Congratulations for 70 th Birthday! KEN

I wish Happy and Active Days Ahead for You

Exact Resurgent Trans-series and Multi-Bion Contributions to All Orders

Norisuke Sakai (Keio University)
In collaboration with Tatsuhiro Misumi(Akita U.), Muneto Nitta(Keio U.), Toshiaki Fujimori(Keio U.), and Syo Kamata(Fudan U.)
arXiv:1705.10483 [hep-th] to appear in PTEP ; Phys.Rev.D95, 105001 (2017) [arXiv:1702.00589] ; Phys.Rev.D94, 105002 (2016) [arXiv:1607.04205] ; JHEP 1509, 157 (2015) [arXiv:1507.00408] ;
PTEP 2015, 033B02 (2015) [arXiv:1409.3444] ; J.Phys.Conf.Ser.597, 012060 (2015);
[arXiv:1412.0861] JHEP 1406, 164 (2014) [arXiv:1404.7225]

Contents

1 Resurgence and Bion 3
1.1 Borel Sum of Divergent Series and Resurgence 3
1.2 Instantons and Bions 5
2 Exact ground-state energy of $\mathbb{C} P^{1} \mathrm{QM}$ 9
3 Single-Bion Solutions 11
4 Multi-Bion Solutions 13
5 One-Loop Determinant and Lefschetz Thimble 15
6 Multi-Bion contributions 18
7 Conclusions 20

1 Resurgence and Bion

1.1 Borel Sum of Divergent Series and Resurgence

Perturbation series

Partition function of $\boldsymbol{\phi}^{4}$ field theory in Euclidean \boldsymbol{d}-dimension

$$
Z\left(g^{2}\right)=\int D \phi(x) e^{-S_{E}}, \quad S_{E}=\int d^{d} x\left(\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+m^{2} \frac{\phi^{2}}{2}+g^{2} \frac{\phi^{4}}{4}\right)
$$

Perturbation series in $\boldsymbol{g}^{\mathbf{2}}(\boldsymbol{m}=\mathbf{1}): \boldsymbol{Z}\left(\boldsymbol{g}^{\mathbf{2}}\right)=$ sum of Feynman diagrams $\boldsymbol{d} \boldsymbol{0}$: Number of Feynman diagrams (with weight and sign)

$$
Z\left(g^{2}\right)=\int_{-\infty}^{\infty} \frac{d \phi}{\sqrt{2 \pi}} e^{-S_{E}}, \quad S_{E}=\frac{1}{2} \phi^{2}+g^{2} \frac{\phi^{4}}{4}
$$

$\boldsymbol{Z}\left(\boldsymbol{g}^{2}\right)$ is well-defined for $\boldsymbol{g}^{2}>\mathbf{0},(\boldsymbol{m}=\mathbf{1})$
Perturbation: Formal power series defined by

$$
\begin{gathered}
Z\left(g^{2}\right)=\int_{-\infty}^{\infty} \frac{d \phi}{\sqrt{2 \pi}} e^{-\frac{\phi^{2}}{2}} e^{-g^{2} \frac{\phi^{4}}{4}}=\sum_{K=0}^{\infty}\left(g^{2}\right)^{K} Z_{K} \\
Z_{K}=\frac{1}{K!} \int_{-\infty}^{\infty} \frac{d \phi}{\sqrt{2 \pi}} e^{-\frac{\phi^{2}}{2}}\left(\frac{-\phi^{4}}{4}\right)^{K}
\end{gathered}
$$

$$
=\frac{1}{K!} \frac{(-1)^{K}}{\sqrt{\pi}} \Gamma\left(2 K+\frac{1}{2}\right) \sim \frac{(-4)^{K}}{\sqrt{2} \pi}(K-1)!
$$

Perturbation series is Factorially divergent and Alternating

Borel sum:

A method to make sense of the sum of Factorially divergent series Factorially divergent series (Gevrey-I) is defined by (constant $\boldsymbol{C}, \boldsymbol{A})$

$$
P\left(g^{2}\right)=\sum_{K=0}^{\infty} a_{K}\left(g^{2}\right)^{K}, \quad\left|a_{K}\right| \leq C K!\left(\frac{1}{A}\right)^{K}
$$

Def: Borel transform $\boldsymbol{B P}(\boldsymbol{t}) \rightarrow$ finite radius of convergence

$$
B P(t)=\sum_{K=0}^{\infty} \frac{a_{K}}{K!} t^{K}
$$

Def: Borel resummation $\mathbb{P}\left(\boldsymbol{g}^{\mathbf{2}}\right)$

$$
\mathbb{P}\left(g^{2}\right)=\int_{0}^{\infty} d t e^{-t} \boldsymbol{B P}\left(g^{2} t\right)
$$

If this integral is well-defined, the series is called Borel-summable

Alternating factorially divergent series $(\boldsymbol{A}>\mathbf{0})$

$$
P\left(g^{2}\right)=C \sum_{K=0}^{\infty} K!\left(\frac{-g^{2}}{A}\right)^{K}
$$

Borel transform becomes

$$
B P(t)=C \sum_{K=0}^{\infty}\left(\frac{-t}{A}\right)^{K}=\frac{C A}{A+t}
$$

Borel resummation becomes

$$
\mathbb{P}\left(g^{2}\right)=\int_{0}^{\infty} d t e^{-t} B P\left(g^{2} t\right)=\int_{0}^{\infty} d t e^{-t} \frac{C A}{A+g^{2} t}
$$

$\boldsymbol{B P}\left(\boldsymbol{g}^{2} \boldsymbol{t}\right)$ is Borel summable (no singularity on the positive real axis)

1.2 Instantons and Bions

Quantum mechanics with degenerate minima

$$
H=\frac{p^{2}}{2}+V(q), \quad V(q)=\frac{q^{2}}{2}(1-g q)^{2}
$$

Double well potential
Path-integral representation of ground state energy

$$
\begin{array}{ll}
E\left(g^{2}\right)=\lim _{\beta \rightarrow \infty} \frac{-1}{\beta} \log \operatorname{tr}\left(e^{-\beta H}\right), & \operatorname{tr}\left(e^{-\beta H}\right)=\int D q(t) e^{-S} \\
S=\int d \tau\left[\frac{1}{2}\left(\frac{d q}{d \tau}\right)^{2}+V(q)\right], & V(q)=\frac{q^{2}}{2}-g q^{3}+g^{2} \frac{q^{4}}{2}
\end{array}
$$

A perturbative vacuum : $\boldsymbol{q}=\mathbf{0}$
Expansion in powers of \boldsymbol{g} : pertubation series around the $\boldsymbol{q}=\mathbf{0}$ vacuum
$-\boldsymbol{g} \boldsymbol{q}^{3}$ is more important $\left(\left(\boldsymbol{g} \boldsymbol{q}^{3}\right)^{2} \gg \boldsymbol{g}^{2} \boldsymbol{q}^{4}\right.$ for $\left.|\boldsymbol{q}| \gg 1\right)$
Large order behavior of perturbation series

$$
E_{\mathrm{pert}}\left(g^{2}\right)=\sum_{K=0}^{\infty}\left(g^{2}\right)^{K} E_{K}, \quad E_{K} \sim-\frac{3}{\pi} 3^{K} K!
$$

Borel transform becomes

$$
B E_{\mathrm{pert}}(t) \equiv \sum_{K=0}^{\infty} \frac{(t)^{K}}{K!} E_{K} \sim-\frac{3}{\pi} \sum_{K=0}^{\infty}(3 t)^{K}=-\frac{3}{\pi} \frac{1}{1-3 t}
$$

