BPS Alice strings

Topological Solitons, non-perturbative gauge dynamics and confinement

Keio University, Hiyoshi, Yokohama, Japan
This work is done in collaboration with Muneto Nitta, Keio University
Based on two recent papers: arXiv:1706.10212 \& 1703.08971
'Alice string' have the property to change the mirrority of the object as a result of the object going around a string along a closed path. It is related to Alice, the heroine of the book by L. Carroll, since she could come 'through looking glass' to the mirror world which is equivalent to passing around this string.

Alice string

- When a charged particle encircles around an Alice string, it changes the sign of the electric charge.

-The theory admitting an Alice string is sometime called as "Alice electrodynamics", which is a $\mathrm{U}(1)$ gauge theory that includes the charge conjugation as a local symmetry.
J. E. Kiskis, "Disconnected Gauge Groups and the Global Violation of Charge Conservation," Phys. Rev. D 17, 3196 (1978)
- Chashire Charge: A delocalized charge present in the multi-vortex system.

Example of a typical non-BPS Alice string in $\operatorname{SU(2)} \underline{5}$ representation.

Alice string in Spin-1 BEC

- A BPS construction of Alice string in $\mathrm{U}(1) \mathrm{X} \mathrm{SU}(2)$ gauge theory

> U(1) zero mode and Effective action construction

The SUSY model and 1/2 BPS Alice string

Discussion

Example of Alice string

- A typical Alice string was found in an $\mathrm{SO}(3)$ gauge theory with scalar fields in spin-2 (traceless symmetric tensor) representation of SO(3).
- The ground state is described by

$$
\Phi_{0}=\lambda\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) .
$$

- The ground state is invariant under the rotation around z-axis by $h(\varphi)=e^{i \varphi J_{3}}, J_{3} \in S O(3)$.
- Ground state is also invariant under a reflection around x or y axis

$$
I_{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad I_{y}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Example of Alice string

- The $\mathrm{SO}(3)$ gauge group is spontaneously broken to $\mathrm{O}(2)$
- The order parameter space is found to be

- An Alice string can annihilate itself when two of them collide, contradict to a BPS property that energy is proportional to the topological charge. Therefore, Alice strings are naturally non-BPS.

Example of Alice string

- A vortex configuration can be written as

$$
\Phi(\theta)=e^{i \frac{\theta}{2} J_{1}} \Phi_{0} e^{-i \frac{\theta}{2} J_{1}}
$$

- In the presence of vortices the unbroken generator becomes

$$
Q(\theta)=e^{i \frac{\theta}{2} J_{1}} Q_{0} e^{-i \frac{\theta}{2} J_{1}}, \quad Q_{0}=J_{3}
$$

- So the embedding of unbroken group changes within the full group and the generator is parallel transported along a circle around the vortex.
- The generator changes its sign after the completion of one full circle around the vortex .

$$
Q(2 \pi)=-Q_{0}
$$

Global Alice string in triplet representation

- We can consider the case of half quantized vortices in spin-1 BEC. In this case a global Alice string can be constructed.
- Order parameter is the complex spin triplet

$$
\Phi=\xi e^{i \varphi} \hat{d} \quad \hat{d} \text { is the real unit vector. }
$$

- Order parameter is invariant under any rotation around \hat{d} and the transformation

$$
\begin{aligned}
& \hat{d} \longrightarrow-\hat{d}, \quad \varphi \longrightarrow \varphi+\pi \\
& U(1) \times S O(3) \longrightarrow O(2) \quad O P S=\frac{G}{H}=\frac{U(1) \times S O(3)}{O(2)} \simeq \frac{S^{1} \times S^{2}}{\mathbb{Z}_{2}} \\
& \pi_{1}(G / H)=\mathbb{Z} \begin{array}{l}
\text { Possibility of multi- } \\
\text { vortex configurations }
\end{array}
\end{aligned}
$$

BPS-Alice string in triplet representation

- We consider an $S U(2) \times U(1)$ gauge theory coupled with one charged complex scalar field in the adjoint representation.

$$
\Phi=\phi^{a} \tau^{a}, A_{\mu}=A_{\mu}^{a} \tau^{a}, \tau^{a}=\frac{1}{2} \sigma^{a}
$$

