

Hadron structure studies in a single-polarised Drell-Yan process at COMPASS

Jan Matoušek*, on behalf of COMPASS Trieste Group

* Charles University, Prague, Czechia & Universita degli studi di Trieste, Italy; jan.matousek@cern.ch

- International 24 institutes from 13 countries.
- About 220 physicists, wide physics program [1].

Polarized target

- PT for DY [2,3]: 2 cells, \leftrightarrow 4 cm, each 55 cm long.
- Material: solid state NH₃ (polarizable H nuclei).
- Cells oppositely polarized \rightarrow positive and negative temperature of the spin ansambles.
- Paramagnetic centres (e⁻ spins) polarized in 2.5 T field of a superconducting magnet, transfer to nuclei by microwaves.

Experimental area

- CERN, Geneva (CH/FR),
- Super Proton Synchrotron (SPS) North Area,

Target dilution cryostat new remote monitoring

- Control-room moved away from the experimental building
- New Linux-based, modular software ptread [2]:
- Instruments (thermometers, pressure gauges etc.) connected by GPIB or RS232 interfaces.
- Measurements sent to the centralised COMPASS DCS via DIM service

- 'Frozen spin' mode at ~65 mK reached by a dilution cryostat (cooling by dilution of ³He in ⁴He).
- Magnetic field rotation 90° or 180° using 0.6 T dipole.

CERN Accellerators (from Wikimedia Commons [4])

Spectrometer magnets

Muon filters • Enable to

Data taking

- July 8 November 12, 2015.
- The ~ 18 weeks = 9 periods, each having 2 weeks with reversed target polarisation.
- In total 34 904 Drell-Yan events in invariant mass range $4.3 < M < 8.5 \text{ GeV/c}^2$ were collected (all selections applied).
- Second data taking in 2018.

The remote control-room of COMPASS.

Negative pion beam

- 190 GeV, 10⁹ π/spill of 10 s.
- Produced by SPS protons hitting a primary target.
- 97% π⁻, 2.5% K⁻, 0.5% p⁻,
- can be tagged by Cherenkov counters (CEDARs).

Hadron structure

• Parton model, born in the late 60's: nucleon is made of point-like constituents (partons).

on partons, breaking the proton.

Scattering of a lepton on a point-like proton.

- $f_i(x)$ parton distribution function (PDF), x - fraction of p mom. carried by the parton.
- Spin-dependent PDFs: helicity \longrightarrow and transversity $(]_{-} (]_{-$
- Parton transverse momentum (k_{τ}^2) dependent (TMD) PDFs:

P	TT	$\frac{f_1(x,k_{\rm T}^2)}{f_1(x,k_{\rm T}^2)}$	Longitudinai	$\frac{f_{1T}^{\perp}(x,k_{\rm T}^2)}{f_{1T}^{\perp}(x,k_{\rm T}^2)}$
\mathbf{a}	U	(number density)	_	(Sivers)
r	\mathbf{L}		$q_1(x,k_{ m T}^2)$	$a_{1T}(x,k_{T}^{2})$
t		- 1 2 >	(helicity)	$g_{11}(\omega, \omega_{\Gamma})$
0		$h_1^{\pm}(x,k_{\mathrm{T}}^2)$		$h_1(x,k_{\mathrm{T}}^2)$
n	\mathbf{T}	(Boer-Mulders)	$h_{1L}^{\perp}(x,k_{\mathrm{T}}^{2})$	(transversity)
p.		R.		$h_{1T}^\perp(x,k_{ m T}^2)$
$\neg r$	\sim	ffoot		

Hadron absorber

• μ filter, ensures reasonable detector occupancies.