Borel resummation is ill-defined for $\boldsymbol{g}^{2}>\mathbf{0}$ (Borel non-summable)

$$
\mathbb{E}_{\mathrm{pert}}\left(g^{2}\right)=\int_{0}^{\infty} d t e^{-t} B E_{\mathrm{pert}}\left(g^{2} t\right)=-\frac{3}{\pi} \int_{0}^{\infty} d t e^{-t} \frac{1}{1-3 g^{2} t}
$$

a Pole at $\boldsymbol{t}=1 /\left(3 g^{2}\right)$ on the positive real axis of Borel plane Well-defined at $\boldsymbol{g}^{2}<\mathbf{0} \rightarrow$ Analytic continuation to $\boldsymbol{g}^{2}>\mathbf{0}$ gives $\operatorname{Im} \mathbb{E}_{\text {pert }}\left(\boldsymbol{g}^{2}\right) \sim \mp \mathbf{3} \boldsymbol{e}^{\frac{-1}{3 g^{2}}}$ imaginary ambiguity (path-dependent)
There should be nonperturbative contributions cancelling this ambuguity
Nonperturbative saddle points as solutions of Euclidean Action
Instantons as nonperturbative saddle points $S_{\text {I }}=\frac{1}{6 g^{2}}$
Bion : A pair of Instanton and Anti-instanton (not exact solution)
Separation is a quasi-moduli : integration over the separation is required Analytic continuation \rightarrow (nonperturbative) imaginary ambiguity nonperturbative and perturbative ambiguities cancel \rightarrow Resurgence

2 Exact ground-state energy of $\mathbb{C} P^{1} \mathrm{QM}$

(Lorentzian) $\mathbb{C} P^{1}$ QM with fermions : $\mu=m|\varphi|^{2} /\left(1+|\varphi|^{2}\right)$

$$
\begin{aligned}
L & =\frac{1}{g^{2}}\left[G\left(\left|\partial_{t} \varphi\right|^{2}-|m \varphi|^{2}+i \bar{\psi} \mathcal{D}_{t} \psi\right)-\epsilon \frac{\partial^{2} \mu}{\partial \varphi \partial \bar{\varphi}} \psi \bar{\psi}\right] \\
G & =\frac{\partial^{2}}{\partial \varphi \partial \bar{\varphi}} \log (1+\varphi \bar{\varphi}), \quad \mathcal{D}_{t}=\partial_{t}+\partial_{t} \varphi \frac{\partial}{\partial \varphi} \log G
\end{aligned}
$$

SUSY for $\boldsymbol{\epsilon}=\mathbf{1}$,
States are classified by Fermion number $\boldsymbol{F} \equiv \boldsymbol{G} \psi \overline{\boldsymbol{\psi}}=\mathbf{0}, \mathbf{1}$
Lagangian for $\boldsymbol{F}=\mathbf{0}$ sector (containing ground state)

$$
L=\frac{\left|\partial_{t} \varphi\right|^{2}}{g^{2}\left(1+|\varphi|^{2}\right)^{2}}-V, \quad V=\frac{1}{g^{2}} \frac{m^{2}|\varphi|^{2}}{\left(1+|\varphi|^{2}\right)^{2}}-\epsilon m \frac{1-|\varphi|^{2}}{1+|\varphi|^{2}}
$$

At $\boldsymbol{\epsilon}=1$, SUSY ground state $\Psi_{0}=\langle\varphi \mid 0\rangle=\exp \left(-\mu / g^{2}\right)$ is obtained

$$
H_{\epsilon=1} \Psi_{0}=\left[-g^{2}\left(1+|\varphi|^{2}\right)^{2} \frac{\partial}{\partial \varphi} \frac{\partial}{\partial \bar{\varphi}}+V_{\epsilon=1}\right] \Psi_{0}=0
$$