$I=\int d^{4} x\left[-\frac{1}{2} \operatorname{TrF}_{\mu \nu} \mathrm{F}^{\mu \nu}-\frac{1}{4} \mathrm{f}_{\mu \nu} \mathrm{f}^{\mu \nu}+\operatorname{Tr}\left|\mathrm{D}_{\mu} \Phi\right|^{2}-\frac{\lambda_{\mathrm{g}}}{4} \operatorname{Tr}\left[\Phi, \Phi^{\dagger}\right]^{2}-\frac{\lambda_{\mathrm{e}}}{2}\left(\operatorname{Tr} \Phi \Phi^{\dagger}-2 \xi^{2}\right)^{2}\right]$.

$$
D_{\mu} \Phi=\partial_{\mu} \Phi-i e a_{\mu} \Phi-i g\left[A_{\mu}, \Phi\right] \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right], f_{\mu \nu}=\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu}
$$

- The vacuum configuration

$$
\langle\Phi\rangle_{V a c}=2 \xi \tau^{1}
$$

- The unbroken group elements

$$
H=\left\{\left(1, e^{\frac{i \alpha}{2} \sigma^{1}}\right),\left(-1, i\left(c_{2} \sigma^{2}+c_{3} \sigma^{3}\right) e^{i \frac{\alpha}{2} \sigma^{1}}\right)\right\}, c_{2}^{2}+c_{3}^{2}=1
$$

$$
H \sim \mathbb{Z}_{2} \ltimes U(1) \simeq O(2
$$

Alice string in triplet representation

$$
\begin{gathered}
\langle\Phi\rangle_{V a c}=2 \xi \tau^{1} \\
\downarrow=U(1) \times \frac{S U(2)}{\mathbb{Z}_{2}} \simeq U(1) \times S O(3) \longrightarrow H \simeq \mathbb{Z}_{2} \ltimes U(1) \simeq O(2) \\
O P S=\frac{G}{H}=\frac{U(1) \times S O(3)}{O(2)} \simeq \frac{S^{1} \times S^{2}}{\mathbb{Z}_{2}} \\
\downarrow \\
\pi_{1}(G / H)=\mathbb{Z}
\end{gathered}
$$

Alice string in triplet representation

- Large distance behavior of the order parameter for a vortex can be obtained by

$$
\begin{gathered}
\mathcal{D}_{i} \Phi \rightarrow 0, \quad R \rightarrow \infty \\
\Phi(\infty, \varphi) \sim \xi\left(\begin{array}{cc}
0 & e^{i \varphi} \\
1 & 0
\end{array}\right) \\
\left.\Phi(\infty, \varphi) \sim \xi e^{i \frac{\varphi}{2}}\left(\begin{array}{cc}
0 & e^{i \frac{\varphi}{2}} \\
e^{-i \frac{\varphi}{2}} & 0
\end{array}\right)=\xi e^{i \frac{\varphi}{2}} e^{i \frac{\varphi}{4} \sigma^{3}}\right) \sigma^{1} e^{-i \frac{\varphi}{4} \sigma^{3}} \\
U_{0}(\varphi)=e^{i e \int \mathbf{a} \cdot \mathrm{dl}}, \quad U_{3}(\varphi)=P e^{i g \int \mathbf{A} \cdot \mathrm{dl}} \\
\Phi(\infty, \varphi)=U_{0}(\varphi) U_{3}(\varphi) \Phi(\infty, 0) U_{3}^{-1}(\varphi), \quad \Phi(\infty, 0)=\xi \sigma^{1}
\end{gathered}
$$

Alice string in triplet representation

- The unbroken group generator can be written as

$$
Q_{\varphi}=U_{3}(\varphi) Q_{0} U_{3}(\varphi)^{-1}, \quad U_{3}(\varphi)=e^{\frac{i \varphi}{4} \sigma^{3}}, Q_{0}=\frac{1}{2} \sigma^{1}
$$

Alice string in triplet representation

- The static hamiltonian is expressed as

$$
\mathcal{H}=\int d^{3} x\left[\frac{1}{2} \operatorname{Tr}_{\mathrm{ij}}^{2}+\frac{1}{4} \mathrm{f}_{\mathrm{ij}}^{2}+\operatorname{Tr}\left|\mathrm{D}_{\mathrm{i}} \Phi\right|^{2}+\frac{\lambda_{\mathrm{g}}}{4} \operatorname{Tr}\left[\Phi, \Phi^{\dagger}\right]^{2}+\frac{\lambda_{\mathrm{e}}}{2}\left(\operatorname{Tr} \Phi \Phi^{\dagger}-2 \xi^{2}\right)^{2}\right]
$$

