Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

Pisa, 20/07/2017

Strongly-Coupled Infrared Fixed Points, Confinement and Chiral Symmetry Breaking

K. Konishi (Univ. Pisa/INFN, Pisa)

Confinement and RG flow

QCD

- Abelian dual superconductor (dynamical Abelianization) ?
 - $SU(3) \to U(1)^2 \to \mathbf{1}$ $\langle M \rangle \neq 0$

Doubling of the meson spectrum (*)

• Non-Abelian monopole condensation ?

$$SU(3) \rightarrow SU(2) \times U(1) \rightarrow \mathbf{1}$$

- \square Problems (*) avoided $\Pi_1(SU(2) \times U(1)) = \mathbb{Z}$
- But non-Abelian monopoles expected to be strongly coupled (no sign flip of b_0)
- Both the electric (quarks and gluons) and magnetic (monopoles and dyons) d.o.f. become strongly coupled in the Infrared !

 $\Pi_1(U(1)^2) = \mathbf{Z} \times \mathbf{Z}$

Can $\mathcal{N}=2$ SQCD teach us anything useful?

• Or more humbly: any analogy between the phenomena occurring in $\mathcal{N}=2$ SQCD and in the real-world QCD?

• A recent observation: the most singular ("Argyres-Douglas") SCFT, in $\mathcal{N}=2$ SU(N) QCD with N_F flavors, under an $\mathcal{N}=1$ perturbation, Giacomelli, '15, Bolognesi, Giacomelli, KK '15

$$\mu \Phi^2|_F = \mu \,\psi \psi + \dots$$

flows down (RG) towards an infrared-fixed-point theory described by massless mesons M in the adjoint representation of G_F

Further relevant deformations (shift of bare mass parameters)

M (or a part of it) make metamorphosis to massless Nambu-Goldstone particles

Why remarkable:

 $\circ N=2$ SCFT is a complicated, nonlocal theory of strongly interacting massless monopoles, dyons and quarks *

 $\circ N = I$ SCFT is a theory of weak coupled local theory of mesons M

In the nearby N=I confining vacuum, M ~ NG bosons of symmetry breaking **

Analogous to the real-world QCD * **

Massless mesons in the adjoint representation of G_F in the IR Giacomelli, '15, Bolognesi, Giacomelli, KK '15 Tools:

•<u>Seiberg-Witten curves</u> for $\mathcal{N}=2$ gauge theories SCFT by appropriate tuning of the vacuum parameters (VEVs) and m's Tachikawa. Lecture Notes In Physics '15

Trace anomalies (any theory)

$$\begin{split} \langle T^{\mu}_{\mu} \rangle &= \frac{1}{16\pi^2} \left[c \, (R^2_{\mu\nu\rho\sigma} - 2R^2_{\mu\nu} + \frac{R^2}{3}) - a \, (R^2_{\mu\nu\rho\sigma} - 4R^2_{\mu\nu} + R^2) \right] \\ \text{(Weyl)^2} & \text{Euler density} \end{split}$$

 $a = \frac{3}{32}(3\text{Tr }R^3 - \text{Tr }R); \qquad c = \frac{1}{32}(9\text{Tr }R^3 - 5\text{Tr }R), \qquad \text{Tr= sum over Weyl fermions} \\ \text{Anselmi, Freedman, Grisaru, Johansen (198)} \\ \text{Susy fields}$ • For any $\mathcal{N}=I$ susy theory (R= U_R (I) charge)

• For $\mathcal{N}=2$ susy fields

$$\operatorname{Tr} R^3_{\mathcal{N}=2} = \operatorname{Tr} R_{\mathcal{N}=2} = 48(a-c); \qquad \operatorname{Tr} R_{\mathcal{N}=2}I_a I_b = \delta_{ab}(4a-2c).$$

Any N=2 theory has global R symmetries

 $SU_R(2) \times U_R(1);$ $\mathcal{R}_{\mathcal{N}=2} \equiv U_R(1)$ charge, $I_3 \subset SU_R(2)$