Expansion around SUSY: nontrivial and calculable resurgence structure

$$
E=\delta \epsilon E^{(1)}+\delta \epsilon^{2} E^{(2)}+\cdots, \quad \Psi=\Psi_{0}+\delta \epsilon \delta \Psi, \quad \delta \epsilon \equiv \epsilon-1
$$

$$
E^{(1)}=\frac{\langle 0| \delta H|0\rangle}{\langle 0 \mid 0\rangle}, \quad E^{(2)}=-\frac{\langle\delta \Psi| H_{\epsilon=1}|\delta \Psi\rangle}{\langle 0 \mid 0\rangle}, \ldots
$$

We obtain exact results as

$$
E^{(1)}=g^{2}-m \operatorname{coth} \frac{m}{g^{2}}
$$

$$
E_{0}^{(2)}=g^{2}-\frac{m \operatorname{coth} \frac{m}{g^{2}}}{2 \sinh ^{3} \frac{m}{g^{2}}}\left[E_{i}\left(-\frac{2 m}{g^{2}}\right)+\bar{E}_{i}\left(\frac{2 m}{g^{2}}\right)-2 \gamma-2 \log \frac{2 m}{g^{2}}\right]
$$

Exponential integral functions are defined as $(\boldsymbol{x}>\mathbf{0})$

$$
E_{i}(-x)=-\int_{x}^{\infty} d t e^{-t} \frac{1}{t}, \quad \bar{E}_{i}(x)=-\int_{-x}^{\infty} d t e^{-t} \frac{\mathcal{P}}{t}
$$

Power series $\boldsymbol{E}^{(i)}=\sum_{p=0}^{\infty} \boldsymbol{E}_{p}^{(i)}$ in $\boldsymbol{e}^{-2 m / g^{2}}$ are convergent
Power series in $\boldsymbol{g}^{\mathbf{2}}$ is asymptotic \rightarrow Borel resummation gives

$$
\begin{gathered}
E_{0}^{(1)}=-m+g^{2}, \quad E_{p}^{(1)}=-2 m e^{-\frac{2 m}{g^{2}}},(p \geq 1) \\
E_{0}^{(2)}=g^{2}+2 m \int_{0}^{\infty} d t \frac{e^{-t}}{t-\frac{2 m}{g^{2} \pm i 0}}
\end{gathered}
$$

$$
\begin{aligned}
& E_{p}^{(2)}=\left[2 m \int_{0}^{\infty} d t e^{-t}\left(\frac{(p+1)^{2}}{t-\frac{2 m}{g^{2} \pm i 0}}+\frac{(p-1)^{2}}{t+\frac{2 m}{g^{2}}}\right)\right. \\
& \left.+4 m p^{2}\left(\gamma+\log \frac{2 m}{g^{2}} \pm \frac{\pi i}{2}\right)\right] e^{-\frac{2 m}{g^{2}}}, \quad(p \geq 1)
\end{aligned}
$$

3 Single-Bion Solutions

Energy \boldsymbol{E}, angular momentum \boldsymbol{l} conservation

$$
E \equiv \frac{1}{g^{2}} \frac{\partial_{\tau} \varphi \partial_{\tau} \bar{\varphi}}{(1+\varphi \bar{\varphi})^{2}}-V(\varphi \bar{\varphi}), \quad l \equiv \frac{i}{g^{2}} \frac{\partial_{\tau} \varphi \bar{\varphi}-\partial_{\tau} \bar{\varphi} \varphi}{(1+\varphi \bar{\varphi})^{2}}
$$

Finite action \rightarrow boundary condition at $\tau \rightarrow \pm \infty$

$$
\lim _{\tau \rightarrow \pm \infty} \varphi=\lim _{\tau \rightarrow \pm \infty} \bar{\varphi}=0 \rightarrow l=0, E=\left.E\right|_{\varphi=0}=\epsilon m
$$

