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Confinement and RG flow

red curves= deformations
by some relevant operators



• Abelian dual superconductor  (dynamical Abelianization)  ? 

SU(3)! U(1)2 ! 1

hMi 6= 0

 Doubling of the meson spectrum    (*)

‘t Hooft, Nambu, Mandelstam ’80

☞

• Non-Abelian monopole condensation  ? 

SU(3)! SU(2)⇥ U(1)! 1

☞ Problems (*)  avoided   

 But non-Abelian monopoles expected to be strongly coupled  (no sign flip of b0)

⇧1(U(1)2) = Z⇥ Z

⇧1(SU(2)⇥ U(1)) = Z

QCD 

•  Both the electric (quarks and gluons) and magnetic (monopoles and dyons) 
d.o.f.   become strongly coupled in the Infrared !   



Can N=2 SQCD teach us anything useful? 

🔵  Or more humbly:  any analogy between the phenomena occurring 
in N=2 SQCD and in the real-world QCD?

🔵  A recent observation:  the most singular (“Argyres-Douglas”) SCFT, 
in  N=2  SU(N) QCD with NF flavors,    under an N=1 perturbation,

flows down (RG) towards an infrared-fixed-point theory described by 
massless mesons M in the adjoint  representation of   GF    

🔵  Further relevant deformations (shift of bare mass parameters) 

µ�2|F = µ  + . . . Giacomelli, ’15, Bolognesi,Giacomelli, KK ‘15

☞    Confinement and flavor symmetry breaking:      

M  (or a part of it) make metamorphosis to 
 massless Nambu-Goldstone particles 



Blown-up RG flow



Why remarkable: 
🔵  N=2 SCFT is a complicated, nonlocal theory of strongly interacting
massless monopoles, dyons and quarks *  

🔵  N=1 SCFT  is a theory of weak coupled local theory of mesons M

🔵  In the nearby N=1 confining vacuum,  M ~ NG bosons of symmetry 
    breaking **

🔵  Analogous to the real-world QCD   *  **



Massless mesons in the adjoint representation of  GF  in the IR

Giacomelli, ’15, Bolognesi,Giacomelli, KK ‘15

Tools: 

🔵  Seiberg-Witten curves for N=2 gauge theories   
☞  SCFT by appropriate tuning of the vacuum parameters (VEVs) and m’s   

🔵  Trace anomalies (any theory)

hTµ
µ i =

1

16⇡2


c (R2

µ⌫⇢� � 2R2
µ⌫ +

R2

3
)� a (R2

µ⌫⇢� � 4R2
µ⌫ +R2)

�

(Weyl)^2 Euler density

🔵  For any N=1 susy theory

A Some numbers

For any N = 1 theory

a =

3

32

(3TrR3 � TrR) ; c =
1

32

(9TrR3 � 5TrR) , (A.23)

the trace is over all species of Weyl fermions.

a =

1

24

, c =
1

12

(A.24)

for a free full hypermultiplet,

a =

1

48

, c =
1

24

(A.25)

for a free chiral multiplet;

a =

9

48

, c =
3

24

(A.26)

for a free vector multiplet;

a =

5

24

, c =
1

6

(A.27)

for a free N = 2 vector multiplet.

For free N = 2 fields the RN=2 anomalies are related to a, c as

TrR3
N=2 = TrRN=2 = 48(a� c) ; TrRN=2IaIb = �

ab

(4a� 2c) . (A.28)

For R0,N theory,

a =

7N2 � 22

24

, c =
2N2 � 5

6

, (A.29)

(Tikertoys, p.41), so that

TrR3
N=2 = TrRN=2 = �N2

+ 2

24

, TrRN=2I
2
3 =

5N2 � 11

6

. (A.30)

For N = 2 theory
k
G

�AB

= �2Tr (RN=2T
ATB

) ; (A.31)

B Old results

Writing

hT µ

µ

i = 1

16⇡2

⇥
c(Weyl)2 � a(Euler)

⇤
, (B.32)

where
(Weyl)2 = R2

µ⌫⇢�

� 2R2
µ⌫

+

R2

3

; (B.33)

11

Tr= sum over Weyl fermions

( R= UR (1)  charge ) 

Anselmi, Freedman, Grisaru
, Johansen (’98)

🔵  For  N=2 susy fields
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SUR(2)⇥ UR(1); RN=2 ⌘ UR(1) charge, I3 ⇢ SUR(2)

Any N=2 theory has global R symmetries

Tachikawa. Lecture Notes In Physics ‘15



Flowing down from  N=2 SCFT to N=1 SCFT 

µ�2|F = µ  + . . .

