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New space-like proposal for HLO

which involves Δαhad(t), the hadronic contribution to the running of  
α in the space-like region. It can be extracted from scattering data! 

  At present, the leading hadronic contribution aμHLO is computed  
    via the time-like formula:
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  Alternatively, exchanging the x and s integrations in aμHLO
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Muon-electron scattering
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What we know :: Anatomy of NLO

Born matrix-element

1-loop matrix elements

Real Radiation  
tree-level matrix elements

1.6 Adjoint Equations

1. Total-di↵erential system , Path parametrization

• a posteriori (standard) ::

parametrizing the kinematic variables after deriving the corresponding di↵. eqs.

(as shown before)

• a priori (novel) ::

introducing a parameter-dependent external kinematics, say pi = pi(⌧) (for a

given i) and di↵erentiating w.r.t. to ⌧ .

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation

() B0 = W

3. The homogeneous solutions , maximal cuts of the integrals

4. The maximal cuts ( Baikov parametrization

5. The homogeneous solutions , kernels of iterated integrals

6. IBPs on the cuts , algebraic relations for iterated integrals

) Elliptic-integrals relations from IBPs on the cuts.

2. Integrand Decomposition

Ni1...in =

nX

=1

Ni1...i�1i+1...in Di +�i1...in (2.1)

3. NLO x-section

d�LO (3.1)

�NLO ⇠
Z

d�m+1

d�

R
NLO +

Z

d�m

d�

V
NLO (3.2)
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Subtractions and MC-integration

 
Known since long

Fael Passera
- double checked

vanNieuwenhuizen



What we need :: Anatomy of NNLO

Double-real Radiation  
tree-level matrix elements

Single-real Radiation  
1-loop matrix elements

Virtual 2-loop matrix element

Anatomy of a NNLO calculation e.g. pp → 2j

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦ
m+2

dσ̂RR
NNLO +

∫

dΦ
m+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 31
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GOSAM
Recent improvements  
for QED/EW corrections
Chiesa Greiner Tramontano

 
this talk!
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Subtractions and MC-integration?
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Amplitudes Decomposition:  
                                            the algebraic way

Basis: {i j k}

Scalar product/Projection: 
to extract the components

a = ax i  +  ay j  +  az k

ax = a.i  

ay = a.j  

az = a.k



Projections :: On-Shell Cut-Conditions

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space
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d4`
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12
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(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
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2 �m2

i = 2⌘.qi(zi � zj) (4.6)
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(4.9)

– 6 –

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s
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vanishing denominators



Completeness Relations: cutting “1”

60 CHAPTER 3. MATHEMATICAL FORMALISM OF QUANTUM MECHANICS

i.e. the transition amplitudes of state |ψ ⟩ to states |ψn ⟩. If we now insert Eq. (3.23) into
Eq. (3.21)

|ψ ⟩ =
∑

n

|ψn ⟩ ⟨ψn|
︸ ︷︷ ︸

Pn

ψ ⟩ , (3.24)

we see that for a complete set of orthonormal basis vectors the orthogonal projectors
satisfy the following completeness relation

∑

n

Pn =
∑

n

|ψn ⟩ ⟨ψn| = 1 . (3.25)

A projection operator Pn acting on an arbitrary state |ψ ⟩ will thus project the state
to the state |ψn ⟩ with a probability of | ⟨ψn |ψ ⟩ |2. Summarizing, the Pn satisfy

PnPm = δnm and P 2
n = Pn . (3.26)

Physically, this represents the class of projective measurements such as the measure-
ment of the polarization of light.

Example: Polarization Filter
Consider a photon, linearly polarized along the 45◦-plane (with respect to the horizontal
plane). We can then describe its polarization by a state vector

|ψ ⟩ =
1√
2

( |H ⟩ + |V ⟩ ) , (3.27)

where |H ⟩ and |V ⟩ are the basis vectors of a 2–dimensional Hilbert space corresponding
to horizontal and vertical polarization respectively. If we perform a measurement of
the polarization by sending the photon through a polarization filter, e.g. in horizontal
orientation, we get the measurement outcome by calculating the expectation value of the
horizontal projector |H ⟩ ⟨H |. Lets first calculate the projection onto |H ⟩

|H ⟩ ⟨H |ψ ⟩ =
1√
2

⎛

⎝ |H ⟩ ⟨H |H ⟩
︸ ︷︷ ︸

1

+ |H ⟩ ⟨H |V ⟩
︸ ︷︷ ︸

0

⎞

⎠ =
1√
2
|H ⟩ , (3.28)

then we apply ⟨ψ | onto the left side to obtain the expectation value

⟨ψ |H ⟩ ⟨H |ψ ⟩ =
1

2

⎛

⎝ ⟨H | H ⟩
︸ ︷︷ ︸

1

+ ⟨V | H ⟩
︸ ︷︷ ︸

0

⎞

⎠ =
1

2
. (3.29)

It’s interesting to note that the expectation value of the projector is exactly the squared
transition amplitude ⟨H |ψ ⟩ – the transition probability. We conclude that the proba-
bility for the photon to pass the polarization filter is 1

2
.

i (-i) = 1

the richness of factorization

�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1
d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1
d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m2) = (/p�m)(/p+m) (4.10)
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D0 = q

2 �m

2
0

D1 = (q + p1)
2 �m

2
1

D2 = (q + p1 + p2)
2 �m

2
2

. . . . . .

D

n�2 = (q + p1 + p2 + . . .+ p

n�2)
2 �m

2
n�2

D

n�1 = (q � p

n

)2 �m

2
n�1

4.5 Transverse Space

d = 4� 2✏ (4.25)

d = d

//

+ d? (4.26)

n = d? (4.27)

"

µ⌫ = "

µ

"

⌫ (4.28)
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Completeness Relations: cutting “1”

the richness of factorization —> ideas for workshop organisation

=

Parco dei Colli Euganei



Amplitudes Decomposition:  
                                            the algebraic way

=
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Master functions

coefficients



Amplitudes Decomposition:  
                                            the algebraic way
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Multi-loop Integrand Decomposition
Polynomial Division

1.6 Adjoint Equations

1. Total-di↵erential system , Path parametrization

• a posteriori (standard) ::

parametrizing the kinematic variables after deriving the corresponding di↵. eqs.

(as shown before)

• a priori (novel) ::

introducing a parameter-dependent external kinematics, say p

i

= p

i

(⌧) (for a

given i) and di↵erentiating w.r.t. to ⌧ .

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation

() B0 = W

3. The homogeneous solutions , maximal cuts of the integrals

4. The maximal cuts ( Baikov parametrization

5. The homogeneous solutions , kernels of iterated integrals

6. IBPs on the cuts , algebraic relations for iterated integrals

) Elliptic-integrals relations from IBPs on the cuts.

2. Integrand Decomposition

N
i1...in =

nX

=1

N
i1...i�1i+1...in D

i +�

i1...in (2.1)

– 4 –
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5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

6. Polynomial Division

Ni1...in

Di1 · · ·Din
=

nX

=1

Ni1...i�1i+1...in Di

Di1 · · ·Di�1DiDi+1 · · ·Din
+

�i1...in

Di1 · · ·Din
(6.1)

– 7 –

Ossola & P.M. (2011); 
Zhang (2012); Badger Frellesvig Zhang (2012)  
Mirabella, Ossola, Peraro, & P.M. (2012) 



Multi-loop Integrand Decomposition
Polynomial Division

1.6 Adjoint Equations

1. Total-di↵erential system , Path parametrization

• a posteriori (standard) ::

parametrizing the kinematic variables after deriving the corresponding di↵. eqs.

(as shown before)

• a priori (novel) ::

introducing a parameter-dependent external kinematics, say p

i

= p

i

(⌧) (for a

given i) and di↵erentiating w.r.t. to ⌧ .