Exact single Bion solution

$$
\begin{gathered}
\varphi=e^{i \phi_{0}} \sqrt{\frac{\omega^{2}}{\omega^{2}-m^{2}}} \frac{1}{i \sinh \omega\left(\tau-\tau_{0}\right)}, \quad \omega \equiv m \sqrt{1+\frac{2 \epsilon g^{2}}{m}} \\
\varphi^{-1}=e^{\omega\left(\tau-\tau_{+}\right)-i \phi_{+}}+e^{-\omega\left(\tau-\tau_{-}\right)-i \phi_{-}}
\end{gathered}
$$

V

θ

Kink profiles for $\Sigma(\tau)=\frac{m \varphi \tilde{\varphi}}{1+\varphi \tilde{\varphi}}$ for the single bion

$$
\tau_{ \pm}=\tau_{0} \pm \frac{1}{2 \omega} \log \frac{4 \omega^{2}}{\omega^{2}-m^{2}}, \quad \phi_{ \pm}=\phi_{0} \mp \frac{\pi}{2}
$$

2 real moduli parameters : $\boldsymbol{\tau}_{0}$: translational moduli, $\boldsymbol{\phi}_{0}$: $\boldsymbol{U}(\mathbf{1})$ moduli Value of action \boldsymbol{S} for the single bion solution

$$
S=\frac{2 \omega}{g^{2}}+2 \epsilon \log \frac{\omega+m}{\omega-m}
$$

Real bion gives a nonperturbative correction to ground state energy
A.Behtash, G.V.Dunne, T.Schafer, T.Sulejmanpasic and M.Unsal, Phys.Rev.Lett.116, 011601 (2016); arXiv:1510.03435 [hep-th]; E.Witten, [arXiv:1001.2933 [hep-th]] . .
T.Fujimori, S.Kamata, T.Misumi, M.Nitta and N.Sakai, Phys.Rev.D94, 105002 (2016);

Phys.Rev.D95, 105001 (2017)

4 Multi-Bion Solutions

Complexified theory: $\boldsymbol{\varphi} \equiv \varphi_{R}^{\mathbb{C}}+\boldsymbol{i} \varphi_{I}^{\mathbb{C}}$ and $\tilde{\boldsymbol{\varphi}} \equiv \varphi_{R}^{\mathbb{C}}-\boldsymbol{i} \varphi_{I}^{\mathbb{C}}$ are independent

$$
S_{E}=\int_{0}^{\beta} d \tau\left[\frac{\partial_{\tau} \varphi \partial_{\tau} \tilde{\varphi}}{g^{2}(1+\varphi \tilde{\varphi})^{2}}+V(\varphi \tilde{\varphi})\right]
$$

Contributions from Saddle points in finite interval: $\varphi(\tau+\beta)=\varphi(\tau)$

$$
Z(\beta)=\int \mathcal{D} \varphi \exp \left(-S_{E}[\varphi]\right)=\sum_{\sigma \in \mathfrak{S}} e^{-S_{\sigma}}\left[\left(\operatorname{det} \Delta_{\sigma}\right)^{-\frac{1}{2}}+\mathcal{O}(g)\right]
$$

Complexified symmetry $(\boldsymbol{a}, \boldsymbol{b} \in \mathbb{C}) \rightarrow$ Conserved charges
Time translation $\boldsymbol{\tau} \rightarrow \boldsymbol{\tau}+\boldsymbol{a}$, Phase rotation $(\boldsymbol{\varphi}, \tilde{\boldsymbol{\varphi}}) \longrightarrow\left(e^{i \boldsymbol{b}} \boldsymbol{\varphi}, e^{-i \boldsymbol{b}} \tilde{\boldsymbol{\varphi}}\right)$
Solutions are given by elliptic function $\boldsymbol{c s}$ with complex moduli $\left(\tau_{c}, \phi_{c}\right)$

$$
\varphi=e^{i \phi_{c}} \frac{f\left(\tau-\tau_{c}\right)}{\sin \alpha}, \quad \tilde{\varphi}=e^{-i \phi_{c}} \frac{f\left(\tau-\tau_{c}\right)}{\sin \alpha}
$$

$$
f(\tau)=\operatorname{cs}(\Omega \tau, k) \equiv \operatorname{cn}(\Omega \tau, k) / \operatorname{sn}(\Omega \tau, k)
$$