Flowing down from $\mathcal{N}=2$ SCFT to $\mathcal{N}=1$ SCFT

$$\mu \Phi^2|_F = \mu \,\psi \psi + \dots$$

N = 1 curves (N = 2 SW curves + factorization condition)

● ^C relations

"

$$\{R_{\mathcal{N}=2}, I_3\} \leftrightarrow R_{\mathcal{N}=1}$$

e.g., for SU(2), N_F = 1, $R_{\mathcal{N}=1} = \frac{5}{6}R_{\mathcal{N}=2} + \frac{1}{3}I_3$
for SU(N), N_F = 2N-1, $R_{\mathcal{N}=1} = \frac{2}{3}R_{\mathcal{N}=2} + \frac{2}{3}I_3$
eKnown $\{R_{\mathcal{N}=2}, I_3\}$ of $\mathcal{N}=2$ SCFT $\Rightarrow R_{\mathcal{N}=1}$
e't Hooft anomaly matching conditions Very nontrivial check / powerful info on the massless d.o.f.
e.g., for SU(2), N_F = 1, $a = \frac{1}{48}$, $c = \frac{1}{24}$,
for SU(2), N_F = 3, $a = \frac{1}{6}$, $c = \frac{1}{3}$, This is $3^2 \cdot I = 8$ massless meson chiral fields
Works for $\mathcal{N}=2$ SCFT with SU(N) color, any N_F Bolognesi, Gaecometic, Kr. 15

The result has been checked by following different RG paths

A puzzle ?

Weak <u>GST duals</u> for SU(N) $N_F = 2n$ Infrared theory

 $AD_{N_{\ell}=2}(SU(N-n+1))$

• Actually $\mathcal{N}=1$ deformation can be worked out also in this case

Giacomelli, Konishi '17

Free mesons in adjoint representation of SU(2n)B

(Tools; Conformal anomalies, 't Hooft anomaly matching conditions)

To conclude:

Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

Pisa, 20/07/2017

Thank you, all Grazie a tutti ありがとう (arigatou)

ありがとう (ARIGATOU)

= ありがたく (ARIGATAKU)

= Rare, difficult to have, precious (luck, etc)

"ひとの生をうくるはかたく、死すべきものの、生命あるも**ありがたし"**

"That a man is given life in this universe, where death is normal, is an incredibly rare and precious thing " , ,, ""未可释")

Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

Pisa, 20/07/2017

Thank you, all Grazie a tutti ありがとう 't Hooft anomaly matching conditions between \mathcal{N} =2 SCFT and \mathcal{N} =1 SCFT SU(N), N_F =2N-1 AD vacuum

$$\mathcal{N}=2 \text{ SCFT ("UV") Input :}$$

$$a' = \frac{7}{24}N(N-1), \quad c' = \frac{1}{3}N(N-1), \quad k_{SU(2N-1)} = 2N-1 \quad \overset{\text{Shapers, Tachikawa '08}}{\text{Cecotti, Del Zotto, Giacomelli'}}$$

$$R_{\mathcal{N}=1} = \frac{2}{3}R_{\mathcal{N}=2} + \frac{2}{3}I_{3}$$

$$\implies \qquad Tr R_{\mathcal{N}=1} = \frac{2}{3}Tr R_{\mathcal{N}=2} = -\frac{4}{3}N(N-1)$$

$$Tr R_{\mathcal{N}=1}^{3} = \frac{8}{27} \left[Tr R_{\mathcal{N}=2}^{3} + 3Tr R_{\mathcal{N}=2}I_{3}^{2}\right] = -\frac{4}{27}N(N-1)$$

$$Tr R_{\mathcal{N}=1}SU(2N-1)^{2} = \frac{2}{3}Tr R_{\mathcal{N}=2}SU(2N-1)^{2} = \frac{1-2N}{3}$$

$$N=1 \text{ SCFT ("IR")}$$

$$a = \frac{(2N-1)^2 - 1}{48}, \quad c = \frac{(2N-1)^2 - 1}{24}$$

$$massless mesons in the adjoint representation of SU(Nr) !!! representation of SU(Nr) !! represen$$

