# On the mathematical error of Aspect/Bell and its resolution 

Frank Lad<br>University of Canterbury, Department of Mathematics and Statistics

You may download these overheads and my manuscript with this same title from https://www.researchgate.net/

May 6, 2017

## Topics for this talk:

- Review the setup of Bell's inequality in an optical context and its violation as currently understood
- Identify neglected symmetric functional relations
- Review de Finetti's "fundamental theorem of prevision"
- Apply the FTP to the QM-motivated assertions yielding a 4-D coherent prevision polytope
- Review, assess, and correct Aspect's empirical work and perhaps Yack a bit


## The Physics

The Journeys of a pair of prepared photons

and their detection via angled polarizers

$$
\begin{aligned}
& A\left(\mathbf{a}^{*}, \lambda\right)=+1 \text { when parallel detection } \\
& A\left(\mathbf{a}^{*}, \lambda\right)=-1 \text { when perpendicular detection, and } \\
& \text { and similarly for } B(\cdot, \cdot)= \pm 1
\end{aligned}
$$

## Relative angle settings of detectors yielding the most egregious purported violation of Bell's inequality



BTW ... Double these angles $\ldots-\pi / 4,-3 \pi / 4, \pi / 4$ and $-\pi / 4$
Why ? We'll see !

## The Quantum Physics

## QM-motivated probabilities

$$
\begin{aligned}
& P\left[\left(A\left(\mathbf{a}^{*}\right)=+1\right)\left(B\left(\mathbf{b}^{*}\right)=+1\right)\right] \\
& \quad=P\left[\left(A\left(\mathbf{a}^{*}\right)=-1\right)\left(B\left(\mathbf{b}^{*}\right)=-1\right)\right]=\frac{1}{2} \cos ^{2}\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& P\left[\left(A\left(\mathbf{a}^{*}\right)=+1\right)\left(B\left(\mathbf{b}^{*}\right)=-1\right)\right] \\
& \quad=P\left[\left(A\left(\mathbf{a}^{*}\right)=-1\right)\left(B\left(\mathbf{b}^{*}\right)=+1\right)\right]=\frac{1}{2} \sin ^{2}\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right) .
\end{aligned}
$$

N.B. These imply $E\left[A\left(\mathbf{a}^{*}\right) B\left(\mathbf{b}^{*}\right)\right]=\cos 2\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right)$, and BTW $P\left[A\left(\mathbf{a}^{*}\right)=+1\right]=P\left[B\left(\mathbf{b}^{*}\right)=+1\right]=1 / 2$.

## The Metaphysics

$$
\begin{gathered}
s\left(\lambda, \mathbf{a}, \mathbf{b}, \mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right) \equiv \quad \text { as per Aspect/Bell/CHSH } \\
\begin{array}{c}
A(\lambda, \mathbf{a}) B(\lambda, \mathbf{b})-A(\lambda, \mathbf{a}) B\left(\lambda, \mathbf{b}^{\prime}\right)+A\left(\lambda, \mathbf{a}^{\prime}\right) B(\lambda, \mathbf{b})+A\left(\lambda, \mathbf{a}^{\prime}\right) B\left(\lambda, \mathbf{b}^{\prime}\right) \\
\\
\text { for } \lambda \in \Lambda \\
=A(\lambda, \mathbf{a})\left[B(\lambda, \mathbf{b})-B\left(\lambda, \mathbf{b}^{\prime}\right)\right]+A\left(\lambda, \mathbf{a}^{\prime}\right)\left[B(\lambda, \mathbf{b})+B\left(\lambda, \mathbf{b}^{\prime}\right)\right] \\
= \\
\in
\end{array} \\
\in\left\{(\lambda, \mathbf{b})\left[A(\lambda, \mathbf{a})+A\left(\lambda, \mathbf{a}^{\prime}\right)\right]-B\left(\lambda, \mathbf{b}^{\prime}\right)\left[A(\lambda, \mathbf{a})-A\left(\lambda, \mathbf{a}^{\prime}\right)\right]\right.
\end{gathered}
$$