- We consider critical coupling $\quad \lambda_{e}=e^{2}, \quad \lambda_{g}=g^{2}$
- We may perform the Bogomol'nyi completion, the tension (energy per the unit length) of a vortex along the x_3 coordinate looks
$\mathcal{T}=\int d^{2} x\left[\operatorname{Tr}\left[\mathrm{~F}_{12} \pm \frac{\mathrm{g}}{2}\left[\Phi, \Phi^{\dagger}\right]\right]^{2}+\operatorname{Tr}\left|\mathcal{D}_{ \pm} \Phi\right|^{2}+\frac{1}{2}\left[\mathrm{f}_{12} \pm \mathrm{e}\left(\operatorname{Tr} \Phi \Phi^{\dagger}-2 \xi^{2}\right)\right]^{2} \pm 2 \mathrm{ef}_{12} \xi^{2}\right]$

Alice string in triplet representation

$$
\begin{aligned}
\mathcal{T} & =\int d^{2} x\left[\operatorname{Tr}\left[\mathrm{~F}_{12} \pm \frac{\mathrm{g}}{2}\left[\Phi, \Phi^{\dagger}\right]\right]^{2}+\operatorname{Tr}\left|\mathcal{D}_{ \pm} \Phi\right|^{2}+\frac{1}{2}\left[\mathrm{f}_{12} \pm \mathrm{e}\left(\operatorname{Tr} \Phi \Phi^{\dagger}-2 \xi^{2}\right)\right]^{2} \pm 2 \mathrm{ef}_{12} \xi^{2}\right] \\
& \geq 2 e \xi^{2}\left|\int d^{2} x f_{12}\right|,
\end{aligned}
$$

- At the saturation point the first order BPS equations are,

$$
\begin{aligned}
& f_{12} \pm e\left(\operatorname{Tr} \Phi \Phi^{\dagger}-2 \xi^{2}\right)=0 \\
& F_{12} \pm \frac{g}{2}\left[\Phi, \Phi^{\dagger}\right]=0 \\
& \mathcal{D}_{ \pm} \Phi=\mathcal{D}_{\mp} \Phi^{\dagger}=0
\end{aligned}
$$

A BPS Alice string solution

- To solve BPS equations we consider the ansatz

$$
\begin{aligned}
\Phi(r, \varphi) & =\xi\left(\begin{array}{cc}
0 & f_{1}(r) e^{i \varphi} \\
f_{2}(r) & 0
\end{array}\right) \\
a_{i}(r, \varphi) & =-\frac{1}{2 e} \frac{\epsilon_{i j x_{j}}}{r^{2}} a(r), \quad A_{i}(r, \varphi)=-\frac{1}{4 g} \frac{\epsilon_{i j x_{j}}}{r^{2}} \sigma^{3} A(r)
\end{aligned}
$$

- Here $f_{1}(r), f_{2}(r), A(r), a(r)$ are four profile functions with boundary condition.

$$
\begin{aligned}
f_{1}(0)=f_{2}^{\prime}(0) & =0, & f_{1}(\infty)=f_{2}(\infty) & =1, \\
A(0)=a(0) & =0, & A(\infty)=a(\infty) & =1 .
\end{aligned}
$$

- The equations satisfied by the profile functions are same as non-Abelian vortices.

A BPS Alice string solution

$$
\begin{gathered}
f_{1}(r)=r e^{-\frac{1}{2}\left(\psi_{0}(r)+\psi_{1}(r)\right)}, f_{2}(r)=e^{\frac{1}{2}\left(\psi_{1}(r)-\psi_{0}(r)\right)} \\
A(r)=r \psi_{1}^{\prime}(r), a(r)=r \psi_{0}^{\prime}(r)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{\rho} \partial_{\rho}\left[\rho \psi_{0}^{\prime}(\rho)\right]+l^{2}\left[e^{-\psi_{0}}\left(\rho^{2} e^{-\psi_{1}}+e^{\psi_{1}}\right)-2\right]=0, \\
& \frac{1}{\rho} \partial_{\rho}\left[\rho \psi_{1}^{\prime}(\rho)\right]+e^{-\psi_{0}}\left(e^{-\psi_{1}}-e^{\psi_{1}}\right)=0,
\end{aligned}
$$

$$
\begin{aligned}
\psi_{0}^{\prime}(0)=\psi_{1}^{\prime}(0), \psi_{0}(R) & =\psi_{1}(R)=\log R, \\
\rho^{2}=2 g^{2} \xi^{2} r^{2}, l & =e / g
\end{aligned}
$$

