Lepton Flavour Universality in B decays

[on the importance of EW corrections for B-anomalies]

Anacapri, September 9th 2017 Workshop on ``Flavour changing and conserving processes" (FCCP2017)

> Ferruccio Feruglio Universita' di Padova

Based on:

- F., P. Paradisi and A. Pattori 1606.00524 and 1705.00929
- C. Cornella, F., P. Paradisi, in preparation

Plan

Hints of LFU violation and New Physics above the ew scale

Electroweak corrections from the NP scale Λ down to scales $\leq m_b$

Impact on LFU-violating and LFV transitions

Discussion

Main message

- relevance of EW corrections when addressing B-anomalies
- simultaneous explanation of both $R_{K(\star)}$ and $R_{D(\star)}$ anomalies through V-A interactions challenged by electroweak RGE effects

Hints of violation of LFU in semileptonic B decays

NC b -> s [1-loop in SM]

[see talk by Marta Calvi]

o, 1406.6482

2.6**0**]

[LHCb, 1705.05802 SM at 2.4-2.5σ]

$$\begin{split} R_{K^*}^{\mu/e} &= \left. \frac{\mathcal{B}(B \to K^* \mu \bar{\mu})_{\exp}}{\mathcal{B}(B \to K^* e \bar{e})_{\exp}} \right|_{q^2 \in [1.1,6] \text{GeV}} = 0.69 \, \substack{+ \ 0.11 \\ - \ 0.07} \, (\text{stat}) \pm 0.05 \, (\text{syst}) \\ R_K^{\mu/e} &= \left. \frac{\mathcal{B}(B \to K \mu \bar{\mu})_{\exp}}{\mathcal{B}(B \to K e \bar{e})_{\exp}} \right|_{q^2 \in [1.6] \text{GeV}} = 0.745 \substack{+ 0.090 \\ - \ 0.074} \pm 0.036 \; , \end{split}$$

- allowing NP, global fits to b -> s transitions is consistent.

- solutions have a pull \sim 4-5 σ w.r.t. the SM and prefer NP in muon channel.

CC b -> c [tree-level in SM]

R ≠ 1

$$\begin{split} R_{D^*}^{\tau/\ell} &= \frac{\mathcal{B}(B \to D^* \tau \overline{\nu})_{\exp} / \mathcal{B}(B \to D^* \tau \overline{\nu})_{\mathrm{SM}}}{\mathcal{B}(B \to D^* \ell \overline{\nu})_{\exp} / \mathcal{B}(B \to D^* \ell \overline{\nu})_{\mathrm{SM}}} = 1.23 \pm 0.07 \ , \\ R_D^{\tau/\ell} &= \frac{\mathcal{B}(B \to D \tau \overline{\nu})_{\exp} / \mathcal{B}(B \to D \tau \overline{\nu})_{\mathrm{SM}}}{\mathcal{B}(B \to D \ell \overline{\nu})_{\exp} / \mathcal{B}(B \to D \ell \overline{\nu})_{\mathrm{SM}}} = 1.34 \pm 0.17 \ , \end{split}$$

[HFAG averages of Babar, Belle and LHCb, 1612.07233 SM at 3.90]

theoretical uncertainties largely drop in these ratios and R≈1 is expected
 [Bordone, Isidori, Pattori, 1605.07633]

violation of LFU and New Physics

- no conclusive NP signal from individual measurements
- significant discrepancy from the SM predictions comes from average and/or global fits

Global Fit

•
$$B \to K^{(*)}\ell^+\ell^-$$

$$\mathcal{O}_{9} = \frac{\alpha}{4\pi} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma_{\mu} \ell) \qquad \mathcal{O}_{9}' = \frac{\alpha}{4\pi} (\bar{s}_{R} \gamma_{\mu} b_{R}) (\bar{\ell} \gamma_{\mu} \ell) \qquad \mathcal{O}_{7\gamma} = \frac{e}{4\pi^{2}} m_{b} (\bar{s}_{L} \sigma^{\mu\nu} b_{R}) F_{\mu\nu} \\ \mathcal{O}_{10} = \frac{\alpha}{4\pi} (\bar{s}_{L} \gamma_{\mu} b_{L}) (\bar{\ell} \gamma_{\mu} \gamma_{5} \ell) \qquad \mathcal{O}_{10}' = \frac{\alpha}{4\pi} (\bar{s}_{R} \gamma_{\mu} b_{R}) (\bar{\ell} \gamma_{\mu} \gamma_{5} \ell) \qquad \mathcal{O}_{7\gamma}' = \frac{e}{4\pi^{2}} m_{b} (\bar{s}_{R} \sigma^{\mu\nu} b_{L}) F_{\mu\nu}$$