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation

() B0 = W

3. The homogeneous solutions , maximal cuts of the integrals

4. The maximal cuts ( Baikov parametrization

5. The homogeneous solutions , kernels of iterated integrals

6. IBPs on the cuts , algebraic relations for iterated integrals

) Elliptic-integrals relations from IBPs on the cuts.

2. Integrand Decomposition

N
i1...in =

nX

=1

N
i1...i�1i+1...in D

i +�

i1...in (2.1)

– 4 –

(�1)

z
1

z
2

· · · zn
=

1

z
1

(z
1

� z
2

) · · · (z
1

� zn)

+
1

(z
2

� z
1

)z
2

· · · (z
2

� zn)
+ . . . . . .

+
1

(zn � z
1

)(zn � z
2

) · · · (zn � zn�1

)zn
(4.9)

5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

6. Polynomial Division

Ni1...in

Di1 · · ·Din
=

nX

=1

Ni1...i�1i+1...in Di

Di1 · · ·Di�1DiDi+1 · · ·Din
+

�i1...in

Di1 · · ·Din
(6.1)

– 7 –

3

the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4ℓ
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4ℓ of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ϵ are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

n-denominator 
integrand

(n-1)-denominator 
integrand

remainder = residue

Ossola & P.M. (2011); 
Zhang (2012); Badger Frellesvig Zhang (2012)  
Mirabella, Ossola, Peraro, & P.M. (2012) 



�-Loop Recurrence Relation

4. FOR the COLLOQUIUM
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4.2 Fermion propagator
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  all orders (any number of loops and legs)
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Dimensional Regularization

if n-legs < 5 

Longitudinal space 
spanned by the 

(independent) legs

Transverse Space

  Denominators do not depend on “the angular variables” of the Transverse Space

 Numerators depend on “all” loop variables

Peraro Primo & P.M. (2016) 
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As a consequence, the integral over all angular variables θi can be immediately evaluated

by means of the orthogonality relation (B.3) satisfied by such polynomials,

∫ 1

−1
d cos θ(sin θ)2α−1C(α)

n (cos θ)C(α)
m (cos θ) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (1.13)

After this operation is performed, all spurious terms are automatically set to zero and non-

vanishing contributions are reduced, apart from constant prefactors, to additional powers

of λ2 in the numerator.

In the same way, after the change of variables (1.11)-(1.12), the integrand I2 turns

into a polynomial in {cos θij, sin θij}, i ̸= 1 ∧ i ̸= 2, with coefficients depending on λ11, λ22

and θ12, and the integration over all angular variables θij ̸= θ12 can be again performed

by using the orthogonality relation (1.13), which automatically sets to zero spurious terms

and reduce non-vanishing contributions to additional powers of λij .

2 One-loop integrals

We consider a general dimensional regulated n-point one loop integral of the type

Idn[N ] =

∫

ddq

πd/2

N (q)
∏n−1

i=0 Di

, (2.1)

with an arbitrary tensor numerator N (q) and denominators given by

Di =
(

q +
i

∑

j=0

pj
)2

+m2
i , p0 = 0, (2.2)

being {p1, ..., pn−1} the set of external momenta. A common way of parametrizing the

d-dimensional loop momentum consists in splitting it into

qα = qα[4] + µα, (2.3)

where qα[4] is a vector of the physical four-dimensional space and µα belongs to the orthogonal

(d− 4)-dimensional subspace, which is assumed to have an euclidean metric δij , so that

µ · µ = µ2 (µ2 > 0), q2 = q2[4] + µ2. (2.4)

Since all external momenta are four-dimensional,

pi · µ = 0, (2.5)

the denominators (2.2) can be written as

Di =
(

q[4] +
i

∑

j=0

pj
)2

+ µ2 +m2
i , (2.6)
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and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)

– 5 –
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We observe that, because of (2.14), when the integral (2.1) is written in terms of the

variables {qα[k],λ
α},

Idn[N ] =

∫

dkq[k]
πd/2

∫

dλd−k N (q)
∏n−1

i=0 Di

, (2.15)

all denominators become independent from the transverse components of qα,

Di =
(

q[k] +
i

∑

j=0

pj
)2

+ λ2 +m2
i . (2.16)

As a consequence, the integrand satisfies the requirement (1.3) since, besides being a func-

tion of qα[k], it only depends on λ2 and on a finite subset of components of λα, which

correspond to the transverse directions {xk+1, ..., x4},

N (q) ≡ N (qα[k],λ
2, {xk+1, ..., x4}). (2.17)

Therefore, the integral over the (d− k)-dimensional subspace is exactly of the type (1.1) so

that, if we introduce spherical coordinates
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

xk+1 = λ cos θ1

xk+2 = λ sin θ1 cos θ2

· · ·
x4 = λ cos θ4−k

∏3−k
i=1 sin θi,

(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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It should be remarked that, although we have used similar a labelling, the coefficients the

master integrals appearing (3.26) are different from the ones in (3.25a). Moreover, in (3.26),

these coefficients can present an explicit dependence on the space-time dimension, due to

the angular prefactors produced by the integration over the transverse variables. We give a

summary of the results obtained from the application of the adaptive integrand reduction

algorithm at one loop in Table 1.

Ii0 ··· ik τ ∆i0 ··· ik ∆int
i0 ··· ik ∆

′

i0 ··· ik

Ii0i1i2i3i4
1 − −

{x1, x2, x3, x4, µ2} {1} − −

Ii0i1i2i3
5 3 1

{x1, x2, x3,λ2} {1, x4, x24, x34, x44} {1,λ2,λ4} {1}

Ii0i1i2
10 2 1

{x1, x2,λ2} {1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

Ii0i2
10 2 1

{x1,λ2} {1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

Ii0i1
10 4 3

{x1, x2,λ2} {1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

Ii0
5 1 −

{λ2} {1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. In the first column, τ

labels the variables the denominators depend on. ∆i0 ··· ik indicates the residue obtained after the
polynomial division of an arbitrary (k + 1)-rank numerator and ∆int

i0 ··· ik
the result of its integral

over transverse directions. ∆
′

i0 ··· ik
corresponds to the minimal residue obtained from a further

division of ∆int
i0 ··· ik

. In the figures, wavy lines indicate massless particles, whereas solid ones stands
for arbitrary masses.

3.4 Two-loop adaptive integrand decomposition

In this section we use the adaptive integrand decomposition algorithm in order to determine

the universal parametrization of the residues appearing in the integrand representation (3.2)

of the three eight-point topologies shown in Fig. 4a-4c. The results hereby presented are

valid for arbitrary (internal and external) kinematic configuration.
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p8
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4 5 6 7
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11

(a) IP
12345678910 11

q1 q2
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p7
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4 5 6
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8
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10

11

(b) INP1
12345678910 11
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p2 p6
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p8
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8
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10

11

(c) INP2
12345678910 11

Figure 4: Maximum-cut topologies
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Ii1···in ∆i1···in

IP
12345678910 11

1

{1}

INP1
12345678910 11

1

{1}

INP2
12345678910 11

1

{1}

IP
2345678910 11

6

{1, x41}

INP1
2345678910 11

10

{1, x42}

INP2
1234578910 11

6

{1, x42}

INP2
1234678910 11

10

{1, x42}

IP
234678910 11

15

{1, x31, x41}

IP
234578910 11

33

{1, x41, x42}

INP1
234578910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
234678910 11

45

{1, x41, x42}

Ii1···in ∆i1···in

IP
1245678910 11

6

{1, x41}

INP1
1245678910 11

10

{1, x42}

INP1
1234568910 11

6

{1, x42}

INP2
1245678910 11

10

{1, x42}

INP1
245678910 11

15

{1, x31, x41}

INP2
234567910 11

33

{1, x41, x42}

INP1
124568910 11

39

{1, x41, x42}

INP1
123456810 11

15

{1, x32, x42}

INP2
124678910 11

45

{1, x41, x42}

INP1
2478910 11

20

{1, x21, x31, x41}

INP1
23478910 11

76

{1, x31, x41, x42}

INP1
24578910 11

116

{1, x41, x32, x42}

INP1
12457810 11

80

{1, x31, x41, x42}

Table 2: Residue parametrization for irreducible eight- and seven-point two-loop topologies. De-
nominators depend on the variables z = {x11, x21, x31, x41, x12, x22, x32, x42, µ11, µ22, µ12}. In the
second column we list the number of monomials of each residue and the set of variables appearing
in it.
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8 and 7 legs



