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1 Resurgence and Bion

1.1 Borel Sum of Divergent Series and Resurgence

Perturbation series

Partition function of φ4 field theory in Euclidean d-dimension

Z(g2) =

∫
Dφ(x) e−SE, SE =

∫
ddx

(
1

2
(∂µφ)2 + m2φ

2

2
+ g2φ

4

4

)

Perturbation series in g2 (m = 1): Z(g2) = sum of Feynman diagrams

d → 0 : Number of Feynman diagrams (with weight and sign)

Z(g2) =

∫ ∞

−∞

dφ√
2π

e−SE, SE =
1

2
φ2 + g2φ

4

4

Z(g2) is well-defined for g2 > 0, (m = 1)

Perturbation : Formal power series defined by

Z(g2) =

∫ ∞

−∞

dφ√
2π

e−φ2

2 e−g2φ4

4 =
∞∑

K=0

(g2)KZK

ZK =
1

K!

∫ ∞

−∞

dφ√
2π

e−φ2

2

(−φ4

4

)K
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=
1

K!

(−1)K

√
π

Γ

(
2K +

1

2

)
∼ (−4)K

√
2π

(K − 1)!

Perturbation series is Factorially divergent and Alternating

Borel sum:

A method to make sense of the sum of Factorially divergent series

Factorially divergent series (Gevrey-I) is defined by (constant C, A)

P (g2) =
∞∑

K=0

aK(g2)K, |aK| ≤ CK!

(
1

A

)K

Def: Borel transform BP (t) → finite radius of convergence

BP (t) =
∞∑

K=0

aK

K!
tK

Def: Borel resummation P(g2)

P(g2) =

∫ ∞

0

dte−tBP (g2t)

If this integral is well-defined, the series is called Borel-summable
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Alternating factorially divergent series (A > 0)

P (g2) = C
∞∑

K=0

K!

(−g2

A

)K

Borel transform becomes

BP (t) = C
∞∑

K=0

(−t

A

)K

=
CA

A + t
,

Borel resummation becomes

P(g2) =

∫ ∞

0

dte−tBP (g2t) =

∫ ∞

0

dte−t CA

A + g2t

BP (g2t) is Borel summable (no singularity on the positive real axis)

1.2 Instantons and Bions

Quantum mechanics with degenerate minima

H =
p2

2
+ V (q), V (q) =

q2

2
(1 − gq)2

5



-0.2 0.2 0.4 0.6 0.8 1.0 1.2

0.01

0.02

0.03

0.04

Double well potential

Path-integral representation of ground state energy

E(g2) = lim
β→∞

−1

β
log tr(e−βH), tr(e−βH) =

∫
Dq(t)e−S

S =

∫
dτ

[
1

2

(
dq

dτ

)2

+ V (q)

]
, V (q) =

q2

2
− gq3 + g2q

4

2

A perturbative vacuum : q = 0

Expansion in powers of g : pertubation series around the q = 0 vacuum

−gq3 is more important ((gq3)2 À g2q4 for |q| À 1)

Large order behavior of perturbation series

Epert(g
2) =

∞∑

K=0

(g2)KEK, EK ∼ −3

π
3KK!
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Borel transform becomes

BEpert(t) ≡
∞∑

K=0

(t)K

K!
EK ∼ −3

π

∞∑

K=0

(3t)K = −3

π

1

1 − 3t
,

Borel resummation is ill-defined for g2 > 0 (Borel non-summable)

Epert(g
2) =

∫ ∞

0

dte−tBEpert(g
2t) = −3

π

∫ ∞

0

dte−t 1

1 − 3g2t

a Pole at t = 1/(3g2) on the positive real axis of Borel plane

Well-defined at g2 < 0 → Analytic continuation to g2 > 0 gives

ImEpert(g
2) ∼ ∓3e

−1
3g2 imaginary ambiguity (path-dependent)