 $\downarrow \downarrow$

$$> C_{9}^{NP} \neq 0$$

$$> C_{9}^{NP} = -C_{10}^{NP} \neq 0$$

$$> P'_{5} \text{ (et al.)}$$

$$S. \text{ Descotes-Genon, L. Hofer, } J. \text{ Matias, J. Virto (2015)}$$

 $(\bar{s}_L \gamma_\mu b_L)(\ell_L \gamma_\mu \ell_L) \Rightarrow \text{left-handed current}$

Altmannshofer, Stangl and Straub, 1704.05435; Celis, Fuentes Martin, Vicente and Virto, 1704.05672; Capdevila, Crivellin, Descotes-Genon, Matias and Virto, 1704.05340; D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre and Urbano, 1704.05438; Ciuchini, Coutinho, Fedele, Franco, Paul, Silvestrini and Valli 1704.05447; G. Hiller and I. Nisandzic, 1704.05444 [hep-ph].

Are the NC and CC anomalies related?

both NC and CC anomalies can be explained by NP occurring (above the EW scale) purely in V-A combinations

$$\left(\overline{s}_L\gamma_\mu b_L\right)\left(\overline{\mu}_L\gamma^\mu\mu_L\right)$$

$$(\overline{c}_L \gamma_\mu b_L) (\overline{\tau}_L \gamma^\mu v_{\tau L})$$

not the only possibility:

- V lepton current (O_9 operator) by itself provides a good fit
- tensor operator vanish at LO when SU(2)×U(1) is enforced
- scalar operators are constrained by B leptonic decays
- right quark helicities disfavored after R_{K*} measurement

the two operators are related by

- SU(2)_L gauge invariance

- transformations in flavour space

This suggests to start from operators

- -(V-A)
- SU(2)xU(1)-invariant
- involving only the 3rd generation [U(2), U(1),...]

$$O_{ql}^{(1,3)} = \left(\overline{q}'_{3L} \gamma_{\mu} A q'_{3L}\right) \left(\overline{\ell}'_{3L} \gamma^{\mu} A \ell'_{3L}\right) \quad A = (1,\sigma^{a})$$

couplings to lighter generations

misalignment between mass and interaction bases

$$L^{0}_{NP}(\Lambda) = \frac{C_{1}}{\Lambda^{2}}O^{(1)}_{ql} + \frac{C_{3}}{\Lambda^{2}}O^{(3)}_{ql} =$$

Starting point

.

$$\begin{split} \mathcal{L}_{NP}^{0}(\Lambda) &= \frac{\lambda_{kl}^{e}}{\Lambda^{2}} \left[\left(C_{1} + C_{3} \right) \lambda_{ij}^{u} \ \bar{u}_{Li} \gamma^{\mu} u_{Lj} \ \bar{\nu}_{Lk} \gamma_{\mu} \nu_{Ll} + \left(C_{1} - C_{3} \right) \lambda_{ij}^{u} \ \bar{u}_{Li} \gamma^{\mu} u_{Lj} \ \bar{e}_{Lk} \gamma_{\mu} e_{Ll} + \\ \left(C_{1} - C_{3} \right) \lambda_{ij}^{d} \ \bar{d}_{Li} \gamma^{\mu} d_{Lj} \ \bar{\nu}_{Lk} \gamma_{\mu} \nu_{Ll} + \left(C_{1} + C_{3} \right) \lambda_{ij}^{d} \ \bar{d}_{Li} \gamma^{\mu} d_{Lj} \ \bar{e}_{Lk} \gamma_{\mu} e_{Ll} + \\ 2C_{3} \ \left(\lambda_{ij}^{ud} \ \bar{u}_{Li} \gamma^{\mu} d_{Lj} \ \bar{e}_{Lk} \gamma_{\mu} \nu_{Ll} + h.c. \right) \left] \quad \text{(limit of massless neutrinos)} \end{split}$$