Ii1···in ∆i1···in

IP
135678910 11

15

{1, x31, x41}

IP
124567910 11

62

{1, x41, x42}

INP1
23568910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
135678910 11

45

{1, x41, x42}

IP
25678910 11

20

{1, x21, x31, x41}

IP
23568910 11

76

{1, x31, x41, x42}

INP1
25678910 11

80

{1, x31, x41, x42}

INP1
24568910 11

116

{1, x41, x32, x42}

IP
3678910 11

15

{1, x11, x21, x31, x41}

IP
2578910 11

94

{1, x21, x31, x41, x42}

IP
2357910 11

160

{1, x31, x41, x32, x42}

INP1
2457910 11

185

{1, x31, x41, x32, x42}

Ii1···in ∆i1···in

IP
15678910 11

20

{1, x21, x31, x41}

IP
13567910 11

76

{1, x31, x41, x42}

INP1
15678910 11

80

{1, x31, x41, x42}

IP
1678910 11

15

{1, x11, x21, x31, x41}

INP1
13568910 11

116

{1, x31, x32, x42}

IP
1467910 11

94

{1, x21, x31, x41, x42}

IP
1678911

66

{1, x11, x21, x31, x41, x42}

IP
1256910 11

160

{1, x31, x41, y32, x42}

INP1
1357910 11

185

{1, x31, x41, x32, x42}

IP
1256911

180

{1, x11, x31, x41, x32, x42}

INP1
246910 11

246

{1, x31, x41, x22, x32, x42}

Table 3: Residue parametrization for irreducible six- and five-point two-loop topologies. Denomi-
nators depend on the variables z = {x11, x21, x31, x41, x12, x22, x32, x42, µ11, µ22, µ12}. In the second
column we list the number of monomials of each residue and the set of variables appearing in it.
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6 and 5 legs



Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
1567910 11

94 53 10

{1, x21, x31, x41, x42} {1, x21, x31,λ11,λ22,λ12} {1, x21, x31}

IP
12256910 11

160 93 22

{1, x31, x41, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

INP1
1356910 11

184 105 25

{1, x31, x42, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

IP
1356811

180 101 39

{1, x31, x41, x22, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
168910 11

66 35 10

{1, x11, x21, x31, x41, x42} {1, x11, x21, x31,λ11,λ22,λ12} {1, x11, x21, x31}

INP1
246910 11

245 137 55

{1, x31, x41, x21, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
36810 11

115 66 35

{1, x31, x41, x12, x22, x32, x42} {1, x31, x12, x22, x32,λ11,λ22,λ12} {1, x31, x12, x22, x32}

IP
136811

180 103 60

{1, x11, x31, x41, x22, x32, x42} {1, x11, x31, x22, x32,λ11,λ22,λ12} {1, x11, x31, x22, x32}

Table 4: Residue parametrization for irreducible four-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x31, x12, x22, x32,λ11,λ22,λ12}. For every step of the reduc-
tion algorithm, we list the number of monomials of each residues and the set of variables appearing
in it.

Ii1···in ∆i1···in ∆int
i1···ik ∆′

i1···ik

IP
1356911

180 22 4

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

INP1
156910 11

240 30 6

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

IP
15710 11

180 33 13

{1, x21, x31, x41, x12, x32, x42} {1, x21, x12,λ11,λ22,λ12} {1, x21, x12}

IP
16910 11

115 20 6

{1, x31, x41, x12, x22, x32, x42} {1, x11, x22λ11,λ22,λ12} {1, x12, x22}

IP
3610 11

100 26 16

{1, x11, x21, x31, x41, x22, x32, x42} {1, x11, x21, x22,λ11,λ22,λ12} {x11, x21, x22}

Table 5: Residue parametrization for irreducible three-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x12, x22,λ11,λ22,λ12}. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it.
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4 legs: divide-integra-divide

reducible

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a1 =
√
λ11 cos θ11

· · ·
ak =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

(1.11)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

b1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
bi =

√
λ22

[

cos θ12 cos θi1
∏i−1

j=1 sin θj1 + cos θi+12 sin θi1
∏i

j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1

j=1 sin θj2
(

δik + (1− δik)
∏i−k

l=1 sin θk+l−1 1
)]

.

(1.12)

From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
1567910 11

94 53 10

{1, x21, x31, x41, x42} {1, x21, x31,λ11,λ22,λ12} {1, x21, x31}

IP
12256910 11

160 93 22

{1, x31, x41, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

INP1
1356910 11

184 105 25

{1, x31, x42, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

IP
1356811

180 101 39

{1, x31, x41, x22, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
168910 11

66 35 10

{1, x11, x21, x31, x41, x42} {1, x11, x21, x31,λ11,λ22,λ12} {1, x11, x21, x31}

INP1
246910 11

245 137 55

{1, x31, x41, x21, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
36810 11

115 66 35

{1, x31, x41, x12, x22, x32, x42} {1, x31, x12, x22, x32,λ11,λ22,λ12} {1, x31, x12, x22, x32}

IP
136811

180 103 60

{1, x11, x31, x41, x22, x32, x42} {1, x11, x31, x22, x32,λ11,λ22,λ12} {1, x11, x31, x22, x32}

Table 4: Residue parametrization for irreducible four-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x31, x12, x22, x32,λ11,λ22,λ12}. For every step of the reduc-
tion algorithm, we list the number of monomials of each residues and the set of variables appearing
in it.

Ii1···in ∆i1···in ∆int
i1···ik ∆′

i1···ik

IP
1356911

180 22 4

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

INP1
156910 11

240 30 6

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

IP
15710 11

180 33 13

{1, x21, x31, x41, x12, x32, x42} {1, x21, x12,λ11,λ22,λ12} {1, x21, x12}

IP
16910 11

115 20 6

{1, x31, x41, x12, x22, x32, x42} {1, x11, x22λ11,λ22,λ12} {1, x12, x22}

IP
3610 11

100 26 16

{1, x11, x21, x31, x41, x22, x32, x42} {1, x11, x21, x22,λ11,λ22,λ12} {x11, x21, x22}

Table 5: Residue parametrization for irreducible three-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x12, x22,λ11,λ22,λ12}. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it.
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Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
15610 11

180 8 1

{1, x21, x31, x41, x22, x32, x42} {1,λ11,λ22,λ12} {1}

IP
1610 11

100 8 3

{1, x11, x21, x31, x4, x22, y3, x42} {1, x11,λ11,λ22,λ12} {1, x11}

IP
1310 11

100 26 16

{1, x11, x21, x31, x41, x12, x32, x42} {1, x11, x21, x12,λ11,λ22,λ12} {1, x11, x21, x12}

IP
210 11

45 9 6

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x12,λ11,λ22,λ12} {1, x11, x12}

IP
210 11

45 18 15

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x21, x12, x22,λ11,λ22,λ12} {1, x11, x22, x21, x22}

Table 6: Residue parametrization for irreducible two-point two-loop topologies. Denominators
depend on the variables τ = {x11, x12,λ11,λ22,λ12} in the case of massive external momenta and
on τ = {x11, x21, x12, x22,λ11,λ22,λ12} in the case of massless one. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it. In the figures, wavy lines indicate massless particles, whereas solid ones stands for arbitrary
masses.

Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
110 11

45 4 1

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1,λ11,λ22,λ12} {1}

Table 7: Residue parametrization for the irreducible one-point two-loop topology. Denominators
depend on the variables τ = {λ11,λ22,λ12}. For every step of the reduction algorithm, we list the
number of monomials of the residue and the set of variables appearing in it.
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Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
15610 11

180 8 1

{1, x21, x31, x41, x22, x32, x42} {1,λ11,λ22,λ12} {1}

IP
1610 11

100 8 3

{1, x11, x21, x31, x4, x22, y3, x42} {1, x11,λ11,λ22,λ12} {1, x11}

IP
1310 11

100 26 16

{1, x11, x21, x31, x41, x12, x32, x42} {1, x11, x21, x12,λ11,λ22,λ12} {1, x11, x21, x12}

IP
210 11

45 9 6

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x12,λ11,λ22,λ12} {1, x11, x12}

IP
210 11

45 18 15

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x21, x12, x22,λ11,λ22,λ12} {1, x11, x22, x21, x22}

Table 6: Residue parametrization for irreducible two-point two-loop topologies. Denominators
depend on the variables τ = {x11, x12,λ11,λ22,λ12} in the case of massive external momenta and
on τ = {x11, x21, x12, x22,λ11,λ22,λ12} in the case of massless one. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it. In the figures, wavy lines indicate massless particles, whereas solid ones stands for arbitrary
masses.

Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
110 11

45 4 1

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1,λ11,λ22,λ12} {1}

Table 7: Residue parametrization for the irreducible one-point two-loop topology. Denominators
depend on the variables τ = {λ11,λ22,λ12}. For every step of the reduction algorithm, we list the
number of monomials of the residue and the set of variables appearing in it.
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3, 2 , 1 legs: divide-integra-divide

reducible

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a1 =
√
λ11 cos θ11

· · ·
ak =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

(1.11)

and
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

b1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
bi =

√
λ22

[

cos θ12 cos θi1
∏i−1

j=1 sin θj1 + cos θi+12 sin θi1
∏i

j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1

j=1 sin θj2
(

δik + (1− δik)
∏i−k

l=1 sin θk+l−1 1
)]

.

(1.12)

From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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Adaptive Integrand Decomposition

Cutting in the Longitudinal Spaceidea n.2

D0 = q

2 �m

2
0

D1 = (q + p1)
2 �m

2
1

D2 = (q + p1 + p2)
2 �m

2
2

. . . . . .

D

n�2 = (q + p1 + p2 + . . .+ p

n�2)
2 �m

2
n�2

D

n�1 = (q � p

n

)2 �m

2
n�1

4.5 Transverse Space

d = 4� 2✏ (4.25)

d = d

//

+ d? (4.26)

– 9 –

Integrating over Transverse Spaceidea n.1

Integrand reduction beyond multivariate polynomial division

1&2-loop Automation :: AIDA Peraro Primo TorresBobadilla & P.M.  (w.i.p.)

Application to Mu-e scattering
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(x̄, ȳ) = F

[d]
n,m

(x,y)
IBP
=

X

i

c

i

M

[d]
i

(1.11)

1.4 Dimensionl Recurrence Relations

P (q

i

· p
j

, q

i

· q
j

) = G(q

i

, p

j

) (1.12)

with G = Gram determinant

G(q

i

, p

j

) =

��������

q

2
1 . . . (q1 · pe�1)

.

.

.

.

.

.

.

.

.

(p

e�1 · q1) . . . p

2
e�1

��������
(1.13)

– 2 –

1.1 Integration-by-parts Identities (IBPs)

8(n,m), NIBP = # of IBP relations = `(`+ e� 1)

Z

q1...q`

@

@q

µ

i

⇣
v

µ

f

n,m

(x,y)
⌘
= 0 , v = q1, . . . , q

`

, p1, . . . , pe�1. (1.4)

Relations between integrals associated to the same topology (or subtopologies)

c0 F

[d]
n,m

(x,y) +
X

i,j

c

i,j

F

[d]
n,m

(xi,yj) = 0 , (1.5)

xi = {x1, . . . , xi ± 1, . . . , x

n

} (1.6)

yj = {y1, . . . , yj ± 1, . . . y

n

} (1.7)

1.2 Master Integrals (MIs)

Independent set of integrals M

[d]
i

,

M

[d]
i

⌘
Z

q1...q`

m

i
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(x̄, ȳ) = F

[d]
n,m

(x,y)
IBP
=

X

i

c

i

M

[d]
i

(1.10)

• External-leg derivatives:

p

µ

i

@

@p

µ

j

M

[d]
k

=

Z

q1...q`

p

µ

i

@

@p

µ

j

m

i

(x̄, ȳ) = F
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(x̄, ȳ) , (1.8)

with a definite set of powers x̄, ȳ
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s

(p) (4.12)

D = 4� 2✏

Z
d

4�2✏
K ⌘

Z
d

4
k

Z
d

�2✏
µ ⌘

Z
d

4
k

Z
d⌦(✏)

Z 1

0
dµ

2 (µ2)�1�✏ (4.13)

K

↵

= k

↵

+ µ

↵

, /K = /k + /µ , K

2 = k

2 � µ

2
,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
u

s

(k) ū
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Differential Equations for Master Integrals
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kinematic variable  
(s,t,u, masses)

space-time  
dimensions



Differential Equations for Master Integrals
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Ojk(s) = pj,µ ·
N
∑

α=1

∂sα

∂pk,µ

∂M(s)

∂sα
=

N
∑

α=1

(

pj,µ · ∂sα

∂pk,µ

)
∂M(s)

∂sα
. (33)

According to the available number of the kinematic invariants, the r.h.s. of Eq. (32) and the r.h.s.
of Eq. (33) may be equated to form the following system

N
∑

α=1

(

pj,µ · ∂sα

∂pk,µ

)
∂M(s)

∂sα
= pj,µ

∂M(s)

∂pk,µ
, (34)

which can be solved in order to express ∂M(s)
∂sα

in terms of pj,µ
∂M(s)
∂pk,µ

, so the corresponding identity,
can be finally read as a differential equation for M .
Examples of such equations are the following.

• 2-point case.
• Differentiation with respect to a mass

∂

∂m2

{

p p

}

= −
{

p p

}

(35)

where, for simplicity, we assumed there is just one propagator of mass m.
• Differentiation with respect to the squared momentum

p2 ∂

∂p2

{

p p

}

=
1

2
pµ

∂

∂pµ

{

p p

}

(36)

• 3-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

}

=

=

[

A

(

p1,µ
∂

∂p1,µ
+ p2,µ

∂

∂p2,µ

)

+ B

(

p1,µ
∂

∂p2,µ
+ p2,µ

∂

∂p1,µ

)]{ p1

p2

p3

}

,

(37)

with P = p1 + p2 and A, B rational coefficients.

• 4-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

p4

}

=

[

C

(

p1,µ
∂

∂p1,µ
− p3,µ

∂

∂p3,µ

)

+ Dp2,µ
∂

∂p2,µ
+

+ E(p1,µ + p3,µ)

(
∂

∂p3,µ
− ∂

∂p1,µ
+

∂

∂p2,µ

)]{ p1

p2

p3

p4

}

, (38)
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Q2 ∂

∂Q2

{ p1

p2

p3

p4

}

=

[

F

(

p1,µ
∂

∂p1,µ
− p2,µ

∂

∂p2,µ

)

+ Gp2,µ
∂

∂p2,µ
+

+ H(p2,µ − p1,µ)

(
∂

∂p1,µ
+

∂

∂p2,µ
+

∂

∂p3,µ

)]{ p1

p2

p3

p4

}

, (39)

with P = p1 + p2, Q = p1 − p3 and C, D, E, F, G, H rational coefficients.

Equation (34) holds for any function M(s). In particular, let us assume that M(s) is a master integral.
We can now substitute the expression of M in the r.h.s. of one of the Eqs.(36-39), according to the
case, and perform the direct differentiation of the integrand. It is clear that we obtain a combination
of several integrals, all belonging to the same topology as M . Therefore, we can use the solutions of
the IBP-id’s, LI-id’s and other identities for that topology and express everything in terms of the
MI’s of the considered topology (and its subtopologies). If there is more than one MI, the procedure
can be repeated for all of them as well. In so doing, one obtains a system of linear differential
equations in s for M and for the other MI’s (if any), expressing their s-derivatives in terms of the
MI’s of the considered topology and of its subtopologies.