There should be nonperturbative contributions cancelling this ambuguity

Nonperturbative saddle points as solutions of Euclidean Action

Instantons as nonperturbative saddle points SI = 1
6g2

Bion : A pair of Instanton and Anti-instanton (not exact solution)

Separation is a quasi-moduli : integration over the separation is required

Analytic continuation → (nonperturbative) imaginary ambiguity

nonperturbative and perturbative ambiguities cancel → Resurgence
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2 Exact ground-state energy of CP 1 QM

(Lorentzian) CP 1 QM with fermions : µ = m|ϕ|2/(1 + |ϕ|2)

L =
1

g2

[
G

(
|∂tϕ|2 − |mϕ|2 + iψ̄Dtψ

)
− ε

∂2µ

∂ϕ∂ϕ̄
ψψ̄

]

G =
∂2

∂ϕ∂ϕ̄
log(1 + ϕϕ̄), Dt = ∂t + ∂tϕ

∂

∂ϕ
log G

SUSY for ε = 1,

States are classified by Fermion number F ≡ Gψψ̄ = 0, 1

Lagangian for F = 0 sector (containing ground state)

L =
|∂tϕ|2

g2(1 + |ϕ|2)2
− V , V =

1

g2

m2|ϕ|2
(1 + |ϕ|2)2

− εm
1 − |ϕ|2
1 + |ϕ|2

At ε = 1, SUSY ground state Ψ0 = 〈ϕ|0〉 = exp(−µ/g2) is obtained

Hε=1Ψ0 =

[
−g2(1 + |ϕ|2)2 ∂

∂ϕ

∂

∂ϕ̄
+ Vε=1

]
Ψ0 = 0

Expansion around SUSY: nontrivial and calculable resurgence structure

E = δε E(1) + δε2 E(2) + · · · , Ψ = Ψ0 + δε δΨ, δε ≡ ε − 1
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E(1) =
〈0|δH|0〉

〈0|0〉 , E(2) = −〈δΨ|Hε=1|δΨ〉
〈0|0〉 , · · ·

We obtain exact results as

E(1) = g2 − m coth
m

g2

E
(2)
0 = g2−

m coth m
g2

2 sinh3 m
g2

[
Ei

(
−2m

g2

)
+ Ēi

(
2m

g2

)
− 2γ − 2 log

2m

g2

]

Exponential integral functions are defined as (x > 0)

Ei(−x) = −
∫ ∞

x

dte−t1

t
, Ēi(x) = −

∫ ∞

−x

dte−tP
t

Power series E(i) =
∑∞

p=0 E(i)
p in e−2m/g2

are convergent

Power series in g2 is asymptotic → Borel resummation gives

E
(1)
0 = −m + g2, E(1)

p = −2me
−2m

g2 , (p ≥ 1)

E
(2)
0 = g2 + 2m

∫ ∞

0

dt
e−t

t − 2m
g2±i0
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E(2)
p =

[
2m

∫ ∞

0

dt e−t
((p + 1)2

t − 2m
g2±i0

+
(p − 1)2

t + 2m
g2

)

+4mp2

(
γ + log

2m

g2
± πi

2

)]
e

−2m
g2 , (p ≥ 1)

3 Single-Bion Solutions

Energy E, angular momentum l conservation

E ≡ 1

g2

∂τϕ∂τ ϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), l ≡ i

g2

∂τϕϕ̄ − ∂τ ϕ̄ϕ

(1 + ϕϕ̄)2

Finite action → boundary condition at τ → ±∞
lim

τ→±∞
ϕ = lim

τ→±∞
ϕ̄ = 0 → l = 0, E = E|ϕ=0 = εm

Exact single Bion solution

ϕ = eiφ0

√
ω2

ω2 − m2

1

i sinh ω(τ − τ0)
, ω ≡ m

√
1 +

2εg2

m
,

ϕ−1 = eω(τ−τ+)−iφ+ + e−ω(τ−τ−)−iφ−
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Kink profiles for Σ(τ ) = mϕϕ̃
1+ϕϕ̃

for the single bion

τ± = τ0 ± 1

2ω
log

4ω2

ω2 − m2
, φ± = φ0 ∓ π

2

2 real moduli parameters : τ0: translational moduli, φ0: U(1) moduli

Value of action S for the single bion solution

S =
2ω

g2
+ 2ε log

ω + m

ω − m

Real bion gives a nonperturbative correction to ground state energy
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4 Multi-Bion Solutions

