Performances of the Calocube prototype using 2016 SPS electron beam

Calocube Data Analysis Eugenio Berti, 8 May 2017

Outline

Purpose

Measure the linearity and the resolution of the Calocube prototype for electron beam

Analysis steps

- Extract Tracker information
- Relative Gain Calibration
- Leakage correction
- Performances

Extract Tracker information

Tracker-Calocube offset Muon beam Event selection

<u>Main selection</u> fBTfitflag = 3 fBTtracksX(Y) = 0, 1

... not strict condition
fChi2X(Y)/NdofX(Y) < 1</pre>

... always true if fBTfitflag = 3 fNpointX(Y) = 5 fNdofX(Y) = 3

<u>.. always true with e, m or p beam</u> finteraction = 0, 1

cube > 1 MIP

The displacement between tracker RS and Calocube RS is

Relative Gain Calibration

Calibration Map

Purpose Calibrate the gain of Large PD of these three crystals for layers 1-10

<u>Idea</u>

 Use tracker to select electron hitting the <u>central cube</u> of calorimeter at center
 Perform relative calibration between <u>cube on column 3</u> and the relative

Try different values of Factor= Gain[13] / Gain[11] from 0 to 3
 Build y² distribution using all those points

• Build χ^2 distribution using all these points

• Fit χ^2 distribution in order to extract best value of Factor 10

Possible explanation of the energy trend of the relative gain factor

In our approach we neglected the different position of PDs between Column 1 and Column 1 Coloumn 3, but the signal due to <u>direct ionization</u> is different among these columns.

> In addition <u>this difference</u> <u>depends on the beam energy</u>, because of different maximum depth (and different energy flow?)

> We need simulations to study this point in detail. 12

Leakage correction

Energy Flux

Energy deposit is reconstructed using 3x3 cubes for the first 15 layers

The 200 GeV electron beam is problematic:

- it is outside the center of the cube
- it is spread on a large surface

LeakOut (x, y) = <Energy(x, y)> / <Energy(center)>

LeakOut Map

Selecting only bins for which we have at least 5 entries in an energy region near the shower peak

Performances

We use 3x3 cubes of the first 15 layers

Starting point

Slide presented by Elena at the 4th HERD Workshop σ / E [%] Small PD 2.5 Large PD 1.5 ٠ 0.5 Test 2015 (v1.2) 120 140 180 200 80 160 60 100 Beam energy [GeV]

Resolution better than 1.5% with Large PD and comparable with Small PD at 200 GeV $\,$

Status of calibration

Large PD: column 1 and 2 (muons) Small PD: column 1, 2 and 3 (electrons)

Reconstruction

The energy deposit in a crystal is take into account (*Hit*) if:

- Large PD>0.6 MIP in case of Large PD
- Small PD>0.6 MIP in case of Large PD Position is reconstructed using Calocube center of gravity
 Energy is reconstructed from the total energy deposit [MIP]

Event selection

- Select only events having an energy deposit more than 15 MIP in Layer 0
- Select an energy dependent area of 1-4 mm where response is uniform

Update

What can be improved

Reconstruction **Position** is reconstructed using tracker information **Energy** should benefits of the calibration of Large PDs gains in column 3

Event selection

- Select only events having an energy deposit more than 15 MIP in Layer 0
- Use all events and correct for position dependence using LeakOut table

Determination of mean and resolution

In the past analysis the energy distribution were fitted using a Gaussian Because in some cases we found a low energy tail this time we used **LogGaussian** function

Large PD

Small PD

Performances

Large after Rel.Gain.Cal.

Small after Rel.Gain.Cal.

With available data, <u>we can not calibrate column 3 better than this</u>, unless we make use of full detector simulations

<u>Leakage correction</u> improves both linearity and resolution in case of <u>200 GeV beam</u>. This is reasonable because, as observed, the beam is outside the center of the cube (linearity) and is spread on a large surface (resolution)

Summary

- Tracker information is very useful to compute the calibration factors and study the performances of the prototype
- It is not possible to calibrate all cubes relevant for electromagnetic shower without simulations
 - Next beam test is very important to acquire enough statistics with muons in order to calibrate all prototype
- Shower leakage is less than 3% for the electron beams configuration acquired in last beam test
- Performances at 200 GeV benefit by the application of leakage correction

What to do next

- Study the variation of the performances in very small position bins
- Study the performances for hadronic showers using 50-300 GeV hadrons beam acquired in last beam Test

Back Up

Tracker resolution

Layer 0

The distance between tracks shows discrete steps of almost 1 mm

This distance seems consistence with tracker pitch (0.75 mm)

Using Tracker information Muon beam

Event selection

<u>Main selection</u> fBTfitflag = 3 fBTtracksX(Y) = 0, 1

... not strict condition
fChi2X(Y)/NdofX(Y) < 1</pre>

... always true if fBTfitflag = 3 fNpointX(Y) = 5 fNdofX(Y) = 3

<u>.. always true with e, m or p beam</u> finteraction = 0, 1

Calocube position Muon beam

Event selection

<u>Main selection</u> fBTfitflag = 3 fBTtracksX(Y) = 0, 1

... not strict condition
fChi2X(Y)/NdofX(Y) < 1</pre>

 $\frac{... always true if fBTfitflag = 3}{fNpointX(Y) = 5}$ fNdofX(Y) = 3

<u>.. always true with e, m or p beam</u> finteraction = 0, 1

cube > 1 MIP

Using the projected position on Calocube first layer for all layers

No apparent tilt of the detector if we use for all layers the projected position on the first Calocube layer

Using for each Calocube layer the projected position on each layer itself

A **tilt** of the detector is found if we for each layer we use the projected position on the layer itself

Performances with Gauss fit

Longitudinal Profile

Maximum signal is on layer:

- 3 for E = 50,100 GeV
- 4 for E = 150, 200 GeV