So $E[s(\lambda)]=E[A(\lambda, \mathbf{a}) B(\lambda, \mathbf{b})]-E\left[A(\lambda, \mathbf{a}) B\left(\lambda, \mathbf{b}^{\prime}\right)\right]$

$$
+E\left[A\left(\lambda, \mathbf{a}^{\prime}\right) B(\lambda, \mathbf{b})\right]+E\left[A\left(\lambda, \mathbf{a}^{\prime}\right) B\left(\lambda, \mathbf{b}^{\prime}\right)\right]
$$

$$
=E[A(\mathbf{a}) B(\mathbf{b})]-E\left[A(\mathbf{a}) B\left(\mathbf{b}^{\prime}\right)\right]+E\left[A\left(\mathbf{a}^{\prime}\right) B(\mathbf{b})\right]+E\left[A\left(\mathbf{a}^{\prime}\right) B\left(\mathbf{b}^{\prime}\right)\right]
$$

## The Aspect/Bell Quandary

Applying the QM probs and expectations to all four egregious angles yields
$\cos 2(\mathbf{a}, \mathbf{b})=\cos 2\left(\mathbf{a}^{\prime}, \mathbf{b}\right)=\cos 2\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)=1 / \sqrt{2}$
and $\cos 2\left(\mathbf{a}, \mathbf{b}^{\prime}\right)=-1 / \sqrt{2}$
So it seems $E\left[s\left(\lambda, \mathbf{a}, \mathbf{b}, \mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)\right]=2 \sqrt{2}>2!!!$
Hmmmm ... Let's see!
BTW for later ...
$\frac{1}{2} \cos ^{2}(\mathbf{a}, \mathbf{b})=\frac{1}{2} \cos ^{2}\left(\mathbf{a}^{\prime}, \mathbf{b}\right)=\frac{1}{2} \cos ^{2}\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)=\frac{1}{2} \sin ^{2}\left(\mathbf{a}, \mathbf{b}^{\prime}\right) \approx .4268$
and $\frac{1}{2} \sin ^{2}(\mathbf{a}, \mathbf{b})=\frac{1}{2} \sin ^{2}\left(\mathbf{a}^{\prime}, \mathbf{b}\right)=\frac{1}{2} \sin ^{2}\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)=\frac{1}{2} \cos ^{2}\left(\mathbf{a}, \mathbf{b}^{\prime}\right) \approx .0732$

What are we talking about? ... All this and more!
Let's consider the "realm matrix" of all
(im)possible observations ... smile
We'll look in banks of columns at
the observable quantities $A(\mathbf{a}), B(\mathbf{b}), A\left(\mathbf{a}^{\prime}\right), B\left(\mathbf{b}^{\prime}\right)$;
their products
$A(\mathbf{a}) B(\mathbf{b}), A(\mathbf{a}) B\left(\mathbf{b}^{\prime}\right), A\left(\mathbf{a}^{\prime}\right) B(\mathbf{b}), A\left(\mathbf{a}^{\prime}\right) B\left(\mathbf{b}^{\prime}\right) ;$
a mysterious product $\mathcal{A}\left(\mathbf{a}^{\prime}\right) \mathcal{B}\left(\mathbf{b}^{\prime}\right)$;
and four symmetric function quantities
$\Sigma_{/(\mathbf{a}, \mathbf{b})}, \Sigma_{/\left(\mathbf{a}, \mathbf{b}^{\prime}\right)}, \Sigma_{/\left(\mathbf{a}^{\prime}, \mathbf{b}\right)}, \Sigma_{/\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)} . \ldots$ PLUS YACK
$\left(\begin{array}{c}A(\mathbf{a}) \\ B(\mathbf{b}) \\ A\left(\mathbf{a}^{\prime}\right) \\ B\left(\mathbf{b}^{\prime}\right) \\ * * * * * \\ A(\mathbf{a}) B(\mathbf{b}) \\ A(\mathbf{a}) B\left(\mathbf{b}^{\prime}\right) \\ A\left(\mathbf{a}^{\prime}\right) B(\mathbf{b}) \\ A\left(\mathbf{a}^{\prime}\right) B\left(\mathbf{b}^{\prime}\right) \\ * * * * * \\ \mathcal{A}\left(\mathbf{a}^{\prime}\right) \mathcal{B}\left(\mathbf{b}^{\prime}\right) \\ * * * * * \\ \Sigma /(\mathbf{a}, \mathbf{b}) \\ \Sigma /\left(\mathbf{a}, \mathbf{b}^{\prime}\right) \\ \Sigma /\left(\mathbf{a}^{\prime}, \mathbf{b}\right) \\ \Sigma /\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right) \\ * * * * * \\ s(\lambda) \\ s_{1}\left(R^{\prime}\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)\right. \\ \text { Lad }\end{array}\right.$
*****

