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Topological Solitons, Nonperturbative Gauge Dynamics and Confinement - KenFest!



The free particle on a circle

alias: the simplest QM problem with non-trivial topological structure and numerical challenges

R

m, q

B We will consider the path integral formulation for a

free particle constrained on a circle of radius R

with and without a uniform magnetic field

orthogonal to the circle

• This is a great example, where basic issues concerning topology and θ-dependence

in gauge theories can be discussed in a simplified framework

• Even if everything is analitically computable here, as we try to study it by Monte-Carlo

simulations, we face the same problems and failures as in QCD
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m

In the standard approach Z is written a sum over

energy/angular momentum eigenstates

Z =

∞
∑

n=−∞

exp

(

−β
~
2n2

2mR2

)

in the path integral approach

Z = N

∫

x(0)=x(β~)

Dx(τ) exp

(

−SE [x(τ)]

~

)

; SE [x(τ)] =

∫ β~

0

dτ
1

2
m

(

dx

dτ

)2

New feature: paths divide in topological classes

Boundary conditions in space =⇒ each path x(τ) contributing toZ is a continuous

application from the temporal circle to the spatial circle.

how many times does the path wind around the circle before closing in eucl. time?
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Paths are divided in homotopy classes according to their winding number Q

which cannot be changed without cutting the path.

On the other hand, discontinuous paths have zero measure in the path integral

Wiener measure: first derivative divergent, but continuity is guaranteeed

The homotopy group is π1(S
1) = Z

Can we compute the contribution of each topological sector to the path integral? YES
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• The path integral over each sector can be done by integrating over classical solutions,

which are minima of the Euclidean action

• In this simple case the integration can be done exactly, yielding a result proportional

to exp(−SQ/~) where SQ is the action of the classical path

SQ =
1

2
m
(2πRQ)2

β~

• We have therefore an expression for the weight of each sector, which is nothing

but the probability distribution P (Q) over the winding number Q

P (Q) ∝ exp

(

−
Q2

2β~χ

)

; χ ≡
~

4π2mR2



Low and high T limits

Z =

∞
∑

n=−∞

exp

(

−β
~
2n2

2mR2

)

∝
∞
∑

Q=−∞

exp

(

−
1

β

Q2

2~χ

)

=

∞
∑

Q=−∞

exp

(

−
1

β

2π2mR2Q2

~2

)

the partition function can be written in terms of two different series, which are sort

of dual to each other (β vs 1/β in the exponential)

• low T (ground state physics) (β~2/(mR2) ∼ ~βχ≫ 1)

- only lowest energy levels (lowest |n|) contribute

- all Q values contribute and they are ∼ Gaussian distributed with variance σ =

~βχ

• high T : (β~2/(mR2) ∼ ~βχ≪ 1)

- all energy levels n contribute, they are ∼ Gaussian distributed with variance

σ = 1/(4π2β~χ)

- only lowest winding numbers contribute



And now the magnetic field, alias the θ-term

R

m, q

B

A uniform magnetic field across the circle implies

a tangential gauge potential A = BR/2, hence

L =
1

2
mv2 + qAv =

1

2
mv2 +

qBR

2
v

while the energy levels change into

En =
(~2n2 − qB2R4/2)2

(2mR2

In the Euclidean path integral formalism (t → −iτ ) that amounts to adding the

following term to the Euclidean action SE:

i
qBR

2~

∫ β~

0

dτ
dx

dτ
= i

qBR

2~
2πRQ = iθQ ; θ ≡

πqBR2

~

Notice: a total derivative in the Lagrangian, does not change the classical equations,

but leads to a global contribution which is constant in each topological sector



How the partition function changes

Z =

∞
∑

n=−∞

e−βEn =

∞
∑

n=−∞

e−
β~χ
2

(2πn−θ)2 = N

∫

Dx(τ)e−SE [x(τ)]/~eiθQ ∝
∞
∑

Q=−∞

e−
1

2~χβ
Q2

eiθQ

• θ-dependence of the free energy F (θ) = − logZ(θ)/β here is related to the

magnetic properties of the system. General features:

- F (θ + 2π) = F (θ) (θ is an angular variable) ; F (−θ) = F (θ)

- Z(θ) ≤ Z(0) =⇒ F (θ) ≥ F (0) (sort of Vafa-Witten theorem) =⇒ diamagnetism

• in the path integral formalism, a complex weight appears, which hinders the application

of Monte-Carlo simulations. This is usually known as the sign problem.