Constraints (tree-level)

$R_K^{\mu/e}$ $R_{K^*}^{\mu/e}$	$(C_1 + C_3) \vartheta_d \vartheta_e^2$		
$R_D^{ au/\ell}$ $R_{D^*}^{ au/\ell}$	<i>C</i> ₃		
process	parameters	size	exp. bound
$R_{B_s\mu\mu} = rac{\mathcal{B}(B_s o \mu ar{\mu})_{ m exp}}{\mathcal{B}(B_s o \mu ar{\mu})_{ m SM}}$	$(C_1 + C_3)\vartheta_d \vartheta_e^2$	<i>O</i> (0.1)	$\mathcal{B}(B_s \to \mu \bar{\mu})_{exp} = 2.8^{+0.7}_{-0.6} \times 10^{-9}$ $\mathcal{B}(B_s \to \mu \bar{\mu})_{SM} = 3.65(23) \times 10^{-9}$
$R_{B\tau\nu}^{\tau/\mu} = \frac{\mathcal{B}(B \to \tau\nu)_{\rm exp}/\mathcal{B}(B \to \tau\nu)_{\rm SM}}{\mathcal{B}(B \to \mu\nu)_{\rm exp}/\mathcal{B}(B \to \mu\nu)_{\rm SM}}$	<i>C</i> ₃	<i>O</i> (0.1)	Belle II ?
$R_{K^{(*)}}^{\nu\nu} = \frac{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})}{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})_{\rm SM}}$	$(C_1 - C_3)\vartheta_d$	O (1)	$R_{K^*}^{\nu\nu} < 4.4 R_K^{\nu\nu} < 4.3$
$\mathcal{B}(B \to K\tau\mu)$ $\mathcal{B}(B \to \tau^{\pm}\mu^{\mp}) \approx \mathcal{B}(B \to K\tau^{\pm}\mu^{\mp}),$ $\mathcal{B}(B \to K^{*}\tau^{\pm}\mu^{\mp}) \approx 2 \times \mathcal{B}(B \to K\tau^{\pm}\mu^{\mp})$	$\left (C_1 + C_3) \vartheta_d \vartheta_e \right ^2$	$O(10^{-6+7})$	$\mathcal{B}(B \to K \tau \mu) \le 4.8 \times 10^{-5}$
μ+µ- and τ+τ- Production at LHC	$(C_1 + C_3)$		[Greljo, Marzocca 1704.09015]

Constraints from quantum effects

 $L_{NP}(m_b) = L_{NP}^{O}(\Lambda) + quantum corrections$

How can quantum corrections ~ $\alpha/4\pi$ ~ 10⁻³ be relevant?

they generate terms that are absent in $L_{NP}{}^0(\Lambda)$ and new processes are affected

their order of magnitude is similar to accuracy in EWPT and in other tests of LFU $% \mathcal{T}_{\mathrm{S}}$

they are enhanced by logs: $log(\Lambda^2/m_W^2) \sim 5-7$

in the present framework - (V-A) semileptonic operators - corrections are dominated by electroweak interactions. They can be estimated by a well-known running and matching procedure. Here, Leading Log effects only

 $\leftarrow \text{RUNNING}$ $L'_{eff}(\gamma, q \neq t, l) \qquad L_{eff}(Z, W, \gamma, H, q, l) \qquad L_{NP}^{0}(\Lambda)$ $0 \quad m_{\tau} m_{b} \qquad m_{W} \approx m_{Z} \approx m_{H} \approx m_{t} \qquad \Lambda \qquad \text{Energy}$