$$
(A(\mathbf{a})=+1)(B(\mathbf{b})=+1)
$$

$$
(A(\mathbf{a})=-1)(B(\mathbf{b})=-1)
$$

$$
(A(\mathbf{a})=+1)(B(\mathbf{b})=-1)
$$

$$
* * * * *
$$

$$
(A(\mathbf{a})=+1)\left(B\left(\mathbf{b}^{\prime}\right)=+1\right)
$$

$$
(A(\mathbf{a})=-1)\left(B\left(\mathbf{b}^{\prime}\right)=-1\right)
$$

$$
(A(\mathbf{a})=+1)\left(B\left(\mathbf{b}^{\prime}\right)=-1\right)
$$

*****

$$
\left(A\left(\mathbf{a}^{\prime}\right)=+1\right)(B(\mathbf{b})=+1)
$$

$$
\left(A\left(\mathbf{a}^{\prime}\right)=-1\right)(B(\mathbf{b})=-1)
$$

$$
\left(A\left(\mathbf{a}^{\prime}\right)=+1\right)(B(\mathbf{b})=-1)
$$

*     *         *             *                 * 

$\left(A\left(\mathbf{a}^{\prime}\right)=+1\right)\left(B\left(\mathbf{b}^{\prime}\right)=+1\right)$

$$
\left(A\left(\mathbf{a}^{\prime}\right)=-1\right)\left(B\left(\mathbf{b}^{\prime}\right)=-1\right)
$$

$$
\left(A\left(\mathbf{a}^{\prime}\right)=+1\right)\left(B\left(\mathbf{b}^{\prime}\right)=-1\right)
$$


$1 \begin{array}{llll}1 & 1 & 1-1-1-1-1-1-1-1-1 & 1 \\ 1 & 1 & 1\end{array}$ $1-1 \quad 1-1-1 \quad 1-1 \quad 1 \quad 1-1 \quad 1-1-1 \quad 1-1 \quad 1$ $1 \begin{array}{llllllll}1-1-1 & 1 & 1-1-1-1-1 & 1 & 1-1-1 & 1 & 1\end{array}$ $1-1-1 \quad 1 \quad 1-1-1 \quad 1 \quad 1-1-1 \quad 1 \quad 1-1-1 \quad 1$
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1-1-1-1-1-1-1-1-1\end{array}$
$3-1-1-1 \quad 1 \quad 1-3 \quad 1 \quad 1-3 \quad 1 \quad 1-1-1-1 \quad 3$
3 1-1 $111-1-3-1-1-3-1 \quad 1 \quad 1-1 \quad 1 \quad 3$
$3-1 \quad 1 \quad 1-1-1-3 \quad 1 \quad 1-3-1-1 \quad 1 \quad 1-1 \quad 3$
$311-1-1 \quad 1-3-1-1-3 \quad 1-1-1 \quad 1 \quad 1 \quad 3$
2 2-2 2 2-2-2-2-2-2-2 $2 \begin{array}{lllll}2-2 & 2\end{array}$
2400
$\left(\begin{array}{rrrrrrrrrrrr}2 & 2 & -2 & 2 & 2 & -2 & -2-2-2-2-2 & 2 & 2-2 & 2 & 2 \\ 2 & 4 & 0 & 2 & 2 & 0 & 0 & -2-4-2-2 & 0 & 0 & -2 & 2 \\ 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array} 1\right.$
$\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$ $\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$ $0 \begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllll}1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$
$\left.\begin{array}{llllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

