Puzzles in 3D Chern–Simons–matter theories

Silvia Penati, University of Milano-Bicocca and INFN

July 20, 2017

Silvia Penati Pisa Workshop, 20-21/07/2017

ъ.

Puzzles in 3D Chern–Simons–matter theories

Silvia Penati, University of Milano-Bicocca and INFN

July 20, 2017

SUSY WILSON LOOPS

Silvia Penati Pisa Workshop, 20-21/07/2017

Why BPS Wilson Loops?

BPS Wilson Loops in supersymmetric gauge theories: gauge invariant non–local operators that preserve some supercharges

- They are in general non-protected operators and their expectation value can be computed exactly by using localization techniques.
- **Dual description** in terms of fundamental strings or M2-branes. The expectation value at strong coupling is given by the exponential of a minimal area surface ending on the WL contour. Matching with localization results provides a crucial test of the AdS/CFT correspondence.
- They are related to physical quantities like **Bremsstrahlung** function and **Cusp anomalous dimension**. Therefore, they are ultimately related to



Why BPS WL in 3D SCSM theories?

We will focus on

• $\mathcal{N} = 6 \text{ ABJ}(M)$ Aharony, Bergman, Jafferis, Maldacena, 0806.1218

Aharony, Bergman, Jafferis, 0807.4924

• $\mathcal{N} = 4$ orbifold ABJM and more general SCSM with $\Pi_{l=1}^{r} U(N_{2l-1}) \times U(N_{2l})$ and alternating levels Gaiotto, Witten, 0804.2907 Hosomichi, Lee, Lee, Lee, Park, 0805.3662

BPS WL in 3D SCSM theories exhibit a rich spectrum of interesting properties. Among them:

- Topological phases (**framing factors**) generally appear as overall complex phases in $\langle WL \rangle$.
- Due to dimensional reasons scalar and fermions can enter the definition of BPS WL. In general they increase the number of susy charges preserved by WL.

Prototype examples of WLs in ABJ(M)

 $\mathcal{N} = 6$ susy ABJ(M) model for $U(N_1)_k \times U(N_2)_{-k}$ CS-gauge vectors A_{μ} , \hat{A}_{μ} minimally coupled to

SU(4) complex scalars C_I, \bar{C}^I and fermions $\psi_I, \bar{\psi}^I$

in the (anti)bifundamental representation of the gauge group with non-trivial potential. Dual to $AdS_4 \times S^7/Z_k$

Bosonic BPS WL

$$W_{1/6} = \operatorname{Tr} P \exp\left[-i \int_{\Gamma} d\tau (A_{\mu} \dot{x}^{\mu} - \frac{2\pi i}{k} |\dot{x}| M_J^{\ I} C_I \bar{C}^J)\right]$$

Fermionic BPS WL $W_{1/2} = \operatorname{Tr} P \exp\left[-i \int_{\Gamma} d\tau \mathcal{L}(\tau)\right]$

$$\mathcal{L}(\tau) = \begin{pmatrix} A_{\mu} \dot{x}^{\mu} - \frac{2\pi i}{k} |\dot{x}| M_J^{\ I} C_I \bar{C}^J & -i\sqrt{\frac{2\pi}{k}} |\dot{x}| \eta_I \bar{\psi}^I \\ -i\sqrt{\frac{2\pi}{k}} |\dot{x}| \psi_I \bar{\eta}^I & \hat{A}_{\mu} \dot{x}^{\mu} - \frac{2\pi i}{k} |\dot{x}| \hat{M}_J^{\ I} \bar{C}^J C_I \end{pmatrix}$$

How to compute $\langle WL \rangle$ in SCSM theories

$$\langle WL \rangle \sim \int D[A, \hat{A}, C, \bar{C}, \psi, \bar{\psi}] e^{-S} \operatorname{Tr} P \exp\left[-i \int_{\Gamma} d\tau \mathcal{L}(\tau)\right]$$

- Weak coupling $N_1/k, N_2/k \ll 1$ Perturbative evaluation
- Strong coupling $N_1/k, N_2/k \gg 1$ Holographic evaluation
- $N_1/k, N_2/k \sim 1$ Localization techniques $\langle WL \rangle \rightarrow \text{Matrix Model}$