Bonelli, Giacomelli, Maruyoshi, Tanzini (’13)

🔵  ☞ relations    

Dijkgraaf, 
Vafa ’03

Cachazo-Seiberg-W
itten ‘03 

e.g., for SU(2), NF =1,  RN=1 =
5

6
RN=2 +

1

3
I3

🔵  Known                      of N=2 SCFT  ⟹     

 for SU(N), NF =2N-1,  RN=1 =
2

3
RN=2 +

2

3
I3

{RN=2 , I3} $ RN=1

{RN=2 , I3} RN=1

🔵  ’t Hooft anomaly matching conditions
        Tr R3  ,  Tr R ,   Tr R(GF )2       

🔵  Known    Tr R3  ,  Tr R  of  the IR theory  - >   a, c  of  the IR theory

🔵  N=1 curves (N=2 SW curves + factorization condition)    

e.g., for SU(2), NF =1,   a =
1

48
, c =

1

24
,

 for SU(2), NF =3,  a =
1

6
, c =

1

3
, This is 3

2 -1= 8 massless meson chiral fields !! 

Very nontrivial check / powerful info on 

the massless d.o.f. 

Bolognesi,Giacomelli, KK ‘15

🔵  Works for N=2 SCFT  with SU(N) color, any NF 

Weff
= µTr

M
3 + . . .

Giacomelli,  ‘15

a and c



🔵  The result has been checked by following different RG paths 

UV

IR N = 2

IR N = 1

UV N = 1

µ ⌧ ⇤2

µ � ⇤1

IR

Figure 1: RG flow for various values of µ.

fields appearing in Seiberg’s dual SQCD, are closely related: they can be regarded as the same
objects, seen through different RG flow paths.

The results of the analysis in Appendix A furthermore suggest that our conclusion is generally
valid for SU(N) theories, both for odd and even Nf . For SU(2) theories this has been shown
for Nf = 1, 2, and 3 by our new method in Section 3. But for N � 3 the analysis of Section 3
works only for Nf odd. For theories with even Nf the N = 2 vacua of interest are described by
the GST duals [14], which are nonlocal theories involving an infrared free SU(2) gauge group.
The method described in Section 3 of perturbing the N = 2 SCFT with an adjoint mass term and
flowing further down to the IR does not seem to apply straightforwardly in this case. It is left as a
future problem to generalize appropriately the analysis of Section 3.4 to general Nf .

To summarize, the class of N = 2 AD systems (strongly-interacting theories, described by
relatively nonlocal quarks and monopoles), when perturbed by a relevant N = 1 deformation,
flow in the infrared to a local system described by a free gauge-invariant meson in the adjoint
representation of the flavor symmetry group. Such an infrared physics is somewhat reminiscent of
the low-energy pion physics of QCD, even though the N = 1 AD system is a conformal fixed-point
theory. Perhaps, an even stronger analogy can be drawn by considering, as we did, the systems
slightly off the AD points (by noncritical quark masses m⇤

+ �m). The low-energy degrees of
freedom in these confining vacua are the Nambu-Goldstone bosons of flavor symmetry breaking,
which are a disguise of the free mesons defining the nearby infrared fixed-points.

24

N=1  Leff  of SQCD

(M, B, q,  …)
Seiberg, ‘94

Carlino, K.K. Murayama ‘00

New route

BTW:  our mesons M  
~  Meson M in the 
Seiberg’s  N=1 duality

SU(N), NF      Q’s
< —- >
SU(NF  - N), NF    q’s,  M

Di Pietro, Giacomelli ’12



Weak GST duals for SU(N) NF = 2n  Infrared theory  Gaiotto, Seiberg, Tachikawa ’11

🔵  N=1 perturbation —>  confinement and XSB

 in simplest cases:    USp(2N), NF =4;   SU(3), NF =4;   SU(4), NF =4;

SO(2N),  NF =2.     

Giacomelli, Konishi ‘14 , 

🔵  In all cases the GST dual description correctly realize XSB;   

🔵  In simplest cases, d.o.f  ~  monopoles carrying flavor q.n.’s   

🔵  SU(N),  NF = 2n, GST dual looked more difficult  

Giacomelli, Konishi  ‘17 

4.2 N = 2 SU(N) theory with Nf = 2n flavors

For generic N = 2 SU(N) theory with N
f

= 2n flavors, N > n, the GST dual involves the
structure,

S
N�n+1 � SU(2)� R

n

, (4.6)

again two blocks of (in general, strongly coupled) SCFT’s, coupled by a weak SU(2) gauge inter-
actions. Here S

N�n+1 is the maximally conformal point 4 of SU(N � n + 1) gauge theory with
N

f

= 2 .