• It afflicts other theories with a topological term. Here, it disappears when resumming

Z in terms of other variables (n): such a rewriting is still a mirage in other cases

Then, how to investigate θ-dependence in the path-integral approach?



Taylor expansion approach

F (θ)− F (0) =
1

2
F (2)θ2 +

1

4!
F (4)θ4 + ... ; F (2n) =

d2nF

dθ2n

∣

∣

∣

∣

θ=0

Taylor coefficients: cumulants of the Q distribution P (Q) ∝ e−Q2/(2~βχ) at θ = 0

F (2) =
〈Q2〉c
β~

=
〈Q2〉 − 〈Q〉2

β~
; F (4) = −

〈Q4〉c
β~

= −
〈Q4〉 − 3〈Q2〉2

β~
; F (2n) = −(−1)n

〈Q2n〉c
β~

as ~βχ→∞ (vacuum), Q is purely Gaussian, only F (2) 6= 0 (topological susceptibility)

F (θ)− F (0) =
χ

2
θ2

that, when combined with the expected periodicity and symmetries, gives rise to a multibranched

function with quantum phase transitions at θ = π or odd multiples of it

θ)

0 π 2π θ3π−π

F(

In terms of energy levels, at π we have a level crossing associated with the quantum phase transition,

which disappears as soon as T 6= 0



In the opposite, hight T limit, ~βχ≪ 1, only the lowest topological sectors contribute,

taking just Q = 0, 1,−1:

Z(θ) ∝ 1 + 2e−1/(2~βχ) cos θ =⇒ F (θ)− F (0) ≃ −
2

β
e−1/(2~βχ) cos θ

i.e. a smooth, periodic behavior in θ



Problems in numerical sampling of topological modes
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Apart from the sign problem, the study of θ-dependence faces other numerical challenges:

• standard algorithms update the path configuration by small local steps

• in the continuum limit, paths evolve almost continuously in configuration space

• how is it possible, in this limit, to change topological sector? One should move

across unlikely “discontinuous paths”, which in the continuum limit have zero

measure.

• standard algorithms become slower and slower in moving from one topological

sector to the other, until they become completely non-ergodic.
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Set of MC histories (100K sweeps, Metropolis algorithm), obtained at fixed ~βχ = 5

varying the number of temporal slices N

Critical slowing down proceeds fast towards

complete freezing of topological modes

Luckily enough, in this case numerical results

approach the continuum limit quite earlier (finest

point N = 600)
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Back to QCD

QCD is a bit less trivial than a particle on a circle, its Euclidean action reads:

SQCD =

∫

d4xLQCD =

∫

d4x

(

∑

f

ψ̄f (Dµγµ +mf )ψf +
1

4
Ga

µνG
a
µν

)

Also in this case relevant gauge field configurations divide in homotopy classes,

characterized by an integer winding number Q =
∫

d4x q(x)

q(x) =
g2

64π2
Ga

µν(x)G̃
a
µν(x) =

g2

64π2
ǫµνρσG

a
µν(x)G

a
ρσ(x)

GG ∝ ~Ea · ~Ea + ~Ba · ~Ba ; GG̃ ∝ ~Ea · ~Ba

Homotopy group: π3(SU(3)) = Z (actually, π3(SU(Nc)) = π3(SU(2)) ∀Nc)



Classical solutions with non-trivial winding around the gauge group: instantons

characterized by various parameters: position, radiud ρ, . . .

Effective action known only perturbatively. The 1-loop one-instanton contribution is

exp

(

−
8π2

g2(ρ)

)

where g(ρ) is the running coupling at the instanton scale ρ.