## After the yack you know

$$
\begin{aligned}
\Sigma_{/\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)} & \equiv \Sigma\left(A(\mathbf{a}) B(\mathbf{b}), A(\mathbf{a}) B\left(\mathbf{b}^{\prime}\right), A\left(\mathbf{a}^{\prime}\right) B(\mathbf{b})\right) \\
& \equiv A(\mathbf{a}) B(\mathbf{b})+A(\mathbf{a}) B\left(\mathbf{b}^{\prime}\right)+A\left(\mathbf{a}^{\prime}\right) B(\mathbf{b})
\end{aligned}
$$

and similarly for other quantities named $\Sigma_{/\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right)}$
and
$A\left(\mathbf{a}^{\prime}\right) B\left(\mathbf{b}^{\prime}\right)=\left(\Sigma_{/\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)}=3\right.$ or -1$)-\left(\Sigma_{/\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)}=-3\right.$ or +1$)$ and similarly for other quantities named $A\left(\mathbf{a}^{*}\right) B\left(\mathbf{b}^{*}\right)$

These are completely symmetric functional relations.

## The neglected functional relations imply

Well $E[s(\lambda)]=E[A(\lambda, \mathbf{a}) B(\lambda, \mathbf{b})]-E\left[A(\lambda, \mathbf{a}) B\left(\lambda, \mathbf{b}^{\prime}\right)\right]$

$$
+E\left[A\left(\lambda, \mathbf{a}^{\prime}\right) B(\lambda, \mathbf{b})\right]+E\left[A\left(\lambda, \mathbf{a}^{\prime}\right) B\left(\lambda, \mathbf{b}^{\prime}\right)\right]
$$

... sure enough, BUT ... this equals

$$
\begin{aligned}
=E[ & A(\mathbf{a}) B(\mathbf{b})]-E\left[A(\mathbf{a}) B\left(\mathbf{b}^{\prime}\right)\right]+E\left[A\left(\mathbf{a}^{\prime}\right) B(\mathbf{b})\right] \\
& +E\left[\left(\Sigma_{/\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)}=3 \text { or }-1\right)-\left(\Sigma_{/\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)}=-3 \text { or }+1\right)\right]
\end{aligned}
$$

... enter Bruno de Finetti and FTP
$\mathbf{X}_{N+1} \ldots$ any quantities whatsoever
$\mathbf{R}\left(\mathbf{X}_{N+1}\right)=\binom{\mathbf{R}_{N, K}}{\mathbf{r}_{N+1}}$
If you assert $P\left(\mathbf{X}_{N}\right)=\mathbf{p}_{N}$
then the further assertion of $P\left(X_{N+1}\right)$ coheres, iff
it lies within $\left\{\min \mathbf{r}_{N+1} \mathbf{q}_{K}, \max \mathbf{r}_{N+1} \mathbf{q}_{K}\right\}$ subject to restrictions that $\mathbf{R}_{N, K} \mathbf{q}_{K}=\mathbf{p}_{N}$ along with $\mathbf{1}_{K}^{T} \mathbf{q}_{K}=1$ and $\mathbf{q}_{K} \geq \mathbf{0}_{K}$.

If there is no feasible solution then $P\left(\mathbf{X}_{N}\right)=\mathbf{p}_{N}$ itself is incoherent.

## What do coherent assertions of QM probabilities specify ?

Look at the realm matrix to see the setup of the LP problems ...

