Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

PISA, 2017

Vortex line formation in He II

Enore Guadagnini

E. G., Critical angular velocity for vortex lines formation, J. of Stat. Mech. (2017) 073104, arXiv:1706.04831.

E. Guadagnini and K. Konishi, *Composite Quarks and Cabibbo Mixing*, Nucl. Phys. B196 (1982) 165-175.

E. Guadagnini and K. Konishi, Pattern of Chiral Symmetry Breaking in QCD at Small Nonvanishing $\rho = N_f/N_c$, Physica Scripta 26 (1982) 67-70.

E. Guadagnini and K. Konishi, *Effective Gauge Symmetry in Supersymmetric Confining Theories*, Il Nuovo Cimento 90A (1985) 400-434.

E. Guadagnini, K. Konishi and M. Mintchev, Non-Abelian Chiral Anomalies in Supersymmetric Gauge Theories, Phys. Lett. B157 (1985) 37-42.

E. Guadagnini, K. Konishi and M. Mintchev, *Consequences of the Non-Abelian Anomaly in Supersymmetric Theories*, Nucl. Phys. B262 (1985) 610-626.

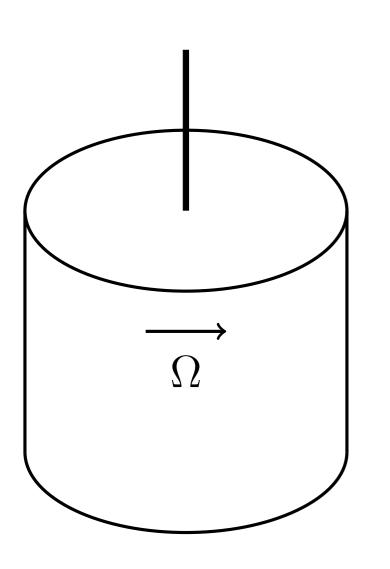
For $T_0 \simeq 2.18$ K, the behaviour of helium He⁴ is similar to the behaviour of a two-components liquid in which

- one component, which has velocity v_s and mass density ρ_s , corresponds to the so-called superfluid motion; this fluid component has no viscosity and carries zero entropy;
- the second component, with velocity \boldsymbol{v}_n and mass density ρ_n , corresponds to the normal motion and behaves as a normal viscous fluid.

This quantum liquid can be described (Landau) by means of:

- a gas of quasi-particles (the localized energy fluctuations of the system above its ground state)
- additional degrees of freedom which are related with the global (zero entropy) motion of the ground state wave function = global motion of the condensate

Mass density : $\rho = \rho_s + \rho_n$ Momentum density : $\mathbf{P}/V = \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n$



Rotating container

For small Ω , the viscous component is rotating, whereas the condensate is at rest

 $\boldsymbol{v}_n = \boldsymbol{\Omega} \wedge \boldsymbol{r} \quad , \quad \boldsymbol{v}_s = 0$

Landau argument: in the rotating system the boundary conditions for the viscous fluid coincide with the static boundary conditions. So the Gibbs factor $= e^{-E'/kT}$, where $E' = \epsilon - \Omega(\mathbf{r} \wedge \mathbf{p})$. As Ω increases, the value Ω_0 is reached in which the condensate also starts moving. For one vortex $|\mathbf{v}_s| = v_s(r_{\perp}) = \frac{\hbar}{m r_{\perp}}$ $\Omega_0 = ??$ • minimize $U' = -U = -\Omega M$

• minimize $U'_{vor} = U_{vor} - \Omega M_{vor}$

Then $\overline{\Omega}_0 = \frac{\hbar}{mR^2} \ln\left(\frac{R}{a}\right)$

When $\boldsymbol{v} = \boldsymbol{v}_n - \boldsymbol{v}_s \neq 0$, the energy spectrum of a single quasi-particle (which belongs to this part of the liquid) with momentum \boldsymbol{p} is given by

$$E_v(\mathbf{p}) = \varepsilon(p) - \mathbf{v}\mathbf{p} = \varepsilon(p) - (\mathbf{v}_n - \mathbf{v}_s)\mathbf{p}$$

Density of free energy for the quasi-particles gas

$$[F/V]_{q.p.} = kT \int d\tau \ln\left(1 - e^{-(\varepsilon - \boldsymbol{v}\boldsymbol{p})/kT}\right)$$

Condensate contribution $[F/V]_c = [U/V]_s = \frac{1}{2}\rho v_s^2$

Density of free energy for Helium II :

$$F/V = F_0/V + \frac{1}{2}\rho v_s^2 - \frac{1}{2}\rho_n (\boldsymbol{v}_n - \boldsymbol{v}_s)^2$$

where

$$F_0/V = kT \int d\tau \ln\left(1 - e^{-\varepsilon/kT}\right)$$

and

$$\rho_n = \int d\tau \left(p^2/3 \right) \left[-\frac{\partial n(\varepsilon)}{\partial \varepsilon} \right]$$

For fixed Ω (fixed \boldsymbol{v}_n) consider the free energy

$$F = \int d^3r \left\{ F_0 / V + \frac{1}{2} \rho v_s^2 - \frac{1}{2} \rho_n (\boldsymbol{v}_n - \boldsymbol{v}_s)^2 \right\}$$

one has $F = \tilde{F} + F_I + F_{II}$ where

$$\widetilde{F} = F_0 - \frac{1}{2} \int d^3 r \,\rho_n |\boldsymbol{v}_n|^2$$

and

$$F_{I} = \int d^{3}r \,\rho_{n} \,\boldsymbol{v}_{n} \boldsymbol{v}_{s}$$
$$F_{II} = \frac{1}{2} \int d^{3}r \,\rho_{s} \,|\boldsymbol{v}_{s}|^{2}$$