Complexified theory: ϕ ≡ ϕCR+iϕCI and ϕ̃ ≡ ϕCR−iϕCI are independent

SE =

∫ β

0

dτ

[
∂τϕ∂τ ϕ̃

g2(1 + ϕϕ̃)2
+ V (ϕϕ̃)

]

Contributions from Saddle points in finite interval: ϕ(τ + β) = ϕ(τ )

Z(β) =

∫
Dϕ exp(−SE[ϕ]) =

∑

σ∈S

e−Sσ

[
(det ∆σ)

−1
2 + O(g)

]

Complexified symmetry (a, b ∈ C) → Conserved charges

Time translation τ → τ + a, Phase rotation (ϕ, ϕ̃) → (eibϕ, e−ibϕ̃)

Solutions are given by elliptic function cs with complex moduli (τc, φc)

ϕ = eiφc
f(τ − τc)

sin α
, ϕ̃ = e−iφc

f(τ − τc)

sin α
13
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f(τ ) = cs(Ωτ, k) ≡ cn(Ωτ, k)/sn(Ωτ, k)

cs has periods 2K(k) and 4iK′ (K′ ≡ K(
√

1 − k2)) and satisfies

(∂τf)2 = Ω2(f2 + 1)(f2 + 1 − k2)

The solutions are characterized by two integers (p, q) for the period

β =
(2pK + 4iqK′)

Ω

(α, Ω, k) are given in terms of β, and asymptotic forms for large β are

k ≈ 1 − 8 e−ωβ−2πiq
p , Ω ≈ ω

(
1 + 8

ω2 + m2

ω2 − m2
e−ωβ−2πiq

p

)

cos α ≈ m

ω

(
1 − 8m2

ω2 − m2
e−ωβ−2πiq

p

)
, 0 ≤ q < p

S ≈ pSbion + 2πiεl, Sbion =
2m

g2
+ 2ε log

ω + m

ω − m

Position of n-th instanton and antiinstaton

τ±
n = τc +

n − 1

ωp
(ωβ − 2πiq) ± 1

2ω
log

4ω2

ω2 − m2
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5 One-Loop Determinant and Lefschetz Thimble

For 0 ≤ ε ≤ 1, instanton-antiinstanton separation becomes large :

we have normalizable quasi-moduli (almost flat direction)

One-Loop Determinant for non-zero modes det′′∆

≈ product of determinant of constituent (anti-)instantons

Relative position τr and relative phase φr

Zbion ≈
∫

dτ0dφ0

∫
dτrdφr det′′∆ exp (−Veff)

Deform τr, φr in complex plane

Determine integration paths (thimbles) and their weight

(by intersection of dual thimbles with the original path)

Gradient Flow and Lefschetz Thimble

Prototype of Quasi-Moduli integral

I =

∫

C
dy exp [−V (y)] , V (y) ≡ ae−y + by, Re b > 0

Instanton-instanton : a > 0, Instanton-Antiinstanton : a < 0
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Gradient flow equation

∂y

∂t
=

∂V

∂y
= −āe−ȳ + b̄

∂y/∂t = 0 : Saddle point ys

Thimble y(t) (steepest descent contour): limt→−∞y(t) = ys

Dual Thimble y(t) (deformable direction): limt→+∞y(t) = ys

If the dual thimble intersects with the original contour

→ integration contour can be deformed to the thimble

! " # $ %

!" !

!!

!

!

" !