• by asymptotic freedom, works well for small instantons, which are then exponentially

suppressed, implying the validity of a dilute instanton gas approximation (DIGA)

• however, perturbation theory breaks down for large instantons (1/ρ . ΛQCD),

which become dominant, overlap with each other, and break DIGA



QCD at non-zero θ

Also in this case, we can modify the theory introducing a θ-parameter coupled to Q:

Z(θ) =

∫

[DA][Dψ̄][Dψ] e−SQCD eiθQ

θ is a super-selection parameter: different θ, different Hilbert space

GG̃ is renormalizable, the theory at θ 6= 0 is well defined, but presents explicit

breaking of CP symmetry (G̃ ∝ ~E · ~B)

As for the 1D-model, the free energy density F (θ) = −T logZ/V is a periodic even

function of θ, F (θ) ≥ F (0), which can be expanded around θ = 0 (assuming analyticity)

F (θ)−F (0) =
1

2
F (2)θ2+

1

4!
F (4)θ4+ ... ; F (2n) =

d2nF

dθ2n

∣

∣

∣

∣

θ=0

= −(−1)n
〈Q2n〉c
V4

V4 = V/T is the 4D volume



A common parametrization

F (θ, T )− F (0, T ) =
1

2
χ(T )θ2

[

1 + b2(T )θ
2 + b4(T )θ

4 + · · ·
]

χ =
1

V4
〈Q2〉0 = F (2) b2 = −

〈Q4〉0 − 3〈Q2〉20
12〈Q2〉0

b4 =
〈Q6〉0 − 15〈Q2〉0〈Q

4〉0 + 30〈Q2〉30
360〈Q2〉0

The probability distribution P (Q) of the different topological sectors now is not

known: it is a non-perturbative property of QCD

Coefficients b2n parametrize deviations of the distribution of topological charge from

a Gaussian in the theory at θ = 0.



A substantial difference with respect to the toy-model: we have fermions around

An axial U(1)A rotation of the fermion fields move θ from the gluon to the quark

sector (same concept as for the axial anomaly). For any flavor:

ψf → eiαγ5ψf and ψ̄f → ψ̄fe
iαγ5

=⇒ θ → θ − 2α and mf → mfe
2iα

• should any quark be massless (this is not the case), θ could be rotated away and

θ-dependence would be trivial

• in the presence of light quarks (this is the case), θ-dependence can be reliably

studied within the framework of chiral perturbation theory (χPT)



Experimental bounds on the electric dipole of the moment set stringent limits to the

amount of CP-violation in strong interactions.

|θ| . 10−10

So: why do we bother with θ-dependence at all?

• θ-dependence←→ P (Q) at θ = 0 =⇒ it enters phenomenology anyway.

e.g., Witten-Veneziano mechanism: χYM = f 2
πm

2
η′/(2Nf )

• Strong CP-problem: why is θ = 0? mf = 0 is ruled out.

A possible mechanism (Peccei-Quinn) invokes the existence of a new scalar field

(axion) whose properties are largely fixed by θ-dependence

• Axions are popular dark matter candidates, so the issue is particularly important



The QCD axion

Main idea: add a new scalar field a, with only derivative terms acquiring a VEV 〈a〉

and coupling to the topological charge density. Low energy effective lagrangian:

Leff = LQCD +
1

2
∂µa∂

µa+

(

θ +
a(x)

fa

)

g2

32π2
GG̃+ . . .

• a is the Goldstone boson of a spontaneously broken (Peccei-Quinn) U(1) axial

symmetry (various high energy models exist)

• coupling to GG̃ involves the decay constant fa, supposed to be very large

• shifting 〈a〉 shifts θ by 〈a〉/fa. However θ-dependence of QCD breaks global shift

symmetry on θeff = θ + 〈a〉/fa, and the system selects 〈a〉 so that θeff = 0.

