)	$a_{\mu}^{\text{had}(1)} \times 10^{10}$ (stat) (syst) [tot]	rel	abs
ρ	(0.28, 1.05)	507.55 (0.39) (2.68)[2.71]	0.5%	39.9%
ω	(0.42, 0.81)	35.23 (0.42) (0.95)[1.04]	3.0%	5.9%
ϕ	(1.00, 1.04)	34.31 (0.48) (0.79)[0.92]	2.7%	4.7%
J/ψ		8.94 (0.42) (0.41)[0.59]	6.6%	1.9%
Ϋ́		0.11 (0.00) (0.01)[0.01]	6.8%	0.0%
had	(1.05, 2.00)	60.45 (0.21) (2.80)[2.80]	4.6%	42.9%
had	(2.00, 3.10)	21.63 (0.12) (0.92)[0.93]	4.3%	4.7%
had	(3.10, 3.60)	3.77 (0.03) (0.10)[0.10]	2.8%	0.1%
had	(3.60, 9.46)	13.77 (0.04) (0.01)[0.04]	0.3%	0.0%
had	(9.46,13.00)	1.28 (0.01) (0.07)[0.07]	5.4%	0.0%
pQCD	(13.0,∞)	1.53 (0.00) (0.00)[0.00]	0.0%	0.0%
data	(0.28,13.00)	687.06 (0.89) (4.19)[4.28]	0.6%	0.0%
total		688.59 (0.89) (4.19)[4.28]	0.6%	100.0%

Results for $a_{\mu}^{had(1)} \times 10^{10}$. Update August 2015, incl SCAN[NSK]+ISR[KLOE10,KLOE12,BaBar,BESIII] Jegerlehner FCCP2015 summary ($\tau \leftrightarrow e^+e^-$):



Our setup:

$$C(t) = \frac{1}{3V} \sum_{j=0,1,2} \sum_{t'} \langle \mathcal{V}_j(t+t') \mathcal{V}_j(t') \rangle_{\mathrm{SU}(3)}$$
(1)

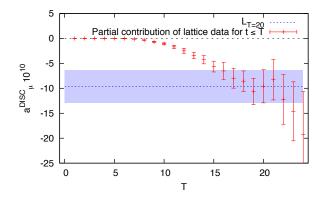
where V stands for the four-dimensional lattice volume, $\mathcal{V}_{\mu}=(1/3)(\mathcal{V}_{\mu}^{u/d}-\mathcal{V}_{\mu}^{s})$, and

$$\mathcal{V}^{f}_{\mu}(t) = \sum_{\vec{x}} \operatorname{Im} \operatorname{Tr}[D^{-1}_{\vec{x},t;\vec{x},t}(m_{f})\gamma_{\mu}].$$
 (2)

We separate 2000 low modes (up to around m_s) from light quark propagator as $D^{-1} = \sum_n v^n (w^n)^{\dagger} + D_{\text{high}}^{-1}$ and estimate the high mode stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has support only for points x_{μ} with $(x_{\mu} - x_{\mu}^{(0)}) \mod N = 0$; here we additionally use a random grid offset $x_{\mu}^{(0)}$ per sample allowing us to stochastically project to momenta.

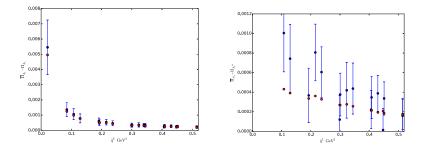
Study $L_T = \sum_{t=T+1}^{\infty} w_t C(t)$ and use value of T in plateau region (here T = 20) as central value. Use a combined estimate of a resonance model and the two-pion tail to estimate systematic uncertainty.



Combined with an estimate of discretization errors, we find

$$a_{\mu}^{\mathrm{HVP}\ \mathrm{(LO)\ DISC}} = -9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} imes 10^{-10}$$
. (3)

From Aubin et al. 2015 (arXiv:1512.07555v2)

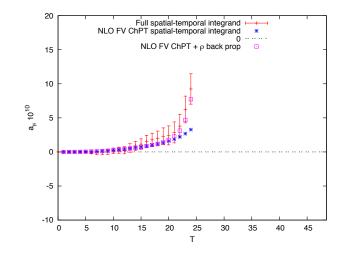


MILC lattice data with $m_{\pi}L = 4.2$, $m_{\pi} \approx 220$ MeV; Plot difference of $\Pi(q^2)$ from different irreps of 90-degree rotation symmetry of spatial components versus NLO FV ChPT prediction (red dots)

While the absolute value of a_{μ} is poorly described by the two-pion contribution, the volume dependence may be described sufficiently well to use ChPT to control FV errors at the 1% level; this needs further scrutiny

Aubin et al. find an O(10%) finite-volume error for $m_{\pi}L = 4.2$ based on the $A_1 - A_1^{44}$ difference (right-hand plot)

Compare difference of integrand of $48 \times 48 \times 96 \times 48$ (spatial) and $48 \times 48 \times 48 \times 96$ (temporal) geometries with NLO FV ChPT $(A_1 - A_1^{44})$:



 $m_{\pi}=140$ MeV, $p^2=m_{\pi}^2/(4\pi f_{\pi})^2pprox 0.7\%$