QM probs for a polarization pair are coherent for any angle setting
QM probs for the same photon pair are coherent for any two angles
QM probs for the same photon pair are coherent for any three angles
QM probs for the same photon pair at all four angle settings are INCOHERENT !

What do assertions for any three angles imply for the fourth ???

## Results of 8 LP problems ... in a Table

... with Yack provided right here ...
Table 1: Bounding values of coherent QM expectations for $s(\lambda)$ LP problem $E[s(\lambda)] \quad P_{++}\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right) \quad P_{+-}\left(\mathbf{a}^{*}, \mathbf{b}^{*}\right) \quad E\left[A\left(\mathbf{a}^{*}\right) B\left(\mathbf{b}^{*}\right)\right.$

| $\min E[s(\lambda)]\left(\mathbf{a}, \mathbf{b}^{\prime}\right)$ | 1.1213 | .5 | 0 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| $\max E[s(\lambda)]\left(\mathbf{a}, \mathbf{b}^{\prime}\right)$ | 2.0 | .2803 | .2197 | .1213 |
| $\min E[s(\lambda)]\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)$ | 1.1213 | 0 | .5 | -1.0 |
| $\max E[s(\lambda)]\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)$ | 2.0 | .2197 | .2803 | -.1213 |
| $\min E[s(\lambda)](\mathbf{a}, \mathbf{b})$ | 1.1213 | 0 | .5 | -1.0 |
| $\max E[s(\lambda)](\mathbf{a}, \mathbf{b})$ | 2.0 | .2197 | .2803 | -.1213 |
| $\min E[s(\lambda)]\left(\mathbf{a}^{\prime}, \mathbf{b}\right)$ | 1.1213 | 0 | .5 | -1.0 |
| $\max E[s(\lambda)]\left(\mathbf{a}^{\prime}, \mathbf{b}\right)$ | 2.0 | .2197 | .2803 | -.1213 |

Their solution vectors are the cols of $\quad \mathbf{q}_{16}$ VertexMat $=$
$\left(\begin{array}{cccccccc}.3902 & .2803 & 0 & .0732 & 0 & .0732 & 0 & .0732 \\ 0 & .0732 & .3902 & .2803 & 0 & .0732 & 0 & .0732 \\ .0366 & 0 & .0366 & 0 & 0 & 0 & .0366 & 0 \\ 0 & .0732 & 0 & .0732 & 0 & .0732 & .3902 & .2803 \\ 0 & .0732 & 0 & .0732 & .3902 & .2803 & 0 & .0732 \\ .0366 & 0 & .0366 & 0 & .0366 & 0 & 0 & 0 \\ 0 & 0 & .0366 & 0 & .0366 & 0 & .0366 & 0 \\ .0366 & 0 & 0 & 0 & .0366 & 0 & .0366 & 0 \\ .0366 & 0 & 0 & 0 & .0366 & 0 & .0366 & 0 \\ 0 & 0 & .0366 & 0 & .0366 & 0 & .0366 & 0 \\ .0366 & 0 & .0366 & 0 & .0366 & 0 & 0 & 0 \\ 0 & .0732 & 0 & .0732 & .3902 & .2803 & 0 & .0732 \\ 0 & .0732 & 0 & .0732 & 0 & .0732 & .3902 & .2803 \\ .0366 & 0 & .0366 & 0 & 0 & 0 & .0366 & 0 \\ 0 & .0732 & .3902 & .2803 & 0 & .0732 & 0 & .0732 \\ .3902 & .2803 & 0 & .0732 & 0 & .0732 & 0 & .0732\end{array}\right)$