The system is formed by a set of first-order differential equations (ODE), one for each MI, say
Mj , whose general structure reads like the following,

∂

∂sα
Mj(D, s) =

∑

k

Ak(D, s) Mk(D, s) +
∑

h

Bh(D, s) Nh(D, s) (40)

where α = 1, · · · ,N , is the label of the invariants, and Nk are MI’s of the subtopologies. Note
that the above equations are exact in D, and the coefficients Ak, Bk are rational factors whose
singularities represent the thresholds and the pseudothresholds of the solution.
The system of equations (40) for Mj is not homogeneous, as they may involve MI’s of subtopologies.
It is therefore natural to proceed bottom-up, starting from the equations for the MI’s of the simplest
topologies (i.e. with less denominators), solving those equations and using the results within the
equations for the MI’s of the more complicated topologies with additional propagators, whose non-
homogeneous part can then be considered as known.

4.2. Boundary conditions

The coefficients of the differential equations (40) are in general singular at some kinematic points
(thresholds and pseudothresholds), and correspondingly, the solutions of the equations can show
singular behaviours in those points, while the unknown integral might have not. The boundary
conditions for the differential equations are found by exploiting the known analytical properties of
the MI’s under consideration, imposing the regularity or the finiteness of the solution at the pseudo-
thresholds of the MI. This qualitative information is sufficient for the quantitative determination
of the otherwise arbitrary integration constants, which naturally arise when solving a system of
differential equations.
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M

[d+2]
k

= ⌦(d, p

i

)

�1
Z

q1...q`

G m

k

(x̄, ȳ)
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which can be seen as a Dimensional recurrence relation
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Two-Loop Integrals for Mu-E Scattering
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Figure 1: Two-loop four point topologies for e-µ scattering

The arguments ⌘
i

of this d log-form are referred to as the alphabet and contain the following

9 letters:

⌘1 = x , ⌘2 = 1 + x ,

⌘3 = 1� x , ⌘4 = y ,

⌘5 = 1 + y , ⌘6 = 1� y, ,

⌘7 = x + y , ⌘8 = 1 + x y,

⌘9 = 1� y (1� x � y),

(3.4)

It can be easily checked that all letters are real and positive in the region

x > 0 , 0 < y < 1 . (3.5)

Since the alphabet is rational and has only algebraic roots, the solution can be directly

expressed in terms of GPLs.

4 Master Integrals for the first Integral Family

The following set of MIs satisfy a DEQ, which is linear in ✏

F1 = ✏2 T1 , F2 = ✏2 T2 , F3 = ✏2 T3 ,
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Planar Integrals :: Family-2 

Non-Planar Integrals

massless electron

massive muon
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Figure 2: Two-loop MIs T1,...,34 for the first integral family.

for each master integral. This can be achieved by either knowing the integral at a special

kinematic point or by demanding the absence of unphysical thresholds that appear in the

alphabet 3.4. Below we describe in detail how the boundary constant for each integral was

fixed:

– 6 –

p1

p2 p3

p4
T1

p1

p2 p3

p4
T2

p1

p2 p3

p4
T3

p1

p2 p3

p4
T4

p1

p2 p3

p4
T5

p1

p2 p3

p4
T6

p1

p2 p3

p4
T7

p1

p2 p3

p4
T8

p1

p2 p3

p4
T9

p1

p2 p3

p4
T10

p1

p2 p3

p4
T11

p1

p2 p3

p4
T12

p1

p2 p3

p4
T13

p1

p2 p3

p4
T14

p1

p2 p3

p4
T15

p1

p2 p3

p4
T16

p1

p2 p3

p4
T17

p1

p2 p3

p4
T18

p1

p2 p3

p4
T19

p1

p2 p3

p4
T20

p1

p2 p3

p4
T21

p1

p2 p3

p4
T22

p1

p2 p3

p4
T23

p1

p2 p3

p4
T24

p1

p2 p3

p4
T25

p1

p2 p3

p4
T26

p1

p2 p3

p4
T27

p1

p2 p3

p4
T28

p1

p2 p3

p4

(k2+p1)2

T29

p1

p2 p3

p4
T30

p1

p2 p3

p4

(k2+p1)2

T31

p1

p2 p3

p4
T32

p1

p2 p3

p4

(k1+p2)2

T33

p1

p2 p3

p4

(k2-p1)2

T34

Figure 2: Two-loop MIs T1,...,34 for the first integral family.

for each master integral. This can be achieved by either knowing the integral at a special

kinematic point or by demanding the absence of unphysical thresholds that appear in the

alphabet 3.4. Below we describe in detail how the boundary constant for each integral was

fixed:

– 6 –

 

Passera Primo Schubert & P.M. (coming soon)

Bonciani Ferroglia Gehrmann vonManteuffel

31 MIs 

alphabet: 8 rational letters

solution: GPL’s

using GiNac vs SecDecnumerical checks

A different set of MIs already known

We recomputed them with an alternative/simpler way
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Figure 3: Two-loop MIs T1,...,42 for the topology T4
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42 MIs 

alphabet: 9 rational letters

solution: GPL’s

using GiNac vs SecDecnumerical checks

Passera Primo Schubert & P.M. (coming soon)

NEW



30 MIs for non-planar diagrams
Primo Schubert & P.M. (w.i.p.)
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The last missing pieces

NEW



Let us assume that H can be split in two terms as

H(t) = H0(t) + ϵH1(t) , (2.2)

where H0 is a solvable Hamiltonian and ϵ ≪ 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(t) = ϵH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= ϵH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)⟩ = ϵH1,I(t)|ΨI(t)⟩ , (2.6)

where the ϵ-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ϵ-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ϵ;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.
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Schroedinger Eq’n (eps-linear Hamiltonian)

Interaction Picture

Matrix Transform

Schroedinger Eq’n (canonical form)

10. Remainder Theorem
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, deg(r) < deg(g) (10.1)

g(x) = (x� x0) : ) f(x)

(x� x0)
= q(x) +

r0
(x� x0)

, r0 = f(x0) (10.2)

11. Quantum Mechanics

i~ @t| (t)i = H(✏, t)| (t)i , H(✏, t) = H0(t) + ✏H1(t) (11.1)
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8. Di↵. Eqs.

H
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(t) = B†(t) H
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(t) B(t) (8.1)

@
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f(x, y, ✏) =
⇣
A

10

(x, y) + ✏A
11

(x, y)
⌘
f(x, y, ✏) (8.2)

@
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⇣
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20
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canonical systems of differential equations for Feynman integrals:
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In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-
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3. Magnus series expansion

Consider a generic linear matrix differential equation [17]

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 . (3.1)

If A(x) commutes with its integral
∫ x
x0

dτA(τ), e.g. in the scalar case, the solution can be

written as

Y (x) = e
∫ x
x0

dτA(τ)
Y0 . (3.2)
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A(x) non-commutative
In the general non-commutative case, one can use the Magnus theorem [15] to write the

solution as,

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 , (3.3)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =
∞
∑

n=1

Ωn(x) . (3.4)

The proof of the Magnus theorem is presented in the Appendix A, together with the actual

expression of the terms Ωn. The first three terms of the expansion (3.4) read as follows:

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (3.5)

We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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Time-evolution in Perturbation Theory  

perturbation parameter: ɛ  

Linear Hamiltonian in ɛ 

Unitary transform  

Schroedinger Equation   
in the interaction picture (ɛ-factorization)  

solution: Dyson series 

Kinematic-evolution in Dimensional Regularization 

space-time dimensional parameter: ɛ = (4-d)/2 

Linear system in ɛ 

non-Unitary Magnus transform  

System of Differential Equations   in canonical form (ɛ-factorization)  

solution: Dyson/Magnus series 
Henn (2013)

