Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

Vortex line formation in He II

Enore Guadagnini

[^0]
written in NORDITA 35 years ago

E. Guadagnini and K. Konishi, Composite Quarks and Cabibbo Mixing, Nucl. Phys. B196 (1982) 165-175.
E. Guadagnini and K. Konishi, Pattern of Chiral Symmetry Breaking in QCD at Small Nonvanishing $\rho=N_{f} / N_{c}$, Physica Scripta 26 (1982) 67-70.
E. Guadagnini and K. Konishi, Effective Gauge Symmetry in Supersymmetric Confining Theories, Il Nuovo Cimento 90A (1985) 400-434.
E. Guadagnini, K. Konishi and M. Mintchev, Non-Abelian Chiral Anomalies in Supersymmetric Gauge Theories, Phys. Lett. B157 (1985) 37-42.
E. Guadagnini, K. Konishi and M. Mintchev, Consequences of the Non-Abelian Anomaly in Supersymmetric Theories, Nucl. Phys. B262 (1985) 610-626.

For $T_{0} \simeq 2.18 \mathrm{~K}$, the behaviour of helium He^{4} is similar to the behaviour of a two-components liquid in which

- one component, which has velocity \boldsymbol{v}_{s} and mass density ρ_{s}, corresponds to the so-called superfluid motion; this fluid component has no viscosity and carries zero entropy;
- the second component, with velocity \boldsymbol{v}_{n} and mass density ρ_{n}, corresponds to the normal motion and behaves as a normal viscous fluid.

This quantum liquid can be described (Landau) by means of:

- a gas of quasi-particles (the localized energy fluctuations of the system above its ground state)
- additional degrees of freedom which are related with the global (zero entropy) motion of the ground state wave function $=$ global motion of the condensate

Mass density: $\quad \rho=\rho_{s}+\rho_{n}$
Momentum density: $\quad \boldsymbol{P} / V=\rho_{s} \boldsymbol{v}_{s}+\rho_{n} \boldsymbol{v}_{n}$

Rotating container

For small Ω, the viscous component is rotating, whereas the condensate is at rest

$$
\boldsymbol{v}_{n}=\boldsymbol{\Omega} \wedge \boldsymbol{r} \quad, \quad \boldsymbol{v}_{s}=0
$$

Landau argument: in the rotating system the boundary conditions for the viscous fluid coincide with the static boundary conditions. So the Gibbs factor $=e^{-E^{\prime} / k T}$, where $E^{\prime}=\epsilon-\boldsymbol{\Omega}(\boldsymbol{r} \wedge \boldsymbol{p})$.
As Ω increases, the value Ω_{0} is reached in which the condensate also starts moving. For one vortex $\left|\boldsymbol{v}_{s}\right|=v_{s}\left(r_{\perp}\right)=\frac{\hbar}{m r_{\perp}}$

$$
\Omega_{0}=? ?
$$

- minimize $U_{v o r}^{\prime}=U_{v o r}-\boldsymbol{\Omega} \boldsymbol{M}_{v o r}$

Then $\bar{\Omega}_{0}=\frac{\hbar}{m R^{2}} \ln \left(\frac{R}{a}\right)$

When $\boldsymbol{v}=\boldsymbol{v}_{n}-\boldsymbol{v}_{s} \neq 0$, the energy spectrum of a single quasi-particle (which belongs to this part of the liquid) with momentum \boldsymbol{p} is given by

$$
E_{v}(\boldsymbol{p})=\varepsilon(p)-\boldsymbol{v} \boldsymbol{p}=\varepsilon(p)-\left(\boldsymbol{v}_{n}-\boldsymbol{v}_{s}\right) \boldsymbol{p}
$$

Density of free energy for the quasi-particles gas

$$
[F / V]_{q . p .}=k T \int d \tau \ln \left(1-e^{-(\varepsilon-\boldsymbol{v p}) / k T}\right)
$$

Condensate contribution $[F / V]_{c}=[U / V]_{s}=\frac{1}{2} \rho v_{s}^{2}$

Density of free energy for Helium II :

$$
F / V=F_{0} / V+\frac{1}{2} \rho v_{s}^{2}-\frac{1}{2} \rho_{n}\left(\boldsymbol{v}_{n}-\boldsymbol{v}_{s}\right)^{2}
$$

where

$$
F_{0} / V=k T \int d \tau \ln \left(1-e^{-\varepsilon / k T}\right)
$$

and

$$
\rho_{n}=\int d \tau\left(p^{2} / 3\right)\left[-\frac{\partial n(\varepsilon)}{\partial \varepsilon}\right]
$$