$\boldsymbol{c s}$ has periods $\mathbf{2 K}(\boldsymbol{k})$ and $\boldsymbol{4 i} \boldsymbol{K}^{\prime}\left(\boldsymbol{K}^{\prime} \equiv \boldsymbol{K}\left(\sqrt{\mathbf{1 - \boldsymbol { k } ^ { 2 }}}\right)\right)$ and satisfies

$$
\left(\partial_{\tau} f\right)^{2}=\Omega^{2}\left(f^{2}+1\right)\left(f^{2}+1-k^{2}\right)
$$

The solutions are characterized by two integers $(\boldsymbol{p}, \boldsymbol{q})$ for the period

$$
\beta=\frac{\left(2 p K+4 i q K^{\prime}\right)}{\Omega}
$$

$(\boldsymbol{\alpha}, \boldsymbol{\Omega}, \boldsymbol{k})$ are given in terms of $\boldsymbol{\beta}$, and asymptotic forms for large $\boldsymbol{\beta}$ are

$$
\begin{gathered}
k \approx 1-8 e^{-\frac{\omega \beta-2 \pi i q}{p}}, \quad \Omega \approx \omega\left(1+8 \frac{\omega^{2}+m^{2}}{\omega^{2}-m^{2}} e^{-\frac{\omega \beta-2 \pi i q}{p}}\right) \\
\cos \alpha \approx \frac{m}{\omega}\left(1-\frac{8 m^{2}}{\omega^{2}-m^{2}} e^{-\frac{\omega \beta-2 \pi i q}{p}}\right), \quad 0 \leq q<p \\
S \approx p S_{\mathrm{bion}}+2 \pi i \epsilon l, \quad S_{\mathrm{bion}}=\frac{2 m}{g^{2}}+2 \epsilon \log \frac{\omega+m}{\omega-m}
\end{gathered}
$$

Position of \boldsymbol{n}-th instanton and antiinstaton

$$
\tau_{n}^{ \pm}=\tau_{c}+\frac{n-1}{\omega p}(\omega \beta-2 \pi i q) \pm \frac{1}{2 \omega} \log \frac{4 \omega^{2}}{\omega^{2}-m^{2}}
$$

5 One-Loop Determinant and Lefschetz Thimble

For $\mathbf{0} \leq \epsilon \leq 1$, instanton-antiinstanton separation becomes large :
we have normalizable quasi-moduli (almost flat direction)
One-Loop Determinant for non-zero modes $\operatorname{det}^{\prime \prime} \boldsymbol{\Delta}$
\approx product of determinant of constituent (anti-)instantons
Relative position $\boldsymbol{\tau}_{\boldsymbol{r}}$ and relative phase $\boldsymbol{\phi}_{\boldsymbol{r}}$

$$
Z_{\mathrm{bion}} \approx \int d \tau_{0} d \phi_{0} \int d \tau_{r} d \phi_{r} \operatorname{det}^{\prime \prime} \Delta \exp \left(-V_{\mathrm{eff}}\right)
$$

Deform τ_{r}, ϕ_{r} in complex plane
Determine integration paths (thimbles) and their weight
(by intersection of dual thimbles with the original path)

Gradient Flow and Lefschetz Thimble

Prototype of Quasi-Moduli integral

$$
I=\int_{\mathcal{C}} d y \exp [-V(y)], \quad V(y) \equiv a e^{-y}+b y, \quad \operatorname{Re} b>0
$$