Argeri, Di Vita, Mirabella,  
Schlenk, Schubert, Tancredi, P.M. (2014)

Quantum Mechanics Feynman Integrals

Feynman integrals can be determined from differential equations that looks like   
gauge transformations

�NLO =

Z

n
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d�Born + d�Virtual

◆
+

Z

n+1
d�Real

�NLO =

Z

n
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d�Born + d�Virtual +

Z

1
d�Subtractions

◆
+

Z

n+1
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�g
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X
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�
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spin�s
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s
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Z
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4
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Z
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4
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Z
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Z 1
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dµ
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= A(d, x) (4.16)

= e⌦(d,x) (4.17)

= e
R
dx A(d,x) (4.18)
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The matrices Q(j)
n are defined as

Q(j)
n =

n−j+1
∑

m=1

Q(1)
m Q(j−1)

n−m , Q(1)
n ≡ Ωn , Q(n)

n ≡ Ωn
1 . (3.9)

In the following, we will use both Magnus and Dyson series. The former allows us to

easily demonstrate how a system of DE’s, whose matrix is linear in ϵ, can be cast in the

canonical form. The latter can be more conveniently used for the explicit representation

of the solution.

4. Differential equations for Master Integrals

We consider a linear system of first order differential equations

∂xf(ϵ, x) = A(ϵ, x) f(ϵ, x) , (4.1)

where f is a vector of MI’s, while x is a variable depending on kinematic invariants and

masses. We suppose that A depends linearly on ϵ,

A(ϵ, x) = A0(x) + ϵA1(x) , (4.2)

and we change the basis of MI’s via the Magnus series obtained by using A0 as kernel,

f(ϵ, x) = B0(x) g(ϵ, x) , B0(x) ≡ eΩ[A0](x,x0) . (4.3)

Using Eq. (A.13), one can show that B0 obeys the equation,

∂xB0(x) = A0(x)B0(x) , (4.4)

which, analogously to the quantum-mechanical case, Eq. (2.5), implies that the new basis

g of MI’s fulfills a system of differential equations in the canonical factorized form,

∂xg(ϵ, x) = ϵÂ1(x)g(ϵ, x) . (4.5)

The matrix Â1 is related to A1 by a similarity map,

Â1(x) = B−1
0 (x)A1(x)B0(x) , (4.6)

and does not depend on ϵ. The solution of Eq. (4.5) can be found by using the Magnus

theorem with ϵÂ1 as kernel

g(ϵ, x) = B1(ϵ, x)g0(ϵ) , B1(ϵ, x) = eΩ[ϵÂ1](x,x0) , (4.7)

where the vector g0 corresponds to the boundary values of the MI’s. Therefore, the solution

of the original system Eq. (4.1) finally reads,

f(ϵ, x) = B0(x)B1(ϵ, x)g0(ϵ) . (4.8)
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where the vector g0 corresponds to the boundary values of the MI’s. Therefore, the solution

of the original system Eq. (4.1) finally reads,

f(ϵ, x) = B0(x)B1(ϵ, x)g0(ϵ) . (4.8)

– 6 –

The matrices Q(j)
n are defined as

Q(j)
n =

n−j+1
∑

m=1

Q(1)
m Q(j−1)

n−m , Q(1)
n ≡ Ωn , Q(n)

n ≡ Ωn
1 . (3.9)

In the following, we will use both Magnus and Dyson series. The former allows us to

easily demonstrate how a system of DE’s, whose matrix is linear in ϵ, can be cast in the

canonical form. The latter can be more conveniently used for the explicit representation

of the solution.

4. Differential equations for Master Integrals

We consider a linear system of first order differential equations

∂xf(ϵ, x) = A(ϵ, x) f(ϵ, x) , (4.1)

where f is a vector of MI’s, while x is a variable depending on kinematic invariants and

masses. We suppose that A depends linearly on ϵ,

A(ϵ, x) = A0(x) + ϵA1(x) , (4.2)

and we change the basis of MI’s via the Magnus series obtained by using A0 as kernel,

f(ϵ, x) = B0(x) g(ϵ, x) , B0(x) ≡ eΩ[A0](x,x0) . (4.3)

Using Eq. (A.13), one can show that B0 obeys the equation,

∂xB0(x) = A0(x)B0(x) , (4.4)

which, analogously to the quantum-mechanical case, Eq. (2.5), implies that the new basis

g of MI’s fulfills a system of differential equations in the canonical factorized form,
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8. Di↵. Eqs.

@

x

f(x, y, ✏) =
⇣
A

10

(x, y) + ✏A

11

(x, y)
⌘
f(x, y, ✏) (8.1)

@

y

f(x, y, ✏) =
⇣
A

20

(x, y) + ✏A

21

(x, y)
⌘
f(x, y, ✏) (8.2)

@

x

g(x, y, ✏) = ✏Â

1

(x, y) g(x, y, ✏) (8.3)

@

y

g(x, y, ✏) = ✏Â

2

(x, y) g(x, y, ✏) (8.4)

dg(x, y, ✏) = ✏ dÂ(x, y) g(x, y, ✏) , dÂ ⌘ Â

1

dx+ Â

2

dy (8.5)

{x, 1� x, y, 1� y, 1� x� y, x+ y} (8.6)
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Total Differential          dLog-form

5. The matrix A

[3]
y,0 has no diagonal term as well,

A

[3]
y,0 = N

[3]
y,0 , (2.21)

so we can define the last basis change

A

[3]
�

! A

[4]
�

, B

[4] ⌘ e

⌦[N
[3]
y,0]

. (2.22)

After the last transformation we observe that

A

[4]
x,0 = 0 = A

[4]
y,0 . (2.23)

This means that the basis change of (2.8), with the matrix B given by

B ⌘ B

[0]
B

[1]
B

[2]
B

[3]
B

[4] = e

⌦[A
m

2
,0]

e

⌦[D
[0]
x,0]

e

⌦[D
[1]
y,0]

e

⌦[N
[2]
x,0]

e

⌦[N
[3]
y,0]

, (2.24)

absorbs the constant terms of A
x

and A

y

in the ✏-linear systems in (??) and brings them

to the canonical form (2.9):

A

�

(✏,m2
, x, y) ! ✏Â

�

(x, y). (2.25)

We can conveniently combine all di↵erential equations to a total di↵erential

dI = ✏ dÂ I with dÂ = Â

x

dx+ Â

y

dy , (2.26)

which in our case is a sum of d log forms

dA =
nX

i=1

M

i

d log ⌘
i

(2.27)

2.3 Iterated Integrals

[Ste: the subsubsections are temporary, just while I type!] [Ste: shouldn’t we

put this in a separate chapter?]

2.3.1 Building the solution

The solution of a canonical system of di↵erential equations (2.26), with given initial con-

ditions I(~x0), can be compactly written at a point4~x = (x1, x2) = (x, y) as

I(~x) = P exp

⇢
✏

Z

�

dA
�
I(~x0) . (2.28)

4 The following discussion holds in n-dimensions, but for simplicity we specialize it to the case of a

2-dimensional space, relevant for our calculation. [Ste: It should hold also in the case of more

general exact di↵erentials df
i

, not just d log ⌘
i

, shouldn’t it? Maybe there are MIs for which

the di↵erential equation is more general than just d log but can still be expressed as iterated

integrals.]
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Constant 
matrices

Alphabet

with µ the ’t Hooft scale of dimensional regularization and

S
✏

= (4⇡)✏ �(1 + ✏) . (2.5)

All planar Feynman integrals appearing in the virtual corrections of muon-electron scat-

tering at NNLO can be conveniently mapped into two sets of propagators, referred to as

integral families.