R
n

appears as a part of the S-dual description in a strong coupling limit of the conformally
invariant (N = 2) SU(n), N

f

= 2n theory,

1 � SU(2)� R
n

(4.7)

where 1 is a free hypermultiplet in 2 of SU(2). R
n

is a nontrivial (nonlocal) SCFT having a
flavor symmetry containing SU(2n)⇥ SU(2); the global SU(N

f

) = SU(2n) flavor symmetry of
the underlying theory is carried by the R

n

component of (4.7), and similarly, in (4.6).

The GST low-energy theory (4.6) is infrared free, and only in the true infrared (low-energy)
limit the system goes into a fixed-point SCFT 5.

Physics idea here is similar to that discussed in simple cases in subsection 4.1. Even though
the system (4.6) is an infrared free theory, the subsystem SU(2) � R

n

, taken alone, is asymp-
totically free. The relevant perturbation (3.3) makes the interactions in the subsystem even more
strongly coupled. It is thus possible that the R

n

fields become bound to form mesonlike compos-
ite particles in the infrared.

Our aim is to show that the N = 1 deformation of (4.6) by an adjoint mass term in the UV,
Eq. (3.3), leads to an infrared theory consistent with the finding of [36], reviewed in the previous
section. Namely, we claim that the system (4.6), which is a complicated nonlocal theory of strongly
interacting quarks and dyons, flows down to a theory of free massless mesons M in the adjoint
representation of G

f

= SU(2n)!

The main tools we rely upon are the ’t Hooft anomaly matching conditions together with the
known values of the conformal and flavor central charges of the subsystems involved. As the
subsector S

N�n+1 is not directly involved in the binding of the R
n

fields into meson ”particles”,
it will not be considered in the following matching conditions (they are the same in the UV and in
the IR).

4Again many names have been used in the literature: ADNf=2(SU(N � n + 1)), or in the classification of [?],
XN�n+4.

5In contrast, the dual description (4.7) is itself a SCFT, naturally.

5

Nonlocal SCFT of monopoles, dyons

and quarks with flavor group 

    SU(2) x SU(2n)

ADNf=2(SU(N � n+ 1))

🔵  Actually  N=1 deformation can be worked out  also in this case

A puzzle ? 

☞ Free mesons in adjoint representation of SU(2n)  

(Tools;  Conformal anomalies, ’t Hooft anomaly matching conditions)



To conclude:
N=2 SCFTReal-world  QCD  

N=0  SCFT

(Euler) = R2
µ⌫⇢�

� 4R2
µ⌫

+R2 , (B.34)

the general result is (e.g., review by M. Duff)

c =
1

120

(N
S

+ 6N
F

+ 12N
V

) ; a =

1

360

(N
S

+ 11N
F

+ 62N
V

) (B.35)

where N
F

is the number of Dirac fermions. A check is: for a N = 2 hypermultiplet, N
F

= 1,
N

S

= 4, so
a =

1

360

(4 + 11) =

1

24

; c =
1

120

(4 + 6) =

1

12

. (B.36)

For a N = 2 vector multiplet, N
V

= 1, N
F

= 2, N
S

= 2, so

a =

1

360

(2 + 11 + 62) =

5

24

; c =
1

120

(2 + 6 + 12) =

1

6

. (B.37)

OK.

C a and c ”theorem” for realworld Nf flavor SU(Nc) QCD

In the UV we have free N2
c

� 1 vectors and N
f

N
c

Dirac fermions (Asymptotic freedom!) so

c
UV

=

1

20

N
f

N
c

+

N2
c

� 1

10

; a
UV

=

11N
f

N
c

360

+

31

180

(N2
c

� 1) , (C.38)

whereas in the IR we have (Infrared freedom!) free pions, N2
f

� 1 of them, so

c
IR

=

N2
f

� 1

120

; a
IR

=

N2
f

� 1

360

. (C.39)

In general, for general N
f

and N
c

, no relations can be found. However, by using the AF condition,

11N
c

� 2N
f

> 0 , N
f

<
11

2

N
c

, (C.40)

one has
c
IR

<
N

f

120

· 11Nc

2

<
1

20

N
f

N
c

< c
UV

; (C.41)

and

a
IR

<
N2

f

360

<
N

f

360

· 11Nc

2

=

11N
f

N
c

720

<
11N

f

N
c

360

< a
UV

. (C.42)

This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.