Instanton-instanton : $\boldsymbol{a}>\mathbf{0}$, Instanton-Antiinstanton : $\boldsymbol{a}<\mathbf{0}$

Gradient flow equation

$$
\frac{\partial y}{\partial t}=\frac{\overline{\partial V}}{\partial y}=-\bar{a} e^{-\bar{y}}+\bar{b}
$$

$\partial y / \partial t=0$: Saddle point \boldsymbol{y}_{s}
Thimble $\boldsymbol{y}(\boldsymbol{t})$ (steepest descent contour): $\lim _{\boldsymbol{t \rightarrow - \infty}} \boldsymbol{y}(\boldsymbol{t})=\boldsymbol{y}_{\boldsymbol{s}}$
Dual Thimble $\boldsymbol{y}(\boldsymbol{t})$ (deformable direction): $\lim _{\boldsymbol{t} \rightarrow+\infty} \boldsymbol{y}(\boldsymbol{t})=\boldsymbol{y}_{s}$
If the dual thimble intersects with the original contour
\rightarrow integration contour can be deformed to the thimble

The Lefschetz thimles \mathcal{J}_{q} and their duals \mathcal{K}_{q}. No Stokes phenomenon at $\arg \boldsymbol{a}=\mathbf{0}$.
$\boldsymbol{a}>\mathbf{0}$ case :

$$
I=\int_{\mathcal{J}_{0}} d y \exp [-V(y)]=a^{-b} \Gamma(b)
$$

$\boldsymbol{a}<\mathbf{0}$ case requires $\boldsymbol{\theta} \equiv \boldsymbol{\pi}-\arg \boldsymbol{a}= \pm \mathbf{0} \neq \mathbf{0}$ (Stokes phenomenon)

$$
I=\left\{\begin{array}{l}
\int_{\mathcal{J}_{1}} d y \exp [-V(y)] \\
\int_{\mathcal{J}_{0}} d y \exp [-V(y)]
\end{array}=|a|^{-b} \exp (\mp \pi i b) \Gamma(b)\right.
$$

Stokes phenomenon at $\arg \boldsymbol{a}=-\boldsymbol{\pi}(\boldsymbol{\theta}=-\boldsymbol{\pi}-\arg \boldsymbol{a})$. The original integration contour \mathcal{C} intersects with $\mathcal{K}_{\mathbf{1}}\left(\mathcal{K}_{\mathbf{0}}\right)$ for $\boldsymbol{\theta}>\mathbf{0}(\boldsymbol{\theta}<\mathbf{0})$ and hence \mathcal{C} is deformed to $\mathcal{J}_{1}\left(\mathcal{J}_{0}\right)$.

6 Multi-Bion contributions

Effective potential for well-separated kinks

$$
\begin{gathered}
S_{E} \rightarrow V_{\mathrm{eff}}=-m \epsilon \boldsymbol{\beta}+\sum_{i=1}^{2 p}\left(\frac{m}{g^{2}}+V_{i}\right) \\
\frac{V_{i}}{m}=\epsilon_{i}\left(\tau_{i}-\tau_{i-1}\right)-\frac{4}{g^{2}} e^{-m\left(\tau_{i}-\tau_{i-1}\right)} \cos \left(\phi_{i}-\phi_{i-1}\right) \\
\tau_{2 n-1}=\tau_{i}^{-}, \tau_{2 n}=\tau_{i}^{+}, \tau_{0}=\tau_{2 p}-\beta, \phi_{0}=\phi_{2 p}(\bmod 2 \pi) \\
\epsilon_{2 n-1}=0 \text { and } \epsilon_{2 n}=2 \epsilon
\end{gathered}
$$