MATCHING

1st: the electroweak scale

$$\begin{array}{c|c} \leftarrow \mathsf{RUNNING} \\ \hline L_{eff}(\gamma,q\neq t,l) \\ \hline 0 \ m_{\tau}m_{b} \\ m_{W} \approx m_{Z} \approx m_{H} \approx m_{t} \\ \end{array} \begin{array}{c} \leftarrow \mathsf{RUNNING} \\ \hline L_{eff}(Z,W,\gamma,H,q,l) \\ \hline \\ \Lambda \end{array} \begin{array}{c} \leftarrow \mathsf{RUNNING} \\ \hline \\ \mathsf{Energy} \\ \Lambda \end{array}$$

1. modifications of the W,Z couplings to fermions by non-universal terms

$$\begin{aligned} \frac{a_{\tau}}{a_e} &\approx 1 - 0.004 \frac{(C_1 - 0.8 \, C_3)}{\Lambda^2 (\text{TeV}^2)} \\ \frac{v_{\tau}}{v_e} &\approx 1 - 0.05 \frac{(C_1 - 0.8 \, C_3)}{\Lambda^2 (\text{TeV}^2)} \\ a_{\tau}/a_e &= 1.0019 \ (15) \\ v_{\tau}/v_e &= 0.959 \ (29) \end{aligned}$$
$$\mathcal{B}(Z \to \mu^{\pm} \tau^{\mp}) &\approx 10^{-7} \\ \mathcal{B}(Z \to \mu^{\pm} \tau^{\mp})_{\text{exp}} &\leq 1.2 \times 10^{-5} \end{aligned}$$

Putting everything together

A more general setup [Cornella, F. Paradisi in preparation]

 $\mathcal{L}_{ ext{NP}}^{_{0}} = rac{1}{\Lambda^{2}} (C_{1}[Q_{lq}^{_{(1)}}]_{_{3333}} + C_{3}[Q_{lq}^{_{(3)}}]_{_{3333}} + C_{4}[Q_{ld}]_{_{3333}} + C_{5}[Q_{ed}]_{_{3333}} + C_{6}[Q_{qe}]_{_{3333}})$

$$\begin{split} & [Q_{lq}^{(1)}]_{3333} = (\bar{\ell}'_{3L}\gamma^{\mu}\ell'_{3L})(\bar{q}'_{3L}\gamma^{\mu}q'_{3L}) \\ & [Q_{lq}^{(3)}]_{3333} = (\bar{\ell}'_{3L}\gamma^{\mu}\tau^{a}\ell'_{3L})(\bar{q}'_{3L}\gamma^{\mu}\tau^{a}q'_{3L}) \\ & [Q_{ld}]_{3333} = (\bar{\ell}'_{3L}\gamma^{\mu}\ell'_{3L})(\bar{d}'_{3R}\gamma d'_{3R}) \\ & [Q_{ed}]_{3333} = (\bar{e}'_{3R}\gamma^{\mu}e'_{3R})(\bar{d}'_{3R}\gamma d'_{3R}) \\ & [Q_{qe}]_{3333} = (\bar{q}'_{3L}\gamma q'_{3L})(\bar{e}'_{3R}\gamma^{\mu}e'_{3R}) \end{split}$$

most general set of SU(2)×U(1) - invariant semileptonic operators involving the 3rd generation

the main effects are 1. and 2., as before

an example

$$C_1 + C_3 = C_6 \qquad C_4 = C_5 = 0$$

$$O^9=rac{e^2}{16\pi^2}(ar{s}_{\scriptscriptstyle L}\gamma_\mu b_{\scriptscriptstyle L})(ar{e}_i\gamma^\mu e_i)$$

we find

Discussion

log effects discussed here can be cancelled/suppressed by finite terms, not captured by this approach [require knowledge of the complete UV theory]

the starting point adopted here can be generalized by allowing more SU(2)×U(1) invariant operators at the scale Λ , making it possible cancellation/suppression of log effects

different generation pattern in $O_{lq}^{(1,3)}$ can help in evading the bounds most of flavour schemes adopted in model building - U(1)_{FN}, U(2), Partial Compositeness - prefer NP coupled mainly to third generation.