For ABJ(M) \rightarrow non-gaussian MM Kapustin, Willett, Yaakov, JHEP 1003

$$\begin{split} \langle W_{1/6} \rangle &= \int \prod_{a=1}^{N_1} d\lambda_a \; e^{i\pi k \lambda_a^2} \prod_{b=1}^{N_2} d\hat{\lambda}_b \; e^{-i\pi k \widehat{\lambda}_b^2} \times \left(\frac{1}{N_1} \sum_{a=1}^{N_1} e^{2\pi \lambda_a} \right) \\ &\times \frac{\prod_{a < b}^{N_1} \sinh^2(\pi(\lambda_a - \lambda_b)) \prod_{a < b}^{N_2} \sinh^2(\pi(\hat{\lambda}_a - \hat{\lambda}_b))}{\prod_{a=1}^{N_1} \prod_{b=1}^{N_2} \cosh^2(\pi(\lambda_a - \hat{\lambda}_b))} \end{split}$$

Drukker, Marino, Putrov, CMP306 (2011) 511 OQ

Puzzles typically arise in 3D SCSM theories when we try to match perturbative results with localization predictions

- Solved and unsolved puzzles
 - Framing factor in ABJ(M) \checkmark
 - Degeneracy of WLs in $\mathcal{N} = 4$ orbifold ABJM \checkmark
 - Comparison with localization result for $\mathcal{N} = 4$ SCSM theories Alert!
- Conclusions and Perspectives
- M.S. Bianchi, L. Griguolo, M. Leoni, A. Mauri, D. Seminara, J-j. Zhang PLB753, JHEP 1606, JHEP 1609, arXiv:1705.02322 + in progress

・四・ ・ヨ・ ・ヨ・ 三日

Puzzle 1: Framing factor in ABJ(M)

For the $U(N)_k$ pure Chern–Simons theory (topological theory)

$$S_{CS} = -i\frac{k}{4\pi} \int d^3x \, \varepsilon^{\mu\nu\rho} \, \mathrm{Tr}\left(A_\mu \partial_\nu A_\rho + \frac{2}{3} i A_\mu A_\nu A_\rho\right)$$

On a closed path Γ and in fundamental representation

$$\langle \mathcal{W}_{\rm CS} \rangle = \langle \operatorname{Tr} P \, e^{-i \int_{\Gamma} dx^{\mu} A_{\mu}(x)} \rangle$$

=
$$\sum_{n=0}^{+\infty} \operatorname{Tr} P \int dx_{1}^{\mu_{1}} \cdots dx_{n}^{\mu_{n}} \langle A_{\mu_{1}}(x_{1}) \cdots A_{\mu_{n}}(x_{n}) \rangle$$

either by using semiclassical methods in the large k limit
 Witten, CMP121 (1989) 351

or perturbatively (n-pt correlation functions)

Guadagnini, Martellini, Mintchev, NPB330 (1990) 575

Define $\langle A_{\mu_1}(x_1) \cdots A_{\mu_n}(x_n) \rangle$ at coincident points.

Using point–splitting regularization

$$\Gamma_f: \quad y^{\mu}(\tau) \to y^{\mu}(\tau) + \epsilon \, n^{\mu}(\tau) \qquad \qquad \bigotimes_{\scriptscriptstyle (0)} \qquad \bigotimes_{\scriptscriptstyle (0)}$$

$$\lim_{\epsilon \to 0} \oint_{\Gamma} dx^{\mu} \oint_{\Gamma_f} dy^{\nu} \left\langle A_{\mu}(x) A_{\nu}(y) \right\rangle = -i\pi\lambda \, \chi(\Gamma, \Gamma_f) \qquad \lambda = \frac{N}{k}$$

Gauss linking number

$$\chi(\Gamma,\Gamma_f) = \frac{1}{4\pi} \oint_{\Gamma} dx^{\mu} \oint_{\Gamma_f} dy^{\nu} \ \varepsilon_{\mu\nu\rho} \frac{(x-y)^{\rho}}{|x-y|^3}$$

Higher-order contributions exponentiate the one-loop result

$$\langle \mathcal{W}_{\rm CS} \rangle = \underbrace{e^{-i\pi\lambda\chi(\Gamma,\Gamma_f)}}_{\rho(\Gamma)} \rho(\Gamma)$$

framing factor

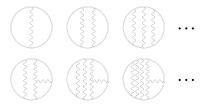
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Exponentiation of one-loop framing term relies on the following distinguishing properties Alvarez, Labastida, NPB395 (1993) 198

1 The gauge propagator is one–loop exact. In Landau gauge

$$\langle A^a_\mu(x)A^b_\nu(y)\rangle = \delta^{ab}\frac{i}{2k}\varepsilon_{\mu\nu\rho}\frac{(x-y)^\rho}{|x-y|^3}$$