Complex Structure of Susy 4D Gauge Theories

• Chiral superfields

$$\Phi(x,\theta,\bar{\theta}) = \phi(y) + \sqrt{2}\,\theta\,\psi(x) + \theta\theta F(y), \quad y = x + i\theta\sigma\bar{\theta}$$

• Verctor superfields $V^{\dagger} = V$,

$$W_{\alpha} = -\frac{1}{4}\bar{D}^2 e^{-V} D_{\alpha} e^V = -i\lambda + \frac{\mu}{2} \left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)^{\beta}_{\alpha} F_{\mu\nu} \theta_{\beta} + \dots$$

• Supersymmetric Lagrangian ($\int d\theta_1 \, \theta_1 = 1$, etc)

$$\mathcal{L} = \frac{1}{8\pi} \operatorname{Im} \tau_{cl} \left[\int d^4\theta \, \Phi^{\dagger} e^V \Phi + \int d^2\theta \, \frac{1}{2} \, W_{\alpha} \, W^{\alpha} \right] + \int d^2\theta \, W(\Phi)$$

- $W(\Phi) =$ superpotential; $\tau_{cl} = \frac{\theta}{2\pi} + \frac{4\pi i}{g^2}$
- Potential (F term and D term)

$$V_{sc} = \sum_{mat} \left| \frac{\partial W}{\partial \phi} \right|^2 + \frac{1}{2} \sum_{a} \left| \sum_{mat} \phi^* t^a \phi \right|^2$$

Vacuum Degeneracy (Space of Vacua)

- Non-renormalization Theorem (perturbative) (cfr. Anomaly)
- Q: Superpotential Dynamically Generated ?

 $\mathcal{N} = 2$ if $\Phi \sim adj$ and $W(\Phi) = 0$ ($W = M\Phi\tilde{M}$ in SQCD) • Fields:

•

$$W = (A_{\mu}, \lambda), \quad \Phi = (\phi, \psi)$$

Moduli of vacua (degeneracy):

• Duality: L=L_{eff} formally inv under SL(2,Z) (ad-bc=I) \supset EM duality

• Which description? Depends on u !

• Assume:

massless monopoles at
$$u = \pm \Lambda^2 \longrightarrow F(A)$$
 !

Seiberg-Witten curve (SU(2) YM)

※

• solves the theory

$$\frac{dA_D}{du} = \oint_{\alpha} \frac{dx}{y}, \qquad \frac{dA}{du} = \oint_{\beta} \frac{dx}{y}, \qquad \Rightarrow \quad \mathsf{F}(\mathsf{A}) \qquad \qquad Im \frac{\oint_{\alpha} \frac{dx}{y}}{\oint_{\beta} \frac{dx}{y}} > 0$$
$$M_{n_m, n_e} = |n_m A_D + n_e A|, \qquad A_D = \oint_{\alpha} \lambda, \quad A = \oint_{\beta} \lambda,$$

• Perturbative and nonperturbative quantum effects (instantons) fully encoded in X

 $y^2 = (x - u)(x - \Lambda^2)(x + \Lambda^2)$

• Effective theory near $u = \Lambda^2$

$$L_{eff}(A_D, F_D^{\mu\nu}, \dots) + \int d^4\theta \,\bar{M}e^{V_D}M + (M \to \tilde{M}) + \sqrt{2} \int d^2\theta \, M A_D \tilde{M}$$

Magnetic monopole coupled minimally to the dual gauge field

Seiberg-Witten curves for general gauge groups

• SU(N) with N_{F} quarks

$$y^{2} = \prod_{i=1}^{N} (x - \phi_{i})^{2} - \Lambda^{2N - N_{F}} \prod_{a=1}^{N_{F}} (x + m_{a})$$

• SO(N) with N_F quarks in vector representation

$$y^{2} = x \prod_{i=1}^{[N/2]} (x - \phi_{i}^{2})^{2} - 4\Lambda^{2(N-N_{F}-N_{F})} x^{2+\epsilon} \prod_{a=1}^{N_{F}} (x + m_{a}^{2})$$

• etc.