A BPS Alice string solution

U(1) Zero mode

- Zero mode exists when a soliton solution is not invariant under a continuous unbroken symmetry of Lagrangian.
- Any small change due to the action of the $\mathrm{U}(1)$ group element $e^{i \frac{\varphi}{2} \sigma^{1}}$

$$
\begin{aligned}
& \Phi(r, \theta)=\xi\left(\begin{array}{cc}
0 & f_{1}(r) e^{i \theta} \\
f_{2}(r) & 0
\end{array}\right) \\
& \delta \Phi(r, 0)=i \frac{\varphi}{2}\left[\sigma^{1}, \Phi(r, 0)\right]=i \frac{\varphi \xi}{2}\left(f_{2}(r)-f_{1}(r)\right) \sigma^{3} \\
& f_{1}(r) \neq f_{2}(r) \quad f_{1}(\infty)=f_{2}(\infty)=1
\end{aligned}
$$

- $\mathrm{U}(1)$ is broken inside the vortex core.

U(1) Zero mode and Effective action

- We want solutions whose energies vanish when there is no (t, z) dependence.
- We start with a gauge where the vortex solution looks like

$$
\begin{aligned}
\Phi(\varphi(t, z), r, \theta) & =e^{i \frac{\varphi(t, z)}{2} \sigma^{1}}\left(\begin{array}{cc}
0 & f_{1}(r) e^{i \theta} \\
f_{2}(r) & 0
\end{array}\right) e^{-i \frac{\varphi(t, z)}{2} \sigma^{1}} \\
& =U_{\varphi}(t, z) \Phi(r, \theta) U_{\varphi}^{\dagger}(t, z) \\
A_{i}(\varphi(t, z), x, y) & =-\frac{1}{4 g} \frac{\epsilon_{i j x_{j}}}{r^{2}} A(r) U_{\varphi}(t, z) \sigma^{3} U_{\varphi}^{\dagger}(t, z)
\end{aligned}
$$

- This (t, z) dependence actually generates electric field in the system and the effective action would look like

$$
\begin{gathered}
I_{\mathrm{eff}}=\int d t d z\left[\int d^{2} x\left\{-\frac{1}{2} f_{i \alpha} f^{i \alpha}-\operatorname{Tr}_{\mathrm{i} \alpha} \mathrm{~F}^{\mathrm{i} \alpha}+\operatorname{Tr}\left|\mathrm{D}_{\alpha} \Phi(\varphi)\right|^{2}\right\}\right], \quad \alpha=\{0,3\} \\
F_{i \alpha}=\partial_{i} A_{\alpha}-D_{\alpha} A_{i}(\varphi), D_{\alpha}=\partial_{\alpha}-i g\left[A_{\alpha}, \cdot\right], D_{\alpha} \Phi(\varphi)=\partial_{\alpha} \Phi(\varphi)-i e a_{\alpha} \Phi(\varphi)-i g\left[A_{\alpha}, \Phi(\varphi)\right]
\end{gathered}
$$

U(1) Zero mode and Effective action

- We choose an ansatz for the generated gauge field as

$$
\begin{gathered}
A_{\alpha}(t, z, r, \theta)=\frac{1}{g}\left[\left(1-\Psi_{1}(r, \theta)\right) \tau^{1}+\Psi_{2}(r, \theta) T^{2}\right] \partial_{\alpha} \varphi(t, z) \\
a_{\alpha}=0, \quad T^{2}=U_{\varphi}(t, z) \tau^{2} U_{\varphi}^{\dagger}(t, z), \quad \tau^{i}=\frac{1}{2} \sigma^{i} \\
\mathcal{I}_{\text {eff }}=I_{\Psi} \int d t d z\left\{\frac{\partial_{\alpha} \varphi \partial^{\alpha} \varphi}{2 g^{2}}\right\}, \quad \Delta_{g}^{2}=\xi^{2} g^{2}, \\
I_{\Psi}=\int(r, \theta)=\Psi_{1}(r, \theta)+i \Psi_{2}(r, \theta) \\
d^{2} x\left[\left|D_{i} \Psi\right|^{2}+\Delta_{g}^{2}\left|\Psi^{*} q_{1}-\Psi q_{2}\right|^{2}\right] \quad q_{1}=f_{1} e^{i \frac{1}{2} \theta}, \quad q_{2}=f_{2} e^{-i \frac{1}{2} \theta}
\end{gathered}
$$

$$
D_{i} \Psi=\left(\partial_{i}-i \zeta b_{i}\right) \Psi, \zeta=\frac{1}{2}, b_{i}=-\frac{\epsilon_{i j} x_{j}}{r^{2}} A(r)
$$