② Only diagrams with collapsible propagators contribute to framing



③ Factorization theorem

4 日本

$\mathcal{N} = 2$ susy CS theory

We are primarily interested in supersymmetric theories for which localization can be used.

$$\langle W_{\rm SCS} \rangle = \langle \operatorname{Tr} P \, e^{-i \int_{\Gamma} d\tau (\dot{x}^{\mu} A_{\mu}(x) - i |\dot{x}|\sigma)} \rangle$$

Localization always provides the result at framing $\chi(\Gamma, \Gamma_f) = -1$. This follows from requiring consistency between point–splitting regularization and supersymmetry used to localize: The only point-splitting compatible with susy is the one where the contour and its frame wrap two different Hopf fibers of S^3

Kapustin, Willett, Yaakov, JHEP 1003 (2010) 089

Localization is sensible to framing!

Framing identified as imaginary contributions

$$\langle W_{\rm SCS} \rangle = e^{i\pi\lambda} \rho(\Gamma)$$

Adding matter $\rightarrow ABJ(M)$ case

1/6-BPS Wilson loop Drukker, Plefka, Young, JHEP 0811 (2008) 019 Chen, Wu, NPB 825 (2010) 38, Rey, Suyama, Yamaguchi, JHEP 0903 (2009)

$$\langle W_{1/6} \rangle = \langle \operatorname{Tr} P \exp\left[-i \int_{\Gamma} d\tau (A_{\mu} \dot{x}^{\mu} - \frac{2\pi i}{k} |\dot{x}| M_J^{\ I} C_I \bar{C}^J)\right] \rangle$$

$$M_I^{\ J} = \operatorname{diag}(+1, +1, -1, -1)$$

• Localization result. $\langle WL \rangle \rightarrow \text{non-gaussian MM}$ computed exactly Drukker, Marino, Putrov, (2011); Klemm, Marino, Schiereck, Soroush, (2013)

$$\lambda_{1} = N_{1}/k, \ \lambda_{2} = N_{2}/k \ll 1$$

$$\langle W_{1/6} \rangle = \underbrace{e^{i\pi\lambda_{1}}}_{\Downarrow} \left(1 - \frac{\pi^{2}}{6} (\lambda_{1}^{2} - 6\lambda_{1}\lambda_{2}) \underbrace{-i\frac{\pi^{3}}{2}\lambda_{1}\lambda_{2}^{2}}_{\Downarrow} + \mathcal{O}(\lambda^{4}) \right)$$

pure CS framing (-1) factor

extra imaginary term ???

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

• Perturbation theory $(framing = 0) \rightarrow no \text{ contributions at odd} orders$

Rey, Suyama, Yamaguchi, JHEP 0903 (2009)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conjecture: Matter contributes to framing

PROOF: perturbative 3-loop calculation at framing (-1)

Matter contributes to framing in two different ways:

 Matter gives non-trivial corrections to the the gauge propagator (FINITE at two loops). Collapsible propagators

$$\langle A_{\mu}(x)A_{\nu}(y)\rangle \to \frac{i}{2k} \left[1 - \frac{\pi^2}{2} \left(\underbrace{\lambda_2^2}_{2} + \underbrace{\lambda_1\lambda_2\left(\frac{1}{4} + \frac{2}{\pi^2}\right)}_{2} \right) \right] \varepsilon_{\mu\nu\rho} \frac{(x-y)^{\rho}}{|x-y|^3}$$

² Matter vertex-like diagrams cancel lower-transcendentality terms

훈

Exponentiation still works, so we can write

$$\langle W_{1/6} \rangle_1 = \underbrace{e^{i\pi \left(\lambda_1 - \frac{\pi^2}{2}\lambda_1\lambda_2^2 + \mathcal{O}(\lambda^5)\right)}}_{\Downarrow} \left(1 - \frac{\pi^2}{6}(\lambda_1^2 - 6\lambda_1\lambda_2) + \mathcal{O}(\lambda^4)\right)$$

perturbative framing function

 $f(\lambda_1, \lambda_2) = \lambda_1 - \frac{\pi^2}{2}\lambda_1\lambda_2^2 + \mathcal{O}(\lambda^5)$

$$\langle W_{1/6}\rangle_0 = \Big|\langle W_{1/6}\rangle_1$$

Puzzle solved \checkmark

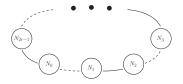
◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ • の Q @

Puzzle 2: WL degeneracy in $\mathcal{N} = 4$ SCSM theories

Gaiotto, Witten, JHEP 06 (2010) 097; Hosomichi, Lee³, Park, JHEP 07 (2008) 091

 $\Pi_{l=1}^{r} U(N_{2l-1}) \times U(N_{2l})$ quiver gauge theories with alternating $\pm k$ levels