12
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.

12

SU(N), NF =2N-1

aUV =
7N2 �N � 5

24

aN=2SCFT =
7N(N � 1)

24

aIR =
(2N � 1)2 � 1

48

aUV > aIR if Nf <
11

2
Nc



Thank you, all  

Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

P i s a ,   2 0 / 0 7 / 2 0 1 7  

Grazie a tutti
ありがとう

……
(arigatou)

”古稀”　　　



ありがとう (ARIGATOU)

＝   ありがたく (ARIGATAKU)　
  =  Rare, difficult to have, precious

　（luck, etc） 

“ひとの⽣生をうくるはかたく、死すべきものの、⽣生命あるもありがたし”

(from ”Dhammapada”, ”法
句経")

“That  a  man  is  given  life  in  this  universe,  where  death  is  normal,      
is  an  incredibly  rare  and  precious  thing  ”



Thank you, all  

Topological Solitons, Nonperturbative Gauge Dynamics and Confinement

P i s a ,   2 0 / 0 7 / 2 0 1 7  

Grazie a tutti
ありがとう



’t Hooft anomaly matching conditions between N=2 SCFT and N=1 SCFT

SU(N), NF =2N-1   AD vacuum

N=2 SCFT  (“UV”)   Input :      

a0 =
7

24
N(N � 1), c0 =

1

3
N(N � 1), kSU(2N�1) = 2N � 1

RN=1 =
2

3
RN=2 +

2

3
I3

Shapers, Tachikawa ‘08

Cecotti, Del Zotto, Giacomelli ‘15

⟹ Tr RN=1 =
2

3
Tr RN=2 = �4

3
N(N � 1)

Tr R3
N=1 =

8

27

⇥
Tr R3

N=2 + 3Tr RN=2I
2
3

⇤
= � 4

27
N(N � 1)

Tr RN=1SU(2N � 1)2 =
2

3
Tr RN=2SU(2N � 1)2 =

1� 2N

3

N=1 SCFT  (“IR”) ☞

a =
(2N � 1)2 � 1

48
, c =

(2N � 1)2 � 1

24

TrRN=1 = 16(a� c) = �4

3
N(N � 1), T rR3

N=1 =
16

9
(5a� 3c) = � 4

27
N(N � 1)⟹ 

⟹ TrRN=1SU(2N � 1)2 = (RN=1(M)� 1)(2N � 1) =
1� 2N

3

Massless mesons in the adjoint  

representation of  SU(NF)  !!!

Go Back



Complex Structure of Susy 4D Gauge Theories

• Chiral superfields

Φ(x, θ, θ̄) = φ(y) +
√

2 θ ψ(x) + θθF (y), y = x + iθσθ̄

• Verctor superfields V † = V,

Wα = −1

4
D̄2e−V DαeV = −iλ +

µ

2
(σµ σ̄ν)β

α Fµν θβ + . . .

• Supersymmetric Lagrangian (
∫

dθ1 θ1 = 1, etc)

L =
1

8π
Im τcl

[∫

d4θ Φ†eV Φ +

∫

d2θ
1

2
Wα W α

]

+

∫

d2θ W (Φ)

• W (Φ) = superpotential; τcl = θ
2π

+ 4 π i
g2

• Potential (F term and D term)

Vsc =
∑

mat

∣

∣

∣

∣

∂W

∂φ

∣

∣

∣

∣

2

+
1

2

∑

a

∣

∣

∣

∣

∣

∑

mat

φ∗taφ

∣

∣

∣

∣

∣

2

Vacuum Degeneracy (Space of Vacua)

• Non-renormalization Theorem (perturbative) (cfr. Anomaly)

• Q: Superpotential Dynamically Generated ?

12

N = 2 if
� ⇠ adj and

W (�) = 0 (W = M�M̃ in SQCD)



Seiberg-Witten solution in N=2, SU(2) susy gauge theories   ’94

• Fields: W = (Aµ,�), � = (�, )

Moduli of vacua (degeneracy): 

h�i =
✓

a 0
0 �a

◆
, u = Trh�2i

• Leff  : 
Leff = Im[

Z
d4✓ Ā

@F (A)
@A

+
Z

d2✓
@2F (A)

@A2
W↵W↵]

F(A)= prepotential

holomorphic

• Duality:    L=Leff   formally inv under SL(2,Z)   (ad-bc=1)    ⊃ EM duality  

✓
AD

A

◆
!

