Quantisation of Skyrmions

Steffen Krusch, University of Kent

Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

21 July 2017

related to work in collaboration with Chris King (Cambridge) and Mareike Haberichter (Amherst) Will Grummitt (Kent) and Dave Foster (Bristol)

- The Skyrme model is a classical field theory which can be motivated from QCD by a $\frac{1}{N_c}$ -expansion.
- The Skyrme models is built of pion fields, and has soliton solutions known as *Skyrmions* that are viewed as "classical" atomic nuclei.
- The first step is to understand static classical solutions.
- By restricting to minimal energy configurations we can perform a **zero-mode quantisation** (FR constraints).
- If we want to go beyond we need to know how Skyrmions deform when they vibrate and scatter.
- This leads to a vibrational quantisation.
- Further improvements are also expected by taking into account how Skyrmions deform when they are spinning and isospinning.

The Skyrme model

• The Skyrme energy can be written as $E = \int {\cal E} \, {
m d} x^3,$ with

$$\mathcal{E} = \sum_i \partial_i \phi \cdot \partial_i \phi + rac{1}{2} \sum_i (\partial_i \phi \cdot \partial_i \phi)^2 - rac{1}{2} \sum_{i,j} (\partial_i \phi \cdot \partial_j \phi)^2 + 2m^2 (1 - \phi_0) \,,$$

where the vector

$$\boldsymbol{\phi} = \left(\phi^0, \phi^1, \phi^2, \phi^3\right)$$

is a function of space \mathbf{x} .

- The vector ϕ satisfies $\phi \cdot \phi = 1$ or in components $\phi_0^2 + \phi_1^2 + \phi_2^2 + \phi_3^2 = 1$. Hence, the fields ϕ parametrize a 3-sphere.
- For $|\mathbf{x}|$ the vector ϕ tends to $\phi = (1, 0, 0, 0)$. So, we can do a "one-point compactification" and think of physical space $\mathbb{R}^3 \cup \{\infty\}$ as a 3-sphere.

Skyrmions

- Mathematically, we have a map $S^3 \rightarrow S^3$ and the degree *B* of this map counts the number of solitons.
- These solitons are known as *Skyrmions*.
- How do we visualize them?
- The degree B can be calculated as

$$B=\int \mathcal{B}\,\mathrm{d}x^3,$$

where $\ensuremath{\mathcal{B}}$ is the topological density.

• One option is to plot level sets of constant topological density *B*.

Figure : B = 4 Skyrmion

The B = 1 Skyrmion

• Spherically symmetric configuration

$$\phi_0 = \cos f(r), \quad \phi_j = \sin f(r) x_j,$$

where $r = |\mathbf{x}|, f(0) = \pi$ and $f(\infty) = 0$.

 Note if we rotate the hedgehog in space (x_j) and then rotate the φ_i in the right way, then can we get back where we started. The hedgehog is symmetric under rotations.

A colour scheme

- We want to label the direction of φ_j in terms of colours.
- The figures shows the hedgehog looking down the *z*-axis.
- Again the surface corresponds to $\mathcal{B} = const.$ For the hedgehog, this is the surface of a sphere.
- The direction of φ_j can be expressed in polar coordinates (θ, φ). Then we can colour the surface according to value of φ along the colour circle:

red, yellow, green, cyan, blue, magenta.

Classical Skyrmion scattering: Rotation without Rotating

- The initial and the final Skyrmions are oriented such that one Skyrmion is rotated in π which is known as the **attractive channel**.
- During scattering the Skyrmions do not rotate.
- However, after scattering the Skyrmions are rotated by $\frac{\pi}{2}$.

- In quantum field theory, there are two types of particles: **Bosons** and **Fermions**.
- When a Boson wavefunction is rotated by 2π, it remains invariant. However, if a Fermion wavefunction is rotated by 2π, then it changes by a factor of (-1).
- If two identical particles are exchanged then nothing happens to **Bosons**, whereas the wavefunction of the **Fermions** changes by a factor of (-1).
- In quantum field theory, **Bosons** are usually described by scalar, vector or tensor fields, whereas **Fermions** are represented by spinors.

- Key observation:
 - $\pi_1(Q_B) = \mathbb{Z}_2,$
 - where Q_B is the space of Skyrme configurations with charge B.
- Define wavefunctions ψ on the covering space of configuration space:
 - $\psi: CQ_B \to \mathbb{C}.$
- Impose $\psi(\tilde{q}_1) = -\psi(\tilde{q}_2)$.
- Symmetries of Skyrmions induce loops in configuration space.

Finkelstein-Rubinstein constraints

• Induced action of SO(3) imes SO(3) symmetries on ψ :

$$\exp\left(-i\alpha\,\mathbf{n}\cdot\mathbf{L}\right)\exp\left(-i\beta\,\mathbf{N}\cdot\mathbf{K}\right)\psi(\tilde{q})=\chi_{FR}\psi(\tilde{q}),$$

where $\chi_{FR} = \begin{cases} 1 & \text{if the induced loop is contractible,} \\ -1 & \text{otherwise.} \end{cases}$

- Here L and K are the body-fixed angular momentum operators in space and target space, respectively.
- Can we calculate $\chi_{FR} \in \pi_1(Q_B)$?