U(1) Zero mode and Effective action

We extremize I_{Ψ} by varying Ψ and find the equation for Ψ as

$$
\begin{gathered}
D_{i}^{2} \Psi-\Delta_{g}^{2}\left[\left(f_{1}^{2}+f_{2}^{2}\right) \Psi-2 f_{1} f_{2} e^{i \theta} \Psi^{*}\right]=0 . \\
\Psi(\rho, \theta)=\sum_{m \geq 0}\left[\psi_{m}^{+}(\rho) e^{i m \theta}+\psi_{m}^{-}(\rho) e^{-i m \theta}\right], \quad \psi_{0}^{+}(\rho)=0, \\
\rho=\Delta_{g} r, \quad \zeta=\frac{1}{2} \psi_{m}^{+}(\rho)=\rho^{m-\zeta}\left(\frac{f_{1}}{f_{2}}\right)^{\zeta}, \quad \text { for } m>0, \\
\psi_{m}^{-}(\rho)=\rho^{m+\zeta}\left(\frac{f_{1}}{f_{2}}\right)^{-\zeta}, \quad \text { for } m \geq 0 .
\end{gathered}
$$

U(1) Zero mode and Effective action

- The large distance behavior of the solution

$$
\begin{array}{ll}
\psi_{m}^{+}(\rho) \longrightarrow \rho^{m-\zeta}, & \text { for } m>0 \\
\psi_{m}^{-}(\rho) \longrightarrow \rho^{m+\zeta}, & \text { for } m \geq 0
\end{array}
$$

- At zero:

$$
\psi_{m}^{ \pm}(0)=0 \forall m \neq 0, \quad \psi_{0}^{-}(0)=f_{2}(0)^{\frac{1}{2}}
$$

- For a zero mode of wavelength λ in the z-direction the energy $(\mathrm{m}=0)$ behaves as

$$
\mathcal{E}_{\lambda}=\frac{2 \pi R}{4 g^{2} \lambda^{2}}
$$

The SUSY model and 1/2 BPS Alice string

- Since our Alice string is BPS it can be embedded in supersymmetric theories. In fact it can be shown that it preserves two super charges.
- We may write down an $\mathrm{N}=1$ action as

$$
\begin{aligned}
& \mathcal{I}=-\frac{1}{4} \Re \int d^{4} x d^{2} \theta\left(2 \operatorname{Tr} \mathrm{~W}^{\alpha} \mathrm{W}_{\alpha}+\mathrm{W}_{0}^{\alpha} \mathrm{W}_{\alpha}^{0}\right) \\
& +\frac{1}{4} \int d^{4} x d^{2} \theta d^{2} \bar{\theta} \operatorname{Tr}\left(\Psi_{+}^{\dagger} \mathrm{e}^{-2 \mathrm{eV}_{0}-2 \mathrm{gV}} \Psi_{+}+\Psi_{-}^{\dagger} \mathrm{e}^{2 \mathrm{eV}_{0}-2 g \mathrm{~V}} \Psi_{-}-\xi^{2} \mathrm{~V}_{0}\right)
\end{aligned}
$$

- The auxiliary fields can be solved as

$$
D_{0}=2 \xi^{2}-\operatorname{Tr}\left(\Phi_{+}^{\dagger} \Phi_{+}-\Phi_{-}^{\dagger} \Phi_{-}\right), \quad \mathrm{D}=-\frac{1}{2} \sum_{\mathrm{i}= \pm}\left[\Phi_{\mathrm{i}}, \Phi_{\mathrm{i}}^{\dagger}\right], \quad \mathrm{F}^{ \pm}=0
$$

- If we set $\Phi_{-}=0$ and $\Phi_{+}=\Phi$, we then can recover the action in bosonic fields, for which the potential term is

$$
V(\Phi)=\frac{g^{2}}{4} \operatorname{Tr}\left[\Phi, \Phi^{\dagger}\right]^{2}+\frac{\mathrm{e}^{2}}{2}\left(\operatorname{Tr} \Phi \Phi^{\dagger}-2 \xi^{2}\right)^{2}
$$