When $F_I + F_{II} < 0$ one has a vortex formation.

$$F_I = \pm \rho_n \frac{\pi L R^2 \hbar}{m} \,\Omega$$

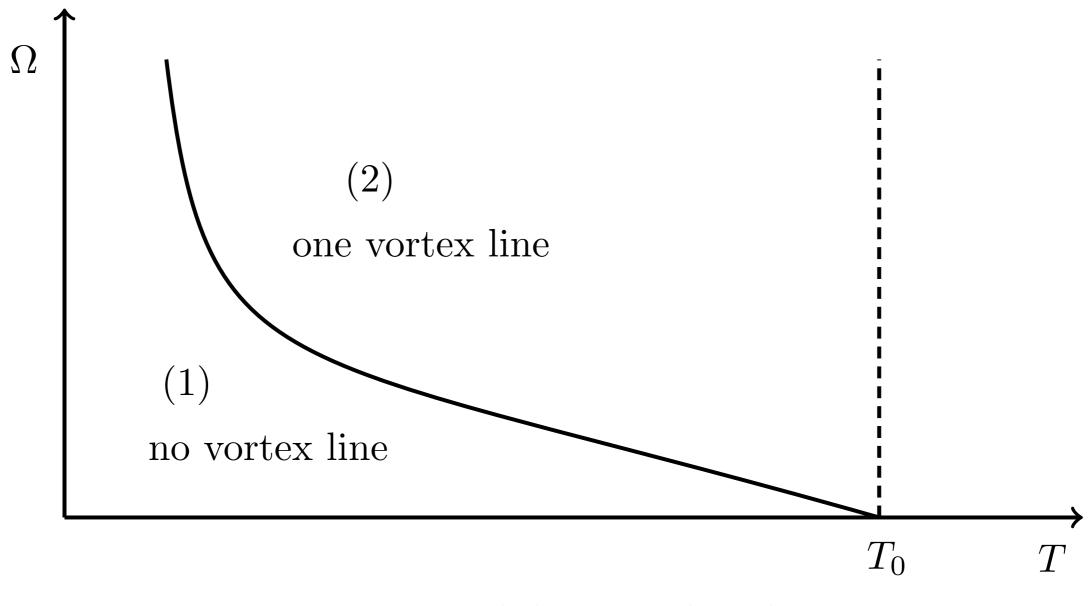
$$F_{II} = \rho_s \frac{\pi L\hbar^2}{m^2} \ln\left(\frac{R}{a}\right)$$

One finds

•
$$\Omega > \Omega_0$$
, with

$$\Omega_0 = \left(\frac{\rho_s}{\rho_n}\right) \, \frac{\hbar}{mR^2} \, \ln\left(\frac{R}{a}\right)$$

• the condensate starts moving in the opposite direction of the viscous normal component of the fluid (*i.e.* $\boldsymbol{v}_n \boldsymbol{v}_s =$ $-|\boldsymbol{v}_n| |\boldsymbol{v}_s| < 0$).



Critical curve $\Omega_0(T)$ in the (Ω, T) -plane.

Along the critical curve, one has $F_{(1)} = F_{(2)}$. Since $dF = -SdT - Jd\Omega$, where J corresponds to the vertical component of the angular momentum of the quasi-particles gas, from

$$-S_{(1)}dT - J_{(1)}d\Omega_0 = -S_{(2)}dT - J_{(2)}d\Omega_0$$

one gets

$$\frac{d\Omega_0}{dT} = -\frac{S_{(2)} - S_{(1)}}{J_{(2)} - J_{(1)}} = -\frac{\lambda}{T(J_{(2)} - J_{(1)})}$$

where $\lambda = T(S_{(2)} - S_{(1)})$ denotes the latent heat for the vortex formation.

The discountinuous change of J, which is due to the formation of a vortex line, is given by

$$\Delta J = J_{(2)} - J_{(1)} = -\widehat{\boldsymbol{z}} \left(\int d^3 r \,\rho_n \,\boldsymbol{r} \wedge \boldsymbol{v}_s \right) = \rho_n \frac{\pi L R^2 \hbar}{m}$$

whereas the total angular momentum of helium II decreases

$$\Delta \left(\boldsymbol{J}_{z} + \boldsymbol{M}_{z} \right) = -\rho_{s} \frac{\pi L R^{2} \hbar}{m}$$

$$\lambda = T(S_{(2)} - S_{(1)}) = (2\rho_n^* - \rho_n) \left(\frac{\rho}{\rho_n}\right) \frac{\pi L\hbar^2}{m^2} \ln\left(\frac{R}{a}\right)$$

where

$$\rho_n^* = \frac{5}{2} \rho_{n,ph} + \rho_{n,r} \left[\frac{\Delta}{2kT} + \frac{1}{4} \right]$$

$$\Omega_0 = \left(\frac{\rho_s}{\rho_n}\right) \frac{\hbar}{mR^2} \ln\left(\frac{R}{a}\right) = D \frac{\hbar}{mR^2} \ln\left(\frac{R}{a}\right)$$

D		2.34×10^4	1.03×10^{3}	1.31×10^2	33
ρ_n/ρ		4.27×10^{-5}	9.66×10^{-4}	7.52×10^{-3}	2.92×10^{-2}
T (K)		0.6	0.8	1	1.2
D	12	4.88	2.12	0.78	0.35
ρ_n/ρ	7.54×10^{-2}	0.17	0.32	0.56	0.74
T (K)	1.4	1.6	1.8	2.0	2.1