## Projection of the Prevision Polytope ... in a Table

... with even more Yack ...
Table 2: Vertex vectors of the coherent QM probability polytope

| $P_{++}(\mathbf{a}, \mathbf{b})$ | 0.4268 | 0.4268 | 0.4268 | 0.4268 | 0.0000 | 0.2197 | 0.4268 | 0.4268 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{++}\left(\mathbf{a}, \mathbf{b}^{\prime}\right)$ | 0.5000 | 0.2803 | 0.0732 | 0.0732 | 0.0732 | 0.0732 | 0.0732 | 0.0732 |
| $P_{++}\left(\mathbf{a}^{\prime}, \mathbf{b}\right)$ | 0.4268 | 0.4268 | 0.4268 | 0.4268 | 0.4268 | 0.4268 | 0.0000 | 0.2197 |
| $P_{++}\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)$ | 0.4268 | 0.4268 | 0.0000 | 0.2197 | 0.4268 | 0.4268 | 0.4268 | 0.4268 |
| $E[s(\lambda)]$ | 1.1213 | 2.0000 | 1.1213 | 2.0000 | 1.1213 | 2.0000 | 1.1213 | 2.0000 |

A movie of this 4-D polytope passing through 3-D space.
Rachael Tappenden, director

## In SLO MO, Slices of the 4-D $\mathbf{P}_{++}$polytope





## What to make of Aspect's Empirical Estimation Results?

Estimate each product moment by method of moments ...

$$
\hat{E}(\mathbf{a}, \mathbf{b})=\frac{\left[N_{++}(\mathbf{a}, \mathbf{b})-N_{+-}(\mathbf{a}, \mathbf{b})-N_{-+}(\mathbf{a}, \mathbf{b})+N_{--}(\mathbf{a}, \mathbf{b})\right]}{\left[N_{++}(\mathbf{a}, \mathbf{b})+N_{+-}(\mathbf{a}, \mathbf{b})+N_{-+}(\mathbf{a}, \mathbf{b})+N_{--}(\mathbf{a}, \mathbf{b})\right]},
$$

using experiments on distinct photon pairs
Well OK ... but don't pretend that all four product pairs are free!
Let's check consequences of recognition using simulation data

## Simulation Results ... requiring some Yack

"Bell's Theorem: the Naive View of an Experimentalist" ... A. Aspect, 2002

Table 3: Corrections to Aspect's estimate of $E[s(\lambda)]$

$$
\begin{array}{ccccc} 
& \left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right) & \left(\mathbf{a}, \mathbf{b}^{\prime}\right) & \left(\mathbf{a}^{\prime}, \mathbf{b}\right) & \left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right) \\
\hat{E}\left[A\left(\mathbf{a}^{*}\right) B\left(\mathbf{b}^{*}\right)\right] & 0.707232 & -0.706186 & 0.706840 & 0.707480 \\
\text { Aspect } \hat{E}[s] & 2.827738 & 2.827738 & 2.827738 & 2.827738 \\
\hat{E}\left[A\left(\mathbf{a}^{*}\right) B\left(\mathbf{b}^{*}\right)\right] \text { as fnctn } & -0.353078 & 0.354348 & -0.354766 & -0.353934 \\
\text { Corrected } \hat{E}[s] & 1.767180 & 1.767204 & 1.765740 & 1.766964
\end{array}
$$

Note the tantalizing tease of an "estimate" near to $2.5 / \sqrt{2}=$ 1.767766952966369

Hmmm ...

## Concluding Comments

** Bell would be pleased today, worries about the boundary
** Einstein's pleading for supplementary or hidden variables
** Partial assertions of interval probabilities
** General relevance of complementary distributions?

$$
\mathbf{q}_{N}=(N-1)^{-1}\left(\mathbf{1}-\mathbf{p}_{N}\right)
$$

** References and downloads, see next slide

Well, so it is St Paddy's day ... I'll leave you with a problem from another Irishman, Samuel Beckett

## References and Downloads

** Download an MS and slides for this lecture from https://www.researchgate.net/
** A very insightful article that should be studied by physicists and probabilists is ...
"The role of probability in Statistical Physics", Romano Scozzafava (2000),

Transport Theory and Statistical Physics, 29, 107-123.
** Something interesting of my own, with colleagues, is ...
"Extropy: complementary dual of Entropy", Frank Lad, Giuseppe Sanfilippo and Gianna Agrò (2015) Statistical Science, 30, 40-58.