The first integral family includes topologies T1, T2, T3, T7 and T8, depicted in figure 1, and

is given by:

D1 = (k1)
2 � m2, D2 = (k2)

2 � m2, D3 = (k1 + p1)
2, D4 = (k2 + p1)

2,

D5 = (k1 + p1 + p2)
2, D6 = (k2 + p1 + p2)

2, D7 = (k1 � k2)
2,

D8 = (k1 + p4)
2, D9 = (k2 + p4)

2, . (2.6)

The second family includes topologies T4, T5, T9 and T10, shown in figure 1, whose propa-

gators are defined as

D1 = (k1)
2 � m2, D2 = (k2)

2, D3 = (k2 + p2)
2, D4 = (k1 + p2)

2,

D5 = (k2 + p2 � p3)
2, D6 = (k1 + p1 � p3)

2 � m2, D7 = (k1 � p1)
2,

D8 = (k2 � p1)
2 � m2, D9 = (k1 � k2)

2 � m2, . (2.7)

For both families k1 and k2 denote the loop momenta.

3 Di↵erential Equation

In order to determine all master integrals appearing in the two integral families we derive

their di↵erential equations in the dimensionless variables �s/m2 and �t/m2. We can

further facilitate their evaluation by performing a variable change

� s

m2
= x, � t

m2
=

(1� y)2

y
, (3.1)

which rationalizes the corresponding canonical DEQ.

Choosing an initial set of master integrals that is linear in the dimensional regularization

parameter ✏ we utilize the algorithm described in [9] to find a set of master integrals

satisfying a canonical DEQ in each variable. After combining both DEQ into a single total

di↵erential, we arrive at the following form

dI = ✏dAI , (3.2)

with

dA =
9X

i=1

M
i

d log(⌘
i

) . (3.3)
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Canonical systems and Iterated Integrals

6
Iterated Integrals

Our starting point is the differential equation in the canonical basis

dI = ✏ dA I , (6.1)

with

dA =

n
X

i=1

Mi d log ⌘i , (6.2)

where dA is the d log matrix written in terms of differentials d log ⌘i (that contain the kine-
matic dependence) and coefficient matrices Mi (with rational-number entries). The integra-
bility conditions for eq. (9.16) read

@a@bA � @b@aA = 0 , [@aA, @bA] = 0 . (6.3)

6.1. Chen’s Iterated Integrals

The general solution of the canonical system of differential equations (9.16) can be compactly
written at a point ~x = (x1, x2, . . . , xn) as

I(✏, ~x) = P exp

⇢

✏

Z

�
dA

�

I(✏, ~x0) , (6.4)

where I(✏, ~x0) is a vector of arbitrary constants, depending on ✏, while dA depends only on
the kinematic variables. In the above expression, the path-ordered exponential is a short
notation for the series

P exp

⇢

✏

Z

�
dA

�

= + ✏

Z

�
dA + ✏2

Z

�
dA dA + ✏3

Z

�
dA dAdA . . . , (6.5)
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in which the line integral of the product of k matrix-valued 1-forms dA is understood in the
sense of Chen’s iterated integrals [128] (see also [129] and the pedagogical lectures [130]) and
� is a piecewise-smooth path

� : [0, 1] 3 t 7! �(t) = (�1(t), �2(t), . . . , �n(t)) , (6.6)

such that �(0) = ~x0 and �(1) = ~x. It follows from Chen’s theorem that the iterated integrals
in eq. (6.5) do not depend on the actual choice of the path, provided the curve does not
contain any singularity of dA and it does not cross any of its branch cuts, but only on the
endpoints. In this sense, if one fixes ~x0 and lets ~x vary, eq. (6.4) can be thought of as a
function of ~x. In the limit ~x ! ~x0, the line shrinks to a point and all the path integrals
in eq.(6.5) vanish, so that I(✏, ~x) ! I(✏, ~x0), i.e. the integration constants have a natural
interpretation as initial values, and the path-ordered exponential as evolution operator. We
assume that the vector of MI’s at any point I(~x) is normalized in such a way that it admits
a Taylor series in ✏:
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(~x) + ✏ I(1)

(~x) + ✏2I(2)
(~x) + . . . . (6.7)

The solution I(✏, ~x) is then in principle determined through (6.4) at any order of the ✏-
expansion, and reads (up to the coefficient of ✏4)
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The problem of solving (9.16), given a set of initial conditions I(~x0), reduces therefore to
the evaluation of matrices of the type
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The problem of solving (9.16), given a set of initial conditions I(~x0), reduces therefore to
the evaluation of matrices of the type

Z

�
dA . . . dA
| {z }

k times

, (6.13)

whose entries, due to (9.17), are linear combinations of Chen’s iterated integrals of the form
Z

�
d log ⌘i

k

. . . d log ⌘i1 ⌘
Z

0t1...t
k

1
g�
i
k

(tk) . . . g�
i1

(t1) dt1 . . . dtk , (6.14)
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in which the line integral of the product of k matrix-valued 1-forms dA is understood in the
sense of Chen’s iterated integrals [128] (see also [129] and the pedagogical lectures [130]) and
� is a piecewise-smooth path

� : [0, 1] 3 t 7! �(t) = (�1(t), �2(t), . . . , �n(t)) , (6.6)
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with

g�
i (t) =

d

dt
log ⌘i(�(t)) . (6.15)

We refer to the number of iterated integrations k as the weight of the path-integral. The
empty integral (eq. (6.14) for k = 0) is defined to be equal to 1. We stress that only the
matrices (6.13) do not depend on the explicit choice of the path. The individual summands
of the form in eq. (6.14), which contribute to their entries, in general depend on such a
choice. To keep the notation compact, we define

C [�]
i
k

,...,i1
⌘

Z

�
d log ⌘i

k

. . . d log ⌘i1 , (6.16)

which also emphasizes that the iterated integrals in (6.14) are in general functionals of the
path �.

6.1.1. Properties of Chen’s iterated integrals

The general theory of iterated path integrals was developed by Chen [128]. Chen’s iterated
integrals satisfy a number of properties that we summarize for completeness:

• Invariance under path reparametrization. The integral C [�]
i
k

,...,i1
does not depend on how

one chooses to parametrize the path �.

• Reverse path formula. If the path ��1 is the path � traversed in the opposite direction,
then

C [��1]
i
k

,...,i1
= (�1)

kC [�]
i
k

,...,i1
. (6.17)

• Recursive structure. From (6.14) and (6.15) it follows that the line integral of one d log

is defined as usual
Z

�
d log ⌘ ⌘

Z

0t1

d log ⌘(�(t))

dt
dt , (6.18)

and only depends on the endpoints ~x0, ~x
Z

�
d log ⌘ = log ⌘(~x) � log ⌘(~x0) . (6.19)

It is convenient to introduce the path integral “up to some point along �”: given a
path � and a parameter s 2 [0, 1], one can define the 1-parameter family of paths

�s : [0, 1] 3 t 7! ~x = (�1(s t), �2(s t), . . . , �n(s t)) . (6.20)

If s = 1, then trivially �s = �. If s = 0 the image of the interval [0, 1] is just {~x0}.
If s 2 (0, 1), then the curve �s([0, 1]) starts at �(0) = ~x0 and overlaps with the curve
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we obtain the same numerical value as for path � (6.33), therefore we have shown that our
combination of integrals is indeed path invariant.