 $\begin{array}{ll} \text{Matter in (anti)bifundamental} \\ \text{representation of adjacent gauge groups and} \\ \text{in (2,1) and (1,2) of } SU(2) \times \hat{SU}(2) \\ \text{R-symmetry} & \phi^{I} & \phi^{\hat{I}} \end{array}$



Dual to M-theory on $\operatorname{AdS}_4 \times S^7/(Z_r \otimes Z_r)/Z_k$

Orbifold ABJM: $N_0 = N_1 = \cdots = N_{2r-1}$ Dual to M-theory on $AdS_4 \times S^7/(Z_r \otimes Z_{rk})$

BPS WL defined locally for quiver nodes $(2l - 1, 2l) \rightarrow W^{(l)}$ or globally $W = \sum_{l=1}^{r} W^{(l)}$ Higgsing procedure allows to construct two classes of 1/2 BPS WLs

Exiting heavy **particle** dof \rightarrow class CExiting heavy **anti-particle** dof \rightarrow class \hat{C}

For ABJ(M) models, representatives of different classes preserve different sets of supercharges only partially overlapping.

In $\mathcal{N} = 4$ SCSM theories, for each W_{ψ_1} representative in \mathcal{C} we can find a representative W_{ψ_2} in $\hat{\mathcal{C}}$ that preserves the same set of supercharges. Crooke, Drukker, Trancanelli, JHEP 10 (2015); Lietti, Mauri, Zhang, SP, 1705.03322 Puzzle ??

We have proved that (embedding S^7 in $\mathbb{R}^8 \cong \mathbb{C}^4 \to z_{1,2,3,4}$)

 $W_{\psi_1} \rightarrow \mathbf{M2}$ -brane wrapped on $|z_1| = 1$ and localized at $z_{2,3,4} = 0$ $W_{\psi_2} \rightarrow \mathbf{M2}$ -antibrane wrapped on $|z_2| = 1$ and at $z_{1,3,4} = 0$ The two brane configurations preserve the same set of supercharges. Puzzle solved \checkmark

$$\psi_i = \frac{1}{N_1 + N_2} \operatorname{Tr} P \exp\left(-i \int_{\Gamma} d\tau \mathcal{L}_{\psi_i}(\tau)\right)$$

where

$$\begin{aligned} \mathcal{L}_{\psi_{1}} &= \begin{pmatrix} \mathcal{A}_{(1)} & \bar{c}_{\alpha}\psi_{(1)\hat{1}}^{\alpha} \\ c^{\alpha}\bar{\psi}_{(1)\alpha}^{\hat{1}} & \mathcal{A}_{(2)} \end{pmatrix} \\ \mathcal{A}_{(1)} &= \dot{x}^{\mu}A_{(1)\mu} - \frac{i}{k} \left(q_{(1)}^{I}\delta_{I}^{J}\bar{q}_{(1)J} + \bar{q}_{(0)\hat{1}}(\sigma_{3})_{\hat{j}}^{\hat{1}}q_{(0)}^{\hat{j}} \right) |\dot{x}| \\ \mathcal{A}_{(2)} &= \dot{x}^{\mu}A_{(2)\mu} - \frac{i}{k} \left(\bar{q}_{(1)I}\delta_{J}^{I}q_{(1)}^{J} + q_{(2)}^{\hat{1}}(\sigma_{3})_{\hat{1}}^{\hat{j}}\bar{q}_{(2)\hat{j}} \right) |\dot{x}| \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\psi_2} &= \begin{pmatrix} \mathcal{B}_{(1)} & \bar{d}_{\alpha}\psi^{\alpha}_{(1)\hat{2}} \\ d^{\alpha}\bar{\psi}^{\hat{2}}_{(1)\alpha} & \mathcal{B}_{(2)} \end{pmatrix} \\ \mathcal{B}_{(1)} &= \dot{x}^{\mu}A_{(1)\mu} - \frac{i}{k} \left(-q^{I}_{(1)}\delta^{J}_{I}\bar{q}_{(1)J} + \bar{q}_{(0)\hat{I}}(\sigma_{3})^{\hat{I}}_{\hat{J}}q^{\hat{J}}_{(0)} \right) |\dot{x}| \\ \mathcal{B}_{(2)} &= \dot{x}^{\mu}A_{(2)\mu} - \frac{i}{k} \left(-\bar{q}_{(1)I}\delta^{J}_{J}q^{J}_{(1)} + q^{\hat{I}}_{(2)}(\sigma_{3})^{\hat{J}}_{\hat{I}}\bar{q}_{(2)\hat{J}} \right) |\dot{x}| \end{aligned}$$

・ロト ・日 ・ ・日 ・ ・ 日 ・ うへの

Puzzle 3: Localization vs. perturbation

At quantum level?