$$R_{D}^{\tau/\ell} R_{D^{*}}^{\tau/\ell} \text{ alone can be explained in present framework}$$
e.g. $\vartheta_{d} \approx 1$, $\vartheta_{e} \ll \alpha_{em}$, $\Lambda \approx 5 \text{ TeV}$ loop effects decouple as v^{2}/Λ^{2}

$$R_{K}^{\mu/e} R_{K^{*}}^{\mu/e} \text{ alone can be explained in present framework}$$
e.g. $\vartheta_{d} \approx 1$, $\vartheta_{e} \approx 1$, $\Lambda \approx 30 \text{ TeV}$ loop effects decouple as v^{2}/Λ^{2}

conclusion

B anomalies extensively studied in literature simultaneous $R_{K(*)}$ and $R_{D(*)}$ explanation is appealing

the estimate of quantum corrections is crucial to asses the viability of proposed solutions

in the example discussed here (NP in 3rd generation V-A currents) purely leptonic LFUV/LFV transitions are generated and strong constraints arise

this is not a no-go theorem:

- ways out are possible but require some conspiracy by UV physics.

Back-up slides

Global Fit

Coeff.	best fit	1σ	2σ	pull
C_9^μ	-1.59	[-2.15, -1.13]	[-2.90, -0.73]	4.2σ
C^{μ}_{10}	+1.23	[+0.90, +1.60]	[+0.60, +2.04]	4.3σ
C_9^e	+1.58	[+1.17, +2.03]	[+0.79, +2.53]	4.4σ
C^e_{10}	-1.30	[-1.68,-0.95]	$[-2.12, \ -0.64]$	4.4σ
$C_{9}^{\mu}=-C_{10}^{\mu}$	-0.64	[-0.81, -0.48]	[-1.00, -0.32]	4.2σ
$C_{9}^{e}=-C_{10}^{e}$	+0.78	[+0.56, +1.02]	[+0.37, +1.31]	4.3σ
$C_9^{\prime\mu}$	-0.00	[-0.26, +0.25]	[-0.52, +0.51]	0.0σ
$C_{10}^{\prime \mu}$	+0.02	[-0.22, +0.26]	[-0.45, +0.49]	0.1σ
C_9^{\primee}	+0.01	[-0.27, +0.31]	[-0.55, +0.62]	0.0σ
$C_{10}^{\prime e}$	-0.03	[-0.28, +0.22]	[-0.55, +0.46]	0.1σ

TABLE I. Best-fit values and pulls for scenarios with NP in one individual Wilson coefficient.

[Altmannshofer, Stangl and Straub, 1704.05435]

`All' includes $R_{K_{,}} R_{K^{*}}$, angular variables in B -> K^{*} $\mu^{+} \mu^{-}$, differential BR in B -> K^{*} $\mu^{+} \mu^{-}$, B -> $\phi \mu^{+} \mu^{-}$

Global Fit

 $[R_{K}]_{[1,6]} \simeq 1.00(1) + 0.230(\mathcal{C}_{9\mu-e}^{\rm NP} + \mathcal{C}_{9\mu-e}') - 0.233(2)(\mathcal{C}_{10\mu-e}^{\rm NP} + \mathcal{C}_{10\mu-e}'),$ $[R_{K^*}]_{[0.045,1.1]} \simeq 0.92(2) + 0.07(2)\mathcal{C}_{9\mu-e}^{\rm NP} - 0.10(2)\mathcal{C}_{9\mu-e}' - 0.11(2)\mathcal{C}_{10\mu-e}^{\rm NP} + 0.11(2)\mathcal{C}_{10\mu-e}' + 0.55(6)\mathcal{C}_{7}^{\rm NP},$ $[R_{K^*}]_{[1.1,6]} \simeq 1.00(1) + 0.20(1)\mathcal{C}_{9\mu-e}^{\rm NP} - 0.19(1)\mathcal{C}_{9\mu-e}' - 0.27(1)\mathcal{C}_{10\mu-e}^{\rm NP} + 0.21(1)\mathcal{C}_{10\mu-e}'.$