• Assuming fa very large, a is quasi-static and its effective couplings (mass, interaction

terms) are fixed by QCD θ-dependence. For instance

m2
a(T ) =

χ(T )

f 2
a

=
〈Q2〉T,θ=0

V4f 2
a

knowing F (θ, T ) fixes axion parameters during the Universe evolution



Predictions about θ-dependence - I

Dilute Instanton Gas Approximation (DIGA) for high T (Gross, Pisarski, Yaffe 1981)

• instantons - antiinstantons treated as uncorrelated (non-interacting) objects

Poisson distribution with an average probability density p per unit volume

Zθ ≃
∑ 1

n+!n−
!
(V4p)

n++n−eiθ(n+−n−) = exp [2V4p cos θ]

F (θ, T )− F (0, T ) ≃ χ(T )(1− cos θ) =⇒ b2 = −1/12 ; b4 = 1/360 ; . . .

• Instantons of size ρ ≫ 1/T suppressed by thermal fluctuations, for high T

instantons of effective perturbative action 8π/g2(T ) dominate. Including also

leading order suppression due to light fermions and zero modes:

χ(T ) ∼ T 4
(m

T

)Nf

e−8π2/g2(T ) ∼ mNfT 4− 11

3
Nc−

1

3
Nf ∝ T−7.66 (forNf = 2)

Notice: perturbative limit implies diluteness, hence DIGA, however DIGA might be

good before reaching the asymptotic perturbative behavior



Predictions about θ-dependence - II

Chiral Perturbation Theory (χPT) for low T

At low T , perturbation theory breaks down, however, by U(1) axial rotations, θ can

be moved to the light quark masses. Then, χPT can be applied as usual.

Result for the ground state energy (Di Vecchia, Veneziano 1980)

E0(θ) = −m
2
πf

2
π

√

1−
4mumd

(mu +md)2
sin2 θ

2

χ =
z

(1 + z)2
m2

πf
2
π , b2 = −

1

12

1 + z3

(1 + z)3
, z =

mu

md

Explicitly

z = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)

z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)

=⇒ ma ∼ 10−5

(

1012GeV

fa

)



Predictions about θ-dependence - III

Large-Nc for low T SU(Nc) gauge theories (Witten, 1980)

LQCD(θ) =
1
4
Ga

µνG
a
µν + θ g2

64π2 ǫµνρσG
a
µνG

a
ρσ

g2Nc = λ is kept fixed as Nc → ∞ =⇒ if any non-trivial dependence on θ exist

in the large-Nc limit, the dependence must be on θ̄ = θ/Nc.

F (θ, T )− F (0, T ) = N2
c F̄ (θ̄, T )

F̄ (θ̄, T ) =
1

2
χ̄θ̄2
[

1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·
]

Matching powers of θ̄ and θ we obtain

χ ∼ N0
c ; b2 ∼ N−2

c ; b2n ∼ N−2n
c

P (Q) is Gaussian in the large Nc, as the toy model. Periodicity in θ enforces a

multibranched structure with phase transitions at θ = (2k + 1)π.

θ)

0 π 2π θ3π−π

F(



Numerical Results from Lattice QCD

main technical and numerical issues

• topological charge renormalizes, naive lattice discretizations are non-integer valued.

Various methods devised leading to consistent results

– field theoretic compute renormalization constants and subtract

– fermionic definitions use the index theorem to deduce Q from fermionic zero modes

– smoothing methods use various techniques to smooth gauge fields and recover integer Q

• Determination of higher cumulants is numerically challenging: need to detect

deviations from a Gaussian, but as V4 →∞ Gaussian modes dominate.

• Freezing of topological modes in the continuum



Pure gauge results: T = 0 (Yang-Mills vacuum)

Topological susceptibility well known, with increasing refinement, since 20 years, and

compatible with the Witten-Veneziano mechanism for mη′ , χ
1/4 ∼ 180 MeV
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Determination of b2 more difficult. Most

recent determination for SU(3) (Bonati, D’Elia,

Scapellato, 1512.01544) obtained by introducing

an external imaginary θ source to improve

signal/noise.

Introduce an imaginary θ = iθL in the lattice action, then perform a global fit to the first four cumulants:
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By these means, we have recently been able to

determine the scaling of b2 to the largeN limit.