For fixed Ω (fixed \boldsymbol{v}_{n}) consider the free energy

$$
F=\int d^{3} r\left\{F_{0} / V+\frac{1}{2} \rho v_{s}^{2}-\frac{1}{2} \rho_{n}\left(\boldsymbol{v}_{n}-\boldsymbol{v}_{s}\right)^{2}\right\}
$$

one has $F=\widetilde{F}+F_{I}+F_{I I}$ where

$$
\widetilde{F}=F_{0}-\frac{1}{2} \int d^{3} r \rho_{n}\left|\boldsymbol{v}_{n}\right|^{2}
$$

and

$$
\begin{aligned}
F_{I} & =\int d^{3} r \rho_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{s} \\
F_{I I} & =\frac{1}{2} \int d^{3} r \rho_{s}\left|\boldsymbol{v}_{s}\right|^{2}
\end{aligned}
$$

When $F_{I}+F_{I I}<0$ one has a vortex formation.

$$
\begin{aligned}
F_{I} & = \pm \rho_{n} \frac{\pi L R^{2} \hbar}{m} \Omega \\
F_{I I} & =\rho_{s} \frac{\pi L \hbar^{2}}{m^{2}} \ln \left(\frac{R}{a}\right)
\end{aligned}
$$

One finds

- $\Omega>\Omega_{0}$, with

$$
\Omega_{0}=\left(\frac{\rho_{s}}{\rho_{n}}\right) \frac{\hbar}{m R^{2}} \ln \left(\frac{R}{a}\right)
$$

- the condensate starts moving in the opposite direction of the viscous normal component of the fluid (i.e. $\quad \boldsymbol{v}_{n} \boldsymbol{v}_{s}=$ $\left.-\left|\boldsymbol{v}_{n}\right|\left|\boldsymbol{v}_{s}\right|<0\right)$.

Critical curve $\Omega_{0}(T)$ in the (Ω, T)-plane.

Along the critical curve, one has $F_{(1)}=F_{(2)}$. Since $d F=-S d T-$ $J d \Omega$, where J corresponds to the vertical component of the angular momentum of the quasi-particles gas, from

$$
-S_{(1)} d T-J_{(1)} d \Omega_{0}=-S_{(2)} d T-J_{(2)} d \Omega_{0}
$$

one gets

$$
\frac{d \Omega_{0}}{d T}=-\frac{S_{(2)}-S_{(1)}}{J_{(2)}-J_{(1)}}=-\frac{\lambda}{T\left(J_{(2)}-J_{(1)}\right)}
$$

where $\lambda=T\left(S_{(2)}-S_{(1)}\right)$ denotes the latent heat for the vortex formation.

The discountinuous change of J, which is due to the formation of a vortex line, is given by

$$
\Delta J=J_{(2)}-J_{(1)}=-\widehat{\boldsymbol{z}}\left(\int d^{3} r \rho_{n} \boldsymbol{r} \wedge \boldsymbol{v}_{s}\right)=\rho_{n} \frac{\pi L R^{2} \hbar}{m}
$$

whereas the total angular momentum of helium II decreases

$$
\begin{gathered}
\Delta\left(\boldsymbol{J}_{z}+\boldsymbol{M}_{z}\right)=-\rho_{s} \frac{\pi L R^{2} \hbar}{m} \\
\lambda=T\left(S_{(2)}-S_{(1)}\right)=\left(2 \rho_{n}^{*}-\rho_{n}\right)\left(\frac{\rho}{\rho_{n}}\right) \frac{\pi L \hbar^{2}}{m^{2}} \ln \left(\frac{R}{a}\right)
\end{gathered}
$$

where

$$
\rho_{n}^{*}=\frac{5}{2} \rho_{n, p h}+\rho_{n, r}\left[\frac{\Delta}{2 k T}+\frac{1}{4}\right]
$$

$$
\Omega_{0}=\left(\frac{\rho_{s}}{\rho_{n}}\right) \frac{\hbar}{m R^{2}} \ln \left(\frac{R}{a}\right)=D \frac{\hbar}{m R^{2}} \ln \left(\frac{R}{a}\right)
$$

D		2.34×10^{4}	1.03×10^{3}	1.31×10^{2}	33
ρ_{n} / ρ		4.27×10^{-5}	9.66×10^{-4}	7.52×10^{-3}	2.92×10^{-2}
$T(\mathrm{~K})$		0.6	0.8	1	1.2
D	12	4.88	2.12	0.78	0.35
ρ_{n} / ρ	7.54×10^{-2}	0.17	0.32	0.56	0.74
$T(\mathrm{~K})$	1.4	1.6	1.8	2.0	2.1

[^0]: E. G., Critical angular velocity for vortex lines formation, J. of Stat. Mech. (2017) 073104, arXiv:1706.04831.