[Celis, Fuentes Martin, Vicente and Virto, 1704.05672]

when averaging, a 4σ discrepancy shows up

individual measurements are compatible with the SM

Dimension six operators

Semileptonic operators:	Leptonic operators:		
$[O^{(1)}_{\ell q}]_{prst}=(ar{\ell}'_{pL}\gamma_\mu\ell'_{rL})~(ar{q}'_{sL}\gamma^\mu q'_{tL})$	$[O_{\ell\ell}]_{prst} = (\bar{\ell}'_{pL}\gamma_{\mu}\ell'_{rL}) \ (\bar{\ell}'_{sL}\gamma^{\mu}\ell'_{tL})$		
$\left[O^{(3)}_{\ell q}\right]_{prst} = \left(\bar{\ell}'_{pL}\gamma_{\mu}\tau^{a}\ell'_{rL}\right)\left(\bar{q}'_{sL}\gamma^{\mu}\tau^{a}q'_{tL}\right)$	$[O_{\ell e}]_{prst} = (ar{\ell}'_{pL}\gamma_\mu\ell'_{rL})\;(ar{e}'_{sR}\gamma^\mu e'_{tR})$		
$[O_{\ell u}]_{prst} = (ar{\ell}_{pL}'\gamma_\mu\ell_{rL}') \; (ar{u}_{sR}'\gamma^\mu u_{tR}')$			
$[O_{\ell d}]_{prst} = (ar{\ell}'_{pL}\gamma_\mu\ell'_{rL}) \; (ar{d}'_{sR}\gamma^\mu d'_{tR})$			
$[O_{qe}]_{prst} = (\bar{q}'_{pL}\gamma_{\mu}q'_{rL}) \ (\bar{e}'_{sR}\gamma^{\mu}e'_{tR})$			
Vector operators:	Hadronic operators:		
$[O_{H\ell}^{(1)}]_{pr} = (\varphi^{\dagger}i\overleftrightarrow{D_{\mu}}\varphi) \ (\bar{\ell}'_{pL}\gamma_{\mu}\ell'_{rL})$	$[O_{qq}^{(1)}]_{prst} = (ar{q}_{pL}' \gamma_\mu q_{rL}') \; (ar{q}_{sL}' \gamma^\mu q_{tL}')$		
$[O_{H\ell}^{(3)}]_{pr} = (\varphi^{\dagger}i\overleftrightarrow{D_{\mu}^{a}}\varphi) \ (\bar{\ell}'_{pL}\gamma_{\mu}\tau^{a}\ell'_{rL})$	$[O_{qq}^{(3)}]_{prst} = (\bar{q}'_{pL}\gamma_{\mu}\tau^{a}q'_{rL}) \ (\bar{q}'_{sL}\gamma^{\mu}\tau^{a}q'_{tL})$		
$[O^{(1)}_{Hq}]_{pr} = (arphi^{\dagger}i\overleftrightarrow{D_{\mu}}arphi) \; (ar{q}'_{pL}\gamma_{\mu}q'_{rL})$	$[O^{(1)}_{qu}]_{prst} = (ar{q}'_{pL}\gamma_{\mu}q'_{rL}) \; (ar{u}'_{sR}\gamma^{\mu}u'_{tR})$		
$[O_{Hq}^{(3)}]_{pr} = (\varphi^{\dagger}i\overleftrightarrow{D_{\mu}^{a}}\varphi) \ (\bar{q}'_{pL}\gamma_{\mu}\tau^{a}q'_{rL})$	$[O_{qd}^{(1)}]_{prst} = (ar{q}'_{pL}\gamma_{\mu}q'_{rL}) \; (ar{d}'_{sR}\gamma^{\mu}d'_{tR})$		

Table 1: Minimal set of gauge-invariant operators involved in the RGE flow considered in this paper. Fields are in the interaction basis to maintain explicit $SU(2) \times U(1)$ gauge invariance. Our notation and conventions are as in [26].