The Lefschetz thimles Jq and their duals Kq. No Stokes phenomenon at arg a = 0.
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a > 0 case :

I =

∫

J0

dy exp [−V (y)] = a−bΓ(b)

a < 0 case requires θ ≡ −π − arg a = ±0 6= 0 (Stokes phenomenon)

I =

{ ∫
J1

dy exp [−V (y)]∫
J0

dy exp [−V (y)]
= |a|−b exp(∓πib) Γ(b)

! " # $ %

!" !

!!

!

!

" !

θ > 0

! " # $ %

!" !

!!

!

!

" !

θ < 0
Stokes phenomenon at arg a = −π (θ = −π−arg a). The original integration contour
C intersects with K1 (K0) for θ > 0 (θ < 0) and hence C is deformed to J1 (J0).
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6 Multi-Bion contributions

Effective potential for well-separated kinks

SE → Veff = −mεβ +

2p∑

i=1

(
m

g2
+ Vi)

Vi

m
= εi(τi − τi−1) − 4

g2
e−m(τi−τi−1) cos(φi − φi−1)

τ2n−1 = τ−
i , τ2n = τ+

i , τ0 = τ2p − β, φ0 = φ2p (mod 2π),

ε2n−1 = 0 and ε2n = 2ε

For 0 ≤ ε ≤ 1, large separation of instanton and anti-instanton →
det′′∆ ≈ product of determinant of constituent (anti-)instantons

Complexify τr, φr and determine integration paths (thimbles) and their
weight (by intersection of dual thimbles with the original path)

Lagrange multiplier σ to impose periodicity

2πδ

(∑

i

τi − β

)
= m

∫ ∞

−∞
dσ exp

[
imσ(

∑

i

τi − β)

]
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Zp

Z0

=
1

p

∫ 2p∏

i=1

[
dτi ∧ dφi

2m2

πg2
exp

(
−m

g2
− Vi

)]

E = E0 − lim
β→∞

1

β
log


1 +

∞∑
p=1

Zp

Z0




E(1)
p = −e

2pm

g2 lim
ε→1

lim
β→∞

1

β

∂

∂ε

Zp

Z0

= −2m

E(2)
p = −e

2pm

g2

2
lim
ε→1

lim
β→∞

1

β

[
∂2

ε

Zp

Z0

−
p−1∑

i=1

∂ε

Zp−i

Z0

∂ε

Zi

Z0

]

= 4mp2

(
γ + log

2m

g2
± πi

2

)
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7 Conclusions

1. Factorially divergent perturbation series can be summed by using
Borel resummation. In some cases, imaginary ambiguities arise from
the Borel resummed perturbative contributions, which are cancelled by
nonperturbative contributions, leading to resurgence : intimate rela-
tion between perturbative and nonperturbative contributions.

2. We obtained exact results for near SUSY CP 1 quantum mechan-
ics revealing resurgence to infinitely many powers of nonperturbative
exponentials.

3. We have found an infinite tower of exact multi-bion solutions for
finite time interval in the complexified theory with fermions.

4. Semi-classical contributions of arbitrary numbers of bions give nonper-
turbative contributions in CP 1 quantum mechanics exactly.

5. By using dispersion relations (resurgence), we can recover the exact re-
sults completely from bion amplitudes in the case of near SUSY CP 1

quantum mechanics.

6. We have explicitly the evaluated the quasi-moduli integral and the
1-loop determinant for multi-bion saddle points.
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7. The integration path and weight for the quasi-moduli are determined by
computing the Lefschetz thimbles and dual thimbles.

8. Our results can be generalized to other cases such as sine-Gordon quan-
tum mechanics, CP N−1 quantum mechanics, and more general nonlin-
ear target spaces, such as squashed CP 1.

9. Near SUSY situation can be generalized to quasi-exactly-solvable (QES)
cases, such as particular excited states of the sine-Gordon quantum me-
chanics.

10. Extending our analysis to quantum field theories such as 2d CP N−1

nonlineaer sigma models are interesting. Hopefully it will eventually
lead to the understanding of nonperturbative effects in asymptotically
free gauge theories in 4 dimensions.
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