For $\mathbf{0} \leq \epsilon \leq \mathbf{1}$, large separation of instanton and anti-instanton \rightarrow $\operatorname{det}^{\prime \prime} \boldsymbol{\Delta} \approx$ product of determinant of constituent (anti-)instantons
Complexify τ_{r}, ϕ_{r} and determine integration paths (thimbles) and their weight (by intersection of dual thimbles with the original path)
Lagrange multiplier $\boldsymbol{\sigma}$ to impose periodicity

$$
2 \pi \delta\left(\sum_{i} \tau_{i}-\beta\right)=m \int_{-\infty}^{\infty} d \sigma \exp \left[i m \sigma\left(\sum_{i} \tau_{i}-\beta\right)\right]
$$

$$
\begin{gathered}
\frac{Z_{p}}{Z_{0}}=\frac{1}{p} \int \prod_{i=1}^{2 p}\left[d \tau_{i} \wedge d \phi_{i} \frac{2 m^{2}}{\pi g^{2}} \exp \left(-\frac{m}{g^{2}}-V_{i}\right)\right] \\
E=E_{0}-\lim _{\beta \rightarrow \infty} \frac{1}{\beta} \log \left(1+\sum_{p=1}^{\infty} \frac{Z_{p}}{Z_{0}}\right) \\
E_{p}^{(1)}=-e^{\frac{2 p m}{g^{2}}} \lim _{\epsilon \rightarrow 1} \lim _{\beta \rightarrow \infty} \frac{1}{\beta} \frac{\partial}{\partial \epsilon} \frac{Z_{p}}{Z_{0}}=-2 m \\
E_{p}^{(2)}=-\frac{e^{\frac{2 p m}{g^{2}}}}{2} \lim _{\epsilon \rightarrow 1} \lim _{\beta \rightarrow \infty} \frac{1}{\beta}\left[\partial_{\epsilon}^{2} \frac{Z_{p}}{Z_{0}}-\sum_{i=1}^{p-1} \partial_{\epsilon} \frac{Z_{p-i}}{Z_{0}} \partial_{\epsilon} \frac{Z_{i}}{Z_{0}}\right] \\
=4 m p^{2}\left(\gamma+\log \frac{2 m}{g^{2}} \pm \frac{\pi i}{2}\right)
\end{gathered}
$$

7 Conclusions

1. Factorially divergent perturbation series can be summed by using Borel resummation. In some cases, imaginary ambiguities arise from the Borel resummed perturbative contributions, which are cancelled by nonperturbative contributions, leading to resurgence : intimate relation between perturbative and nonperturbative contributions.
2. We obtained exact results for near SUSY $\mathbb{C} P^{1}$ quantum mechanics revealing resurgence to infinitely many powers of nonperturbative exponentials.
3. We have found an infinite tower of exact multi-bion solutions for finite time interval in the complexified theory with fermions.
4. Semi-classical contributions of arbitrary numbers of bions give nonperturbative contributions in $\mathbb{C} \boldsymbol{P}^{1}$ quantum mechanics exactly.
5. By using dispersion relations (resurgence), we can recover the exact results completely from bion amplitudes in the case of near SUSY $\mathbb{C} \boldsymbol{P}^{1}$ quantum mechanics.
6. We have explicitly the evaluated the quasi-moduli integral and the 1-loop determinant for multi-bion saddle points.
7. The integration path and weight for the quasi-moduli are determined by computing the Lefschetz thimbles and dual thimbles.
8. Our results can be generalized to other cases such as sine-Gordon quantum mechanics, $\mathbb{C} P^{N-1}$ quantum mechanics, and more general nonlinear target spaces, such as squashed $\mathbb{C} \boldsymbol{P}^{1}$.
9. Near SUSY situation can be generalized to quasi-exactly-solvable (QES) cases, such as particular excited states of the sine-Gordon quantum mechanics.
10. Extending our analysis to quantum field theories such as $2 \mathrm{~d} \mathbb{C} \boldsymbol{P}^{N-1}$ nonlineaer sigma models are interesting. Hopefully it will eventually lead to the understanding of nonperturbative effects in asymptotically free gauge theories in 4 dimensions.