Argyres-Seiberg's S duality

• SU(3) with N_F = 6 hypermultiplets (Q_i, \tilde{Q}_i 's) at infinite coupling

$$SU(3) w / (6 \cdot \mathbf{3} \oplus \mathbf{\overline{3}}) = SU(2) w / (2 \cdot \mathbf{2} \oplus \text{SCFT}_{E_6})$$

$$g = \infty \qquad g = 0 \qquad SU(2) \times SU(6) \subset E_6$$

Flavor symmetry ~ $SU(6) \times U(1)$

Explosive developments in studies of $\mathcal{N}=2$ SCFT

• U(1)^{N-n} gauge multiplets

• SU(2) gauge field coupled to the SU(2) flavor symmetry of the SCFT A & B

• The A sector: the SCFT entering in the Argyres-Seiberg dual of SU(n), N_F = 2n with G_F = SU(2)x SU(2n), known as Rn

• The B sector: the singular SCFT of the SU(N-n+I) theory with two flavors

GST solved the problem of wrong dimensions for the masses in EHIY
 GST eliminated a counter example (Shapere-Tachikawa) to the "a" theorem
 GST dualities generalized to SO(N), USp(2N) theories

$$b_0 = \frac{N-n}{N-n+2}$$

Gaiotto-Seiberg-Tachikawa (GST) ²⁰¹¹

• Apply the basic idea of Argyres-Seiberg duality to the IR f.p. SCFT

- \Rightarrow wrong scaling laws for the masses
- * To keep the correct dimensions of masses, introduce two different scalings:

GST dual for the singular point of USp(2N) (also SO(N))

 $y^2 \sim x^{2n}$ \thickapprox B — SU(2) — A

• $U(I)^{N-n}$ gauge multiplets

• The A sector: a (in general) non-Lagrangian SCFT having SU(2)xSO(4n) flavor symmetry

Giacomelli '12

• The B sector: a free doublet (coupled to U(I) gauge boson)

For $N_F = 2n = 4$, A sector ~ 4 free doublets

Argyres-Douglas

Figure 3: Zero loci of the discriminant of the curve of $\mathcal{N} = 2$, SU(3), $n_f = 4$ theory at small m.

 $U = \operatorname{Tr} \Phi^2 \simeq 3m^2$; $V = \operatorname{Tr} \Phi^3 \simeq 2m^3$

QMS of N=2 SQCD (SU(n) with n_f quarks)

a and c coefficients for free particles

$$c = \frac{1}{120} (N_S + 6 N_F + 12 N_V); \qquad a = \frac{1}{360} (N_S + 11 N_F + 62 N_V)$$

For N=2 hypermultiplet (pair of chiral multiplets Q and Q bar):

$$a = \frac{1}{360}(4+11) = \frac{1}{24};$$
 $c = \frac{1}{120}(4+6) = \frac{1}{12}.$

For N=2 vector multiplet:

$$a = \frac{1}{360}(2+11+62) = \frac{5}{24}; \qquad c = \frac{1}{120}(2+6+12) = \frac{1}{6}.$$

For real-world QCD:

B

$$c_{UV} = \frac{1}{20} N_f N_c + \frac{N_c^2 - 1}{10} ; \qquad a_{UV} = \frac{11 N_f N_c}{360} + \frac{31}{180} (N_c^2 - 1) ,$$

$$c_{IR} = \frac{N_f^2 - 1}{120} ; \qquad a_{IR} = \frac{N_f^2 - 1}{360} .$$

Back to 8