• Production of dileptons in hadron interaction, in

 $\pi^{-}(P_{\pi}) + p^{\uparrow}(P_{p}) \rightarrow \gamma^{*}(q) + X \rightarrow \mu^{-}(k) + \mu^{+}(k') + X$

• Cross-section in leading order TMD approach:

 $\frac{\mathrm{d}\sigma_{\mathrm{DY}}}{\mathrm{d}^4 q \,\mathrm{d}\Omega} = \frac{\alpha^2}{CQ^2} \bigg\{ (1 + \cos^2\theta) F_{\mathrm{U}}^1 + \sin^2\theta \,\cos 2\phi \,F_{\mathrm{U}}^{\cos 2\phi}$

Structure functions F are (in TMD formalism)

• Sivers effect expected, but with opposite sign.

• COMPASS has tested this with the same

 $+ |S_{\mathrm{T}}| \left| (1 + \cos^2 \theta) \sin \phi_{\mathrm{S}} F_{\mathrm{T}}^{\sin \phi_{\mathrm{S}}} \right|$

 $+\sin^2\theta\,\sin(2\phi+\phi_{\rm S})F_{\rm T}^{\sin(2\phi+\phi_{\rm S})}$

 $+\sin^2\theta \sin(2\phi-\phi_{\rm S})F_{\rm T}^{\sin(2\phi-\phi_{\rm S})}$

Sivers asymmetry in

the Drell-Yan pro-

cess, measured by

compared with three

COMPASS,

theoretical

predictions [6].

 $\varphi_S q_T$

leading ord. by quark-antiquark annihilation.

Drell-Yan process

• COMPASS 2015 and 2018:

•

Trigger

- Scintillating hodoscopes,
- trigger on coincidence of 2 signals (dimuon).

Tracking

distinguish muons

thanks to their easy

penetration through

materials.

- About 350 detector planes,
- Different kinds: Micromegas, GEM, drift chambers, MWPC, mini drift tubes.

Data selection

- Dimuon selection,
- high invariant mass selected to supress physics background,
- time and MT trigger (low polar angles) cuts to supress combinatorial background (muons from beam pion decay),
- data quality cuts (apparatus stability – "bad spills", track chi², low q_{T} – lower resolution in azimuthal angles),
- target cells selected.

 Observed in semi-inclusive DIS on HERMES and COMPASS as a left-right asymmetry in the production of hadrons (π and K).

Can be explained (for small P_{T}) by correlation of k_{τ} of quarks with spin of the parent transversely polarised hadron, i.e. the Sivers function.

apparatus, and kinematic range.

convolutions of TMD PDFs.

• An alternative option for analysis: Use weighting of events with powers of q_{τ} to disentangle the convolution of TMD PDFs [7].

Distribution of reconstructed Virtual photon transverse Dilepton invariant mass. Distribution of Bjorken x. Both for p and π lies in the Region above the charmonia momentum. Low q_{τ} is cut vertices. The target cells and because of lower resolution. the absorber can be seen. valence region. was used.

Follow us

f compasscern

@COMPASS_CERN

References

- http://www.compass.cern.ch/ [1]
- J. Matoušek et al. (COMPASS PT group), in Proceedings of [2] the 22nd International Spin Symposium, Urbana-Champaign, USA (2017).
- G. Nukazuka et al. (COMPASS PT group), in Proceedings [3] of the 22nd International Spin Symposium, Urbana-Champaign, USA (2017).
- https://en.wikipedia.org/wiki/File:Location_Large_Hadron_Collider.PNG. [4]
- C. Adolph et al. (COMPASS), PLB 744 (2015) 250. [5]
- M. Aghasyan et al. (COMPASS), CERN-EP-2017-059, [6] arXiv:1704.00488 [hep-ex], submitted to Phys. Rev. Lett.
- A. V. Efremov, et al., Phys. Lett. B612 (2005) 233-244, [7] arXiv:hep-ph/0412353.
- F. Bradamante (COMPASS), in Proceedings of the 22nd [8] International Spin Symposium, Urbana-Champaign, USA. 2017. arXiv:1702.00621 [hep-ex].