Finkelstein-Rubinstein constraints

• Induced action of SO(3) imes SO(3) symmetries on ψ :

$$\exp\left(-i\alpha\,\mathbf{n}\cdot\mathbf{L}\right)\exp\left(-i\beta\,\mathbf{N}\cdot\mathbf{K}\right)\psi(\tilde{q})=\chi_{FR}\psi(\tilde{q}),$$

where $\chi_{FR} = \begin{cases} 1 & \text{if the induced loop is contractible,} \\ -1 & \text{otherwise.} \end{cases}$

- Here L and K are the body-fixed angular momentum operators in space and target space, respectively.
- Can we calculate $\chi_{FR} \in \pi_1(Q_B)$?
- Yes, there is a simple formula:

$$\chi_{FR} = (-1)^{\mathcal{N}} \quad \text{where} \quad \mathcal{N} = \frac{B}{2\pi} \left(B\alpha - \beta \right).$$

(under some technical assumptions)

Rigid Body Quantisation — Key idea

- Calculate a minimal energy Skyrmion for a given charge B.
- Derive its symmetries.
- Use Finkelstein-Rubinstein constraints to find allowed states with given spin *J* and isospin *I*.
- The energy of a state $|J\rangle|I
 angle$ can be calculated (roughly) via

$$E = \mathcal{M} + \frac{\hbar^2 J(J+1)}{2\Theta_J} + \frac{\hbar^2 I(I+1)}{2\Theta_I},$$

where \mathcal{M} is the classical mass of the Skyrmion, and Θ_J and Θ_I are spin and isospin moments of inertia.

Rigid Body Quantisation - Discussion

- This approach is successful for calculating ground states for small nuclei, for B = 1 to 4, and for most small nuclei with even B.
- More detailed studies also showed that excitation spectra can be reproduced fairly well, eg for ${}_{3}^{6}Li$ and other small even nuclei.
- For ${}_{6}^{12}C$ the ground state and the Hoyle state have been calculated from two different Skyrme configurations.
- There are predictions for ground and excited states when symmetries are imposed, e.g. for T_d and O_h symmetric Skyrmions.
- Electromagnetic form factors have been calculated.

- While there has been a lot of progress, there are also drawbacks. For example, the ground states of nuclei with odd *B* are not described very well at all. Furthermore, Skyrmions are generally too tightly bound.
- Key idea: Allow for deformations of Skyrmions during quantisation:
 - Classically, Skyrmions deform when they rotate or isorotate.
 - Classically, Skyrmions also deform when they vibrate or scatter.

Vibrational Quantisation

- Manton, Leese and Schroers quantisd the attractive channel of two B = 1 Skyrmions in the instanton approximation and calculated various properties of the deuteron ${}_{1}^{2}$ H.
- Halcrow quantised B = 7 and derived the correct ground state and a good match to excited states of ${}_{3}^{7}$ Li.
- Halcrow, King and Manton quantised a two-dimensional scattering space of B = 8 skyrmions to quantise $\frac{16}{8}$ O.

Vibrational Quantisation II

- When we go beyond the zero mode quantization we need to construct a manifold *N* of Skyrme configuration parametrized by coordinates *y_i*.
- Then the Quantum Hamiltonian becomes

$$\hat{H} = -rac{\hbar^2}{2} \triangle + V(y_i),$$

where the kinetic energy operator is the Laplace-Beltrami operator

$$\triangle = \det(g)^{-\frac{1}{2}} \partial_i \left(\det(g)^{\frac{1}{2}} g^{ij} \partial_j \right)$$

and g is the metric on N, and $V(y_i)$ is the potential on N.

• For the B = 2 a natural choice of vibrational parameter is the separation of two B = 1 Skyrmions in the attractive channel.

¹⁶O quantisation

- For ${}^{16}_{8}$ O the manifold *N* is $M \times SO(3)$, where *M* is the six punctured sphere.
- This can be mapped to the hyperbolic plane.
- Then the vibrational wave function can be found by solving

$$-\triangle_{\rm vib.}\phi + V\phi = (E - E_J)\phi,$$

and taking the relevant symmetries into account.

Some wave functions

- Here we show the ground state, the first excited state and the lowest state with negative parity.
- The wave function of the ground state is localised around the minimum energy solution (tetrahedron).
- The first excited state is localised around two different minima (tetrahedron and square).
- The negative parity state actually vanishes at the minimum energy configuration.

The energy spectrum of ${}^{16}_{8}O$

- This is energy spectrum (for I = 0) by Halcrow, King and Manton.
- The calculated states of positve/negative parity are displayed as solid circles/triangles, while hollow symbols correspond to the relevant experimentally observed states.