Effective Lagrangian - ew scale

$$g_{fL,R} = g_{fL,R}^{SM} + \Delta g_{fL,R} \qquad \qquad g_{\ell,q} = g_{\ell,q}^{SM} + \Delta g_{\ell,q}$$

$$\begin{split} \Delta g_{\nu L}^{ij} &= \frac{v^2}{\Lambda^2} \frac{L}{16\pi^2} \left(\frac{1}{3} g_1^2 C_1 - g_2^2 C_3 + 3y_t^2 \lambda_{33}^u (C_1 + C_3) \right) \lambda_{ij}^e \\ \Delta g_{eL}^{ij} &= \frac{v^2}{\Lambda^2} \frac{L}{16\pi^2} \left(\frac{1}{3} g_1^2 C_1 + g_2^2 C_3 + 3y_t^2 \lambda_{33}^u (C_1 - C_3) \right) \lambda_{ij}^e \\ \Delta g_{uL}^{ij} &= -\frac{v^2}{\Lambda^2} \frac{L}{16\pi^2} \frac{1}{3} \left(g_1^2 C_1 + g_2^2 C_3 \right) \lambda_{ij}^u \\ \Delta g_{dL}^{ij} &= -\frac{v^2}{\Lambda^2} \frac{L}{16\pi^2} \frac{1}{3} \left(g_1^2 C_1 - g_2^2 C_3 \right) \lambda_{ij}^d \\ \Delta g_{fR}^{ij} &= 0 \qquad (f = \nu, e, u, d) \\ \Delta g_{\ell}^{ij} &= \frac{v^2}{\Lambda^2} \frac{L}{16\pi^2} (-2g_2^2 C_3 + 6y_t^2 \lambda_{33}^u C_3) \lambda_{ij}^e \\ \Delta g_{q}^{ij} &= -\frac{v^2}{\Lambda^2} \frac{L}{16\pi^2} \frac{2}{3} g_2^2 C_3 \lambda_{ij}^{ud} \qquad L = \log \theta \end{split}$$

Effective Lagrangian - ew scale

$$\mathcal{L}_{eff}^{EW} = \mathcal{L}_{SM}' + \mathcal{L}_{NP}^0 + rac{1}{16\pi^2\Lambda^2}\lograc{\Lambda}{m_{EW}}~\sum_i \xi_i Q_i$$

Q_i	ξ_i
$\left(ar{ u}_{iL}\gamma_{\mu} u_{jL} ight)\left(ar{ u}_{kL}\gamma^{\mu} u_{nL} ight)$	$\lambda^e_{ij}\delta_{kn}\left[-6y_t^2\lambda^u_{33}(C_1+C_3) ight]$
$\left(ar{ u}_{iL} \gamma_\mu u_{jL} ight) \left(ar{e}_{kL} \gamma^\mu e_{nL} ight)$	$\lambda_{ij}^e\delta_{kn}\left[rac{4}{3}e^2(C_1+3C_3)-12\left(-rac{1}{2}+s_ heta^2 ight)y_t^2\lambda_{33}^u(C_1+C_3) ight]$
	$+ \delta_{ij}\lambda^e_{kn}[-6y_t^2\lambda^u_{33}(C_1-C_3)]$
$\left(ar{ u}_{iL}\gamma_{\mu} u_{jL} ight)\left(ar{e}_{kR}\gamma^{\mu}e_{nR} ight)$	$\lambda^e_{ij}\delta_{kn}\left[rac{4}{3}e^2(C_1+3C_3)-12s^2_ hetay^2_t\lambda^u_{33}(C_1+C_3) ight]$
$(ar{e}_{iL}\gamma_\mu e_{jL})~(ar{e}_{kL}\gamma^\mu e_{nL})$	$\lambda_{ij}^e\delta_{kn}\left[rac{4}{3}e^2(C_1-3C_3)-12(-rac{1}{2}+s_ heta^2)y_t^2\lambda_{33}^u(C_1-C_3) ight]$
$(ar{e}_{iL}\gamma_{\mu}e_{jL})~(ar{e}_{kR}\gamma^{\mu}e_{nR})$	$\lambda^e_{ij}\delta_{kn}\left[rac{4}{3}e^2(C_1-3C_3)-12s^2_ hetay^2_t\lambda^u_{33}(C_1-C_3) ight]$
$\left(ar{ u}_{iL} \gamma_\mu e_{jL} ight) \left(ar{e}_{kL} \gamma^\mu u_{nL} ight)$	$(\lambda^e_{ij}\delta_{kn}+\delta_{ij}\lambda^e_{kn})[-12y^2_t\lambda^u_{33}C_3]$

Table 2: Operators Q_i and coefficients ξ_i for the purely leptonic part of the effective Lagrangian \mathcal{L}_{eff}^{EW} . We set $\sin^2 \theta_W \equiv s_{\theta}^2$.