(Bonati, D’Elia, Rossi, Vicari, 1607.06360)
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Clear evidence for the predicted large-Nc

scaling of b2:
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with b̄2 = −0.20(2)



Pure gauge results: Finite T , across and above Tc

Topological activity stays almost unchanged till Tc and thenχ drops suddenly: known

since 20 years
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we had some recent progress:
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DIGA values for higher cumulants reached quite

soon, already for T & 1.1 Tc.

Small deviations compatible with repulsive

instanton-instanton interactions
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The perturbative power law behavior predicted for

χ at high T has been verified

χ(T ) ∝ 1/T b, where b = 7.1(4)(2) (perturbative

prediction b = 7), but absolute value a factor 10

larger



Emerging picture:

• shortly after Tc, topological excitations behave as a dilute non-interacting gas,

F (θ) ∝ (1 − cos(θ)). Residual interactions around Tc are repulsive. Agreement

with perturbative DIGA, at least for the power law.

• the scenario changes completely crossing the confinement transition, large N

predictions sets in and F = F (θ/N).

• Sometimes this is interpreted in terms of decomposition into topological objects

with charge 1/N (instanton quarks). However our results show that the picture

could be naı̈ve, or at least such objects are not weakly interacting.

Non interacting gas of 1/N charged objects would give

F ∝ (1− cos(θ/N)) =⇒ b2 = −
0.08333

N2

we obtain instead b2 = −0.20(2)/N
2, hence corrections must be significant.



Full QCD results

I will show some results obtained for Nf = 2 + 1 QCD with physical quark masses

C. Bonati et al., JHEP 1603 (2016) 155 [arXiv:1512.06746]

stout improved staggered fermions, a tree-level Symanzik gauge action
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The approach to the continuum limit is

quite slow and lattice spacing well below

0.1 fm are needed

continuum limit compatible with ChPT

(73(9)MeV against 77.8(4)MeV)

slow convergence to the continuum is strictly related to the slow approach to the

correct chiral properties of fermion fields



The need for quite small lattice spacings, in order to correctly extrapolate to the

continuum limit, has brought us to the frontier of frozen topology
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Finite T results
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Cut-off effects strongly reduced in the ratio

χ(T )/χ(T = 0)

drop of the chiral susceptibility much

smoother than perturbative estimate:

χ(T ) ∝ 1/T b with b = 2.90(65) (DIGA

prediction: b = 7.66÷ 8)
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Values for b2 converge faster to DIGA

prediction, however deviations seem of

opposite sign with respect to the quenched

case:

quark mediated attractive instanton-instanton

interaction?



What are the consequences of our results for axion physics?

Main source of axion relics: misalignment. Field not at the minimum after PQ symmetry

breaking. Further evolution (zero mode approximation, H = Hubble constant):

ä(t) + 3H(t)ȧ(t) +m2
a(T )a(t) = 0 ; m2

a = χ(T )/f 2
a

T ≫ ΛQCD 2nd term dominates =⇒ a(t) ∼ const

ma & H oscillations start =⇒ adiabatic invariant

Na = maA
2R3 ∼ number of axions (∼ cold DM)

A = oscill. amplitude; R = Universe radius
t

UNIVERSE

m(T)

H

A larger χ(T ) implies larger ma and moves the oscillation time earlier (higher T ,

smaller Universe radius R)

Requiring a fixed Na (Ωaxion ∼ ΩDM )

χ(T ) grows =⇒ oscill. time anticipated =⇒ less axions =⇒ require larger fa to maintain Na

On the other hand, larger fa means smaller ma today



Our results translated in predictions for fa, hence ma at our times, depending on the

required amount of axion dark matter. fa factor 10 larger (ma smaller) wrt perturbative

DIGA predictions

An unknown variable is the initial misalignment θ0. Moreover, if PQ symmetry breaks

before inflation the initial value is constant, otherwise an average over the initial value

has to be performed. order of magnitude prediction for presentma ∼ 10−100 µeV



BEST WISHES KEN!