Isospinning Skyrmions

• If we want to understand how Skyrmions deform when isorotating in colour space, we need to minimize the total energy

$$E = \mathcal{M} + rac{1}{2}U_{33}^{-1}K_3^2,$$

where \mathcal{K}_3 is the conserved body-fixed isospin angular momentum and

$$U_{33} = 2 \int (\phi_1^2 + \phi_2^2) (1 + \partial_k \phi_l \partial_k \phi_l) - (\phi_1 \partial_k \phi_2 - \phi_2 \partial_k \phi_1)^2 d^3 \mathbf{x},$$

= $2l_{1,2} + 2l_{1,2} \times e_2 - U_{33}^{cross}.$ (1)

- To minimise *E* we need increase U_{33} while keeping Skyrmion mass \mathcal{M} as small as possible.
- It can be shown that

$$\int_{\mathbb{R}^3} \left(\phi_1^2 + \phi_2^2 \right) \, \mathcal{B} \, \mathrm{d}^3 \mathbf{x} = B \int_{\mathcal{S}^3} \left(\phi_1^2 + \phi_2^2 \right) \, \mathrm{d}^3 \boldsymbol{\phi} = \frac{B}{2},$$

where \mathcal{B} can be viewed as the Jacobian of the map ϕ .

Isospinning Skyrmions II

- We want to develop an intuition of how isospinning Skyrmions deform as we increase K_3 .
- First, we amend our colouring scheme. The polar angle φ still represents the colour circle. Now, the angle θ measures how much "colour" there is, where $\theta \approx 0$ is **black**, $\theta \approx \frac{\pi}{2}$ is **colourful**, and $\theta \approx \pi$ is white.
- **Conjecture:** The main contribution comes from increasing the integral

$$I_{1,2} = \int \left(\phi_1^2 + \phi_2^2\right) \mathrm{d}^3 \mathbf{x},$$

which corresponds to the amount of "colour" in space.

• However, since

$$\int_{\mathbb{R}^3} \left(\phi_1^2 + \phi_2^2 \right) \, \mathcal{B} \, \mathrm{d}^3 \mathbf{x} = \frac{B}{2}$$

we cannot freely, decrease the amount of black and white in space. Since $I_{1,2}$ does not depend on the baryon density, the baryon density will decrease in regions that are coloured and increase in regions that are black or white.

B = 2: Isospinning and colour

- Here we consider the *B* = 2 Skyrmion oriented such that the hole in the middle is blue/purple.
- For zero isospin, we have the familiar torus.
- For fast isospin the "colourful" hole in the middle expands.
- Black and white regions are around the equation, so baryon density moves there, flattening the torus slightly.
- Finally, the baryon density increases around black and white regions, breaking axial symmetry to D₄.

B = 2: Isospinning and rescaling

 The flattening of the torus can be captured by rescaling in space, namely,

 $x_1 \mapsto \lambda_1 x_1, \quad x_2 \mapsto \lambda_2 x_2, \quad x_3 \mapsto \lambda_3 x_3.$

- The top graph shows that a rescaling to flatten the torus decreases the energy.
- The bottom graph shows how well the rescaling approximates the energy of the numeric calculation.
- The "squaring up" is not captured by rescaling. It has only a small effect on the energy.

B = 3: Isospinning and colour

- For *B* = 3 we consider a tetrahedron, where two corners are white/black, with two opposing edge also white/black.
- Initially, $\phi_1^2=\phi_2^2=\phi_3^2$ in the hole.
- The triangle distorts such ϕ_3^2 in the hole decreases.
- The white edge takes baryon density away from the corners that connects it, and moves away from the hole. The same happens for the black edge.
- The four "colourful" edges move towards the hole.
- Thereby, the two triangular faces with a white or black edge transform into two joined kites.

Conclusion

- The Skyrme model is a classical model for the strong interaction which needs to be quantised to make predictions in nuclear physics.
- The simplest approximation is the zero-mode quantisation which calculates states based on a single minimal energy configuration and its zero-modes.
- Currently there are various approaches to improve the predictions of the Skyrme model:
 - Modify the Skyrme model such that the classical energies are more degenerate, i.e. closer to the energies of atomic nuclei (near-BPS models, alternative mass terms,...)
 - Vibrational quantisation
 - Spinning and **isospinning** Skyrmions
- We discussed vibrational quantization.
- We also discussed how to obtain a better understanding of isospinning Skyrmions.

B = 4: White/Black Vertices

- For B = 4 we consider different cases.
- First, the vertices are black/white, and are already the highest density points. The hole of the cube has φ₃ = 0.
- The density flows further to the vertices, the hole expands.
- This produces a "pointier" and larger cube.

B = 4: Different colours

- Here are two examples where the cube splits into two tori, for two different colourings.
- Note that for fixed K_3 , both have higher energy than the previous colouring.

B = 8: Different break-up configurations

- Here are two different colourings for B = 8 which split up into 2 cubes and 4 tori, respectively.
- All B = 8 configurations that we have considered split up.
- It is difficult to tell numerically, which one has lower energy.