Effective Lagrangian at low energy

$$\delta \mathcal{L}_{eff}^{QED} = rac{1}{16\pi^2\Lambda^2}\lograc{m_{EW}}{\mu}~\sum_i \delta \xi_i~Q_i$$

Q_i	$\delta \xi_i$
$(ar{ u}_{iL}\gamma_{\mu} u_{jL})~(ar{ u}_{kL}\gamma^{\mu} u_{nL})$	0
$\left(ar{ u}_{iL}\gamma_{\mu} u_{jL} ight)\left(ar{e}_{k}\gamma^{\mu}e_{n} ight)$	$\lambda_{ij}^{e}\delta_{kn}\cdot \tfrac{4}{3}e^{2}\left[(C_{1}+3C_{3})-2(C_{1}+C_{3})(\hat{\lambda}_{33}^{u}\log\tfrac{m_{t}}{\mu}+\hat{\lambda}_{22}^{u}\log\tfrac{m_{c}}{\mu})\right.$
	$+(C_1-C_3)\hat{\lambda}^d_{33}\lograc{m_b}{\mu}\Big]$
$(ar{e}_{iL}\gamma_{\mu}e_{jL})~(ar{e}_k\gamma^{\mu}e_n)$	$\lambda_{ij}^{e}\delta_{kn}\cdot \tfrac{4}{3}e^{2}\left[(C_{1}-3C_{3})-2(C_{1}-C_{3})(\hat{\lambda}_{33}^{u}\log\tfrac{m_{t}}{\mu}+\hat{\lambda}_{22}^{u}\log\tfrac{m_{c}}{\mu})\right.$
	$+(C_1+C_3)\hat{\lambda}^d_{33}\lograc{m_b}{\mu}\Big]$

Table 6: Operators Q_i and coefficients $\delta \xi_i$ for the purely leptonic part of the effective Lagrangian $\delta \mathcal{L}_{eff}^{QED}$. We set $\hat{\lambda}_{ii}^{u,d} = \lambda_{ii}^{u,d} / \log \frac{m_{EW}}{\mu}$.

tree-level mediators of $O_{la}^{(1,3)}$

Field	Spin	Quantum Numbers	Operator	C_1	C_3
A_{μ}	1	(1, 1, 0)	$ar q_L' \gamma^\mu q_L' \; ar \ell_L' \gamma_\mu \ell_L'$	-1	0
A^a_μ	1	(1, 3, 0)	$ar q_L' \gamma^\mu au^a q_L' \; ar \ell_L' \gamma_\mu au^a \ell_L'$	0	-1
U_{μ}	1	(3, 1, +2/3)	$ar q_L' \gamma^\mu \ell_L' \;ar \ell_L' \gamma_\mu q_L'$	$-\frac{1}{2}$	$-\frac{1}{2}$
U^a_μ	1	(3, 3, +2/3)	$ar q_L' \gamma^\mu au^a \ell_L' \;ar \ell_L' \gamma_\mu au^a q_L'$	$-\frac{3}{2}$	$+\frac{1}{2}$
S	0	(3, 1, -1/3)	$ar{q}_L' i \sigma^2 {\ell'}_L^c \; \overline{i \sigma^2 {\ell'}_L^c} q_L'$	$+\frac{1}{4}$	$-\frac{1}{4}$
S^a	0	(3, 3, -1/3)	$ar{q}_L^\prime au^a i \sigma^2 {\ell^\prime}_L^c \; \overline{i \sigma^2 {\ell^\prime}_L^c} au^a q_L^\prime$	$+\frac{3}{4}$	$+\frac{1}{4}$

Table 11: Spin zero and spin one mediators contributing, at tree-level, to the Lagrangian $\mathcal{L}_{NP}^{0}(\Lambda)$ of eq. (7). Also shown are the operators they give rise to and the contribution to the coefficients C_1 and C_3 of the Lagrangian $\mathcal{L}_{NP}^{0}(\Lambda)$, when a single fermion generation is involved.