Cohomological equivalence $W_{\psi_1} = W_{1/4} + QV_1$ $W_{\psi_2} = W_{1/4} + QV_2$

• Localization (framing-one) $\langle W_{\psi_1} \rangle_1 = \langle W_{\psi_2} \rangle_1 = \langle W_{1/4} \rangle_1$

Ouyang, Wu, Zhang, Chin. Phys. C40 (2016)

We expect $\langle W_{\psi_1} \rangle_0 = \langle W_{\psi_2} \rangle_0 = |\langle W_{1/4} \rangle_1|$ (Proved at 3 loops)

• Perturbation theory (framing-zero): For planar contour

$$\langle W_{\psi_1} \rangle_0^{(L)} = (-1)^L \langle W_{\psi_2} \rangle_0^{(L)}$$

Bianchi, Griguolo, Leoni, Mauri, SP, Seminara, JHEP 1609 (2016) 009

Consistency requires

$$\langle W_{\psi_1} \rangle_0^{(odd)} = \langle W_{\psi_2} \rangle_0^{(odd)} = 0$$

Is it true?

 \bullet From localization $|\langle W_{1/4}\rangle_1|$ vanishes at odd orders (checked up to three loops).

• From a perturbative calculation: One loop result vanishes. We need a **3–loop** calculation

- Orbifold ABJM: Too many diagrams to compute. Still open question
- $\mathcal{N} = 4$ SCSM theories: The number of diagrams can be drastically reduced by restricting to the range-3 color sectors $N_{l-1}N_lN_{l+1}$

We have found (l = 1)

Bianchi, Griguolo, Leoni, Mauri, SP, Seminara, JHEP1609 (2016)

$$\langle W_{\psi_1} \rangle^{(3L)} = -\langle W_{\psi_2} \rangle^{(3L)} = \frac{5}{8\pi} \frac{N_0 N_1^2 N_2 + N_1 N_2^2 N_3}{(N_1 + N_2)} \frac{1}{k^3}$$

Alerting puzzle!

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ ▲ 圖 → のへで

Possible explanation?

- Neither $\langle W_{\psi_1} \rangle^{(3L)}$ nor $\langle W_{\psi_2} \rangle^{(3L)}$ match the localization result.
- It is a matter of fact that $\langle \frac{W_{\psi_1}+W_{\psi_2}}{2} \rangle^{(odd)} = 0$ and matches the localization result.
- It is hard to believe that two non–BPS operators give rise to a BPS operator when linearly combined.
- If the dual description works as in the orbifold case, it points towards the fact that both W_{ψ_1} and W_{ψ_2} should be BPS at quantum level. But we don't know ...

Only possibility: W_{ψ_1} and W_{ψ_2} are BPS, but the cohomological equivalence is broken by quantum effects

$$\langle W_{\psi_1} \rangle = \langle W_{1/4} \rangle + \mathcal{A} \qquad \langle W_{\psi_2} \rangle = \langle W_{1/4} \rangle - \mathcal{A}$$

such that $\frac{1}{2}(W_{\psi_1} + W_{\psi_2})$ is BPS and Q-equivalent to $W_{1/4}$.

A direct check requires computing $\langle W_{\psi_1} \rangle_1$ and $\langle W_{\psi_2} \rangle_1$ at framing one in perturbation theory.

 $\bullet \square \mathbf{Puzzle unsolved} X$ \mathfrak{I}

• We have understood the framing mechanism in CS theories with matter. This is important for its relation with the Bremsstrahlung function

$$B_{1/2} = \frac{1}{8\pi} \tan \Phi_{1/6}$$

Bianchi, Griguolo, Leoni, Mauri, SP, Seminara, JHEP 1406 (2014)

But

- Better understand contributions from vertex-like diagrams.
- Framing from matter in fermionic WLs: understand framing from fermionic diagrams
- What happens at higher orders? Divergences?
- Framing in new classes of less supersymmetric fermionic WLs in ABJ(M) and $\mathcal{N}=4$ SCSM theories
- Cohomological equivalence in $\mathcal{N} = 4$ SCSM theories is still an open problem
- Framing at strong coupling?

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ ▲ 圖 → のへで

KEN !!!

Silvia Penati Pisa Workshop, 20-21/07/2017

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ つ へ や