The SUSY model and 1/2 BPS Alice string

- The SUSY transformations of the fermions can be written as

$$
\begin{aligned}
& \begin{array}{l}
\delta_{\epsilon} \psi_{ \pm}=i \sqrt{2} \sigma^{\mu} \bar{\epsilon} \mathcal{D}_{\mu} \Phi_{ \pm}+\sqrt{2} \epsilon F_{ \pm}, \\
\delta_{\epsilon} \lambda^{a}=\sigma^{\mu \nu} \epsilon F_{\mu \nu}^{a}+i \epsilon D^{a}, \\
\delta_{\epsilon} \lambda^{0}=i \epsilon D_{0}+\sigma^{\mu \nu} \epsilon f_{\mu \nu} \\
\qquad\left(F_{12}+\frac{1}{2}\left[\Phi_{+}, \Phi_{+}^{\dagger}\right]\right) \epsilon_{1}=\left(F_{12}-\frac{1}{2}\left[\Phi_{+}, \Phi_{+}^{\dagger}\right]\right) \epsilon_{2}=0, \\
\\
\left.\left\{f_{12}+e\left(\operatorname{Tr} \Phi_{+} \Phi_{+}^{\dagger}-2 \xi^{2}\right)\right\} \Phi_{+}\right\} \epsilon_{1}=\left\{f_{12}-e\left(D_{1}-i D_{2}\right) \Phi_{+}\right\} \bar{\epsilon}^{\dot{2}}=0
\end{array} \\
& \left.\left.\operatorname{Tr} \Phi_{+} \Phi_{+}^{\dagger}-2 \xi^{2}\right)\right\} \epsilon_{2}=0 .
\end{aligned}
$$

The SUSY model and 1/2 BPS Alice string

- The SUSY transformations of the fermions can be written as

$$
\begin{aligned}
& \delta_{\epsilon} \psi_{ \pm}=i \sqrt{2} \sigma^{\mu} \bar{\epsilon} \mathcal{D}_{\mu} \Phi_{ \pm}+\sqrt{2} \epsilon F_{ \pm}, \\
& \delta_{\epsilon} \lambda^{a}=\sigma^{\mu \nu} \epsilon F_{\mu \nu}^{a}+i \epsilon D^{a}, \\
& \delta_{\epsilon} \lambda^{0}=i \epsilon D_{0}+\sigma^{\mu \nu} \epsilon f_{\mu \nu} \quad\left\{\underline{\left.\left(D_{1}+i D_{2}\right) \Phi_{+}\right\}} \bar{\epsilon}^{\mathrm{i}}=\left\{\left(D_{1}-i D_{2}\right) \Phi_{+}\right\} \bar{\epsilon}_{\bar{\epsilon}}\right)=0 \\
& \qquad \underline{\left(F_{12}+\frac{1}{2}\left[\Phi_{+}, \Phi_{+}^{\dagger}\right]\right)} \epsilon_{1}=\left(F_{12}-\frac{1}{2}\left[\Phi_{+}, \Phi_{+}^{\dagger}\right]\right) \widehat{\epsilon_{2}}=0,
\end{aligned}
$$

$$
\underline{\left\{f_{12}+e\left(\operatorname{Tr} \Phi_{+} \Phi_{+}^{\dagger}-2 \xi^{2}\right)\right\}} \epsilon_{1}=\left\{f_{12}-e\left(\operatorname{Tr} \Phi_{+} \Phi_{+}^{\dagger}-2 \xi^{2}\right)\right\} \epsilon_{2}=0 .
$$

Discussion

- The excitation of zero mode excite bulk gauge field which generates singularity. However. The singularity is expected to be logarithmic in general. However in the case of systems like us power law singularity is generated.
- However, in singular gauge the bulk system will have a brunch cut. The effective action can be written as

$$
\mathcal{I}_{2 d-4 d}=-\int d^{4} x \frac{1}{4} F_{\mu \nu}^{2}+M_{r}^{2} \int d t d z\left(\partial_{\alpha} \varphi+A_{\alpha}\right)^{2}
$$

where $M _r$ is the regularized mass and the field strength can be defined as

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-2 \pi \zeta \Sigma_{\mu \nu}
$$

Obstruction parameter