6.2. Goncharov Polylogarithms

If the alphabet is rational we are able to express our solution in terms of Goncharov’s
multiple polylogarithms (GPL for short) [131–134],

G(~wn; x) ⌘ G(w1, ~wn�1; x) ⌘
Z x

0
dt

1

t � w1
G(~wn�1; t), (6.39)

G(

~
0n; x) ⌘ 1

n!

logn
(x), (6.40)

with ~wn being a vector of n arguments. The number n is referred to as the weight of G(~wn; x)

and amounts to the number of iterated integrations needed to define it. Equivalently one
has

@x G(~wn; x) = @x G(w1, ~wn�1; x) =

1

x � w1
G(~wn�1; x). (6.41)

GPLs inherit the shuffle algebra relations from the Chen’s iterated integrals

G(~m; x) G(~n; x) = G(~m; x) tt G(~n; x) =

X

~p=~m tt~n

G(~p; x), (6.42)

where shuffle product ~m tt~n denotes all possible merges of ~m and ~n preserving their re-
spective orderings. In the limit, where the argument of the GPL approaches the value of
the leftmost weight, the GPL has a logarithmic divergence which we can make explicit with
the help of the shuffle algebra

lim

x!w1
G(w1, w2, . . . , wn; x) = lim

x!w1
(G(w1; x)G(w2, . . . , wn; x)

�G(w2, w1, w3, . . . , wn; x) � · · · � G(w2, w3, . . . , wn, w1; x)) , (6.43)

where all GPLs are now finite in the limit except for G(w1; x) = log(1 � x
w1

) which is
logarithmic divergent. In the case, where the first k weights are equal and diverge simulta-
neously, we can use the above formula recursively.
In the limit x ! 0 we encounter a different behavior. Here only the trailing zeros may
develop a logarithmic divergence. But nevertheless we can use the shuffle algebra in the
same manner as we did for the previous divergence

lim

x!0
G(w1, . . . , wn, 0; x) = lim

x!0
(G(0; x)G(w1, . . . , wn; x) � G(w1, . . . , wn�1, 0, wn; x)

� · · · � G(0, w1, . . . , wn; x)) .
(6.44)

It is important to note that a divergent limit and higher powers of GPLs do not necessarily
commute

lim

x!w1
(G(w1; x))

2 6=
✓

lim

x!w1
G(w1; x)

◆2

, (6.45)
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Canonical system of DE

Solution as path-ordered exponential

Path invariance

Taylor expansion and Dyson/Magnus series

Chen’s Iterated integral

Henn (2013)

a special case :: Goncharov’s polylogs

All integrals belonging to this family can be reduced to a set of 8 MIs, whose dependence

on p21 is parametrized in terms of the dimensionless variable

x = � p21
m2

. (A.4)

The basis of integrals

I1 =✏2 , I2 = �✏2p21 , I3 = �✏2p21 ,

I4 = ✏2 2m2 + ✏2(m2 � p21) ,

I5 = ✏(1� ✏)m2 , I6 = �✏3p21 ,

I7 = �✏4 p21 , I8 = ✏3 p21(p
2
1 � m2) (A.5)

fulfills a canonical system of di↵erential equations,

dI = ✏ dA I , (A.6)

where

dA = M0 d log x +M�1 d log(x + 1) , (A.7)

with

M0 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 �1
4 �1

2 0 0 1
4

1
2

3
4

0 �1
2 �1 0 0 1

2 �1 5
2

1

CCCCCCCCCCCCA

, M�1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

�1 �2 0 0 0 0 0 0

0 0 �2 �1 0 0 0 0

0 0 �4 � 2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 �1
2 � 3 0 0

0 0 0 0 0 0 0 0

1 2 0 0 �1
2 � 3 0 �4

1

CCCCCCCCCCCCA

.

(A.8)

In the Euclidean region x > 0 the general solution of the system of di↵erential equations

can expressed in terms of harmonic polylogarithms (HPL’s) and the boundary constants

of all master integrals, with the only exception of I1 = 1 and

I5(✏) =
�(1� ✏)�(1 + 2✏)

�(1 + ✏)
, (A.9)

– 14 –



can be fixed by demanding their regularity at x ! 0. In particular, for the I7(✏, x) we

obtain

I7(✏, x) =

✓
�1

3
⇡2H(0,�1;x)� H(0,�1,�1,�1;x) + H(0,�1, 0,�1;x)

◆
✏4 +O(✏5).

(A.10)

This expression, when it is analytic continued to the region x < 0, has a smooth limit for

x ! �1 ( p21 = m2 ),

I7(✏,�1) =
3⇡4

40
✏4 +O(✏5). (A.11)

which has been used in eq. (4.14) .

B d log-forms

In this appendix we collect the coe�cient matrices of the d log-forms

dA = M1 d log(x) +M2 d log(1 + x) +M3 d log(1� x)

+M4 d log(y) +M5 d log(1 + y) +M6 d log(1� y)

+M7 d log(x + y) +M8 d log (1 + x y)

+M9 d log (1� y(1� x � y)) , (B.1)

for the master integrals in the first and second integral family.

B.1 First integral family

For the first integral family we find the following coe�cient matrices:

M1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1
4 0 0 1

2 0 1
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�12 �12 0 0 1
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0 �1 0 0 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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8 �1 0 0 �3 1
4 0 0 0 0 0 1 �1 �12 �10 �6 0 0 �43 0 0 2 1 1 3 0 0 0
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can be fixed by demanding their regularity at x ! 0. In particular, for the I7(✏, x) we
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Figure 3: Two-loop MIs T1,...,34 for the first integral family.
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In the Euclidean region x > 0 the general solution of the system of di↵erential equations

can expressed in terms of harmonic polylogarithms (HPL’s) and the boundary constants

of all master integrals, with the only exception of I1 = 1 and

I5(✏) =
�(1� ✏)�(1 + 2✏)

�(1 + ✏)
, (A.9)
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Figure 3: Two-loop MIs T1,...,34 for the first integral family.

for each master integral. This can be achieved by either knowing the integral at a special

kinematic point or by demanding the absence of unphysical thresholds that appear in the

alphabet 3.4. Below we describe in detail how the boundary constant for each integral was

fixed:
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1.6 Adjoint Equations

1. Total-di↵erential system , Path parametrization

• a posteriori (standard) ::

parametrizing the kinematic variables after deriving the corresponding di↵. eqs.

(as shown before)

• a priori (novel) ::

introducing a parameter-dependent external kinematics, say pi = pi(⌧) (for a

given i) and di↵erentiating w.r.t. to ⌧ .

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation

() B0 = W

3. The homogeneous solutions , maximal cuts of the integrals

4. The maximal cuts ( Baikov parametrization

5. The homogeneous solutions , kernels of iterated integrals

6. IBPs on the cuts , algebraic relations for iterated integrals

) Elliptic-integrals relations from IBPs on the cuts.

2. Integrand Decomposition

Ni1...in =

nX

=1

Ni1...i�1i+1...in Di +�i1...in (2.1)

3. NLO x-section

d�LO (3.1)
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Z
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R
NLO +
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d�m
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V
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4. NLO x-section
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I
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k
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I
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30 (x, y) = (4.4)

I
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30 (x, y) = (4.5)
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30 (x, y) = (4.6)
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Summary ...
Feasibility of Two-Loop QED Corrections analytically 

…Outlook

Progress in Mu-e Scattering @ 2-loop QED 
==> benefit for e+ e- —> Mu+ Mu- @ 2-loop QED  
==> benefit for p p —> t T @ 2-loop QCD

 

Master Integrals via Differential Equations + Magnus Series

Amplitude decomposition via Adaptive Integrand Decomposition (AID)   
Mu-e scattering :: a first example of 2-loop automation for massive amplitudes

Building the 2-loop amplitude (Form Factors and AID) 

Analytic continuation and Numerical Evaluation of 2-loop MIs

The 1-Loop amplitude and 2-loop renorm. counterterms (GoSam, AID)

Implementing a Subtraction Scheme for NNLO (hinc sunt leones)

MonteCarlo Integration >> see Piccinini’s talk



Muon-electron scattering:  
Theory kickoff  workshop 
4-5 September 2017 
Padova 

Organizing Committee 
Carlo Carloni Calame - INFN Pavia 
Pierpaolo Mastrolia - U. Padova 
Guido Montagna - U. Pavia 
Oreste Nicrosini - INFN Pavia 
Paride Paradisi - U. Padova 
Massimo Passera - INFN Padova (Chair) 
Fulvio Piccinini - INFN Pavia 
Luca Trentadue - U. Parma 

https://agenda.infn.it/internalPage.py?pageId=0&confId=13774

https://agenda.infn.it/internalPage.py?pageId=0&confId=13774