✓
a b
c d

◆ ✓
AD

A

◆ ✓
�L/�F+

µ⌫

F+
µ⌫

◆
!

✓
a b
c d

◆ ✓
�L/�F+

µ⌫

F+
µ⌫

◆

• Assume: 

SU(2)/U(1): monopoles

 massless monopoles at u= ± Λ2

AD
= @F/@A

= AD ⌧ = F
00
(A) =

dAD

dA
=

✓eff

2⇡
+

4⇡i

g2
eff

• Which description?   Depends on u !   

F(A) !

SUR(2)

Fµ⌫Fµ⌫ + i �̄ �µDµ� + iFµ⌫ F̃µ⌫ + ...



y

2 = (x� u)(x� ⇤2)(x + ⇤2)

•   solves the theory 

dAD

du

=
I

↵

dx

y

,

dA

du

=
I

�

dx

y

,

Im

H
↵

dx

yH
�

dx

y

> 0➞   F(A)

•  Perturbative and nonperturbative quantum effects (instantons) fully encoded in ※ 

•  Effective theory near u= Λ2     

Seiberg-Witten curve  (SU(2)  YM) 

Leff (AD, Fµ⌫
D , ...) +

Z
d4✓ M̄eVDM + (M ! M̃) +

p
2

Z
d2✓ MADM̃

Magnetic monopole coupled minimally to the dual gauge field

※

Mnm,ne = |nmAD + neA|, AD =
I

↵
�, A =

I

�
�,



Seiberg-Witten curves for general gauge groups

• SU(N)  with  NF   quarks

• SO(N)  with  NF   quarks in vector representation

y

2 =
NY

i=1

(x� �i)2 � ⇤2N�NF

NFY

a=1

(x + ma)

y

2 = x

[N/2]Y

i=1

(x� �

2
i )

2 � 4⇤2(N�NF�NF )
x

2+✏
NFY

a=1

(x + m

2
a)

•  etc. 

back



Argyres-Seiberg’s  S duality

• SU(3)  with  NF  = 6  hypermultiplets  (            ’ s )   at  infinite coupling Qi, Q̃i

SU(2) w/ (2 · 2� SCFTE6)SU(3) w/ (6 · 3� 3̄) =

SU(2)⇥ SU(6) ⇢ E6

Flavor symmetry ~  SU(6) x U(1)

g = ∞ g = 0 

Minahan-Nemeschansky ’96 

Argyres, Seiberg ‘07   

“N=2  dualities”    
D. Gaiotto ‘07

Explosive developments in studies of
N=2 SCFT           

’07-‘17



● SU(2) gauge field coupled to the SU(2)
flavor symmetry of the SCFT  A & B

● U(1)N-n  gauge multiplets

● The A sector:  the SCFT entering in the Argyres-Seiberg dual of
  SU(n), NF  =2n  with GF = SU(2)x SU(2n),  known as     Rn   

● The B sector:  the singular SCFT of the SU(N-n+1) theory
  with two flavors

B SU(2) A

☞
Gaiotto-Seiberg-Tachikawa ’11

Argyres-Plesser-Seiberg-Witten ’95

back

🔵  GST solved the problem of wrong dimensions for the masses in EHIY  

🔵  GST eliminated a counter example (Shapere-Tachikawa) to the “a” theorem 

🔵  GST dualities generalized to SO(N), USp(2N) theories 
Giacomelli ‘12



Gaiotto-Seiberg-Tachikawa  (GST)

• Apply the basic idea of Argyres-Seiberg duality to the IR f.p. SCFT

• SU(N) with NF  =  2n  :  

At    u = m=0,*        y2  ~   xN+n     (EHIY point)

relatively non-local 
massless monopoles and dyons

❀  To keep the correct dimensions of masses, introduce two different scalings: 

•  Straightforward treatment of fluctuations
    ⟹  wrong scaling laws for the masses  

ai =
I

↵i

�, aD i =
I

�i

�

� ⇠ dx y/x

n

⟹

Note

Eguchi-Hori-Ito-Yang ’96

m(nm,ne,ni) =
p

2 |nmaD + nea + nimi|

* except for one u 

2011



GST dual for the singular point of  USp(2N) (also SO(N))
Giacomelli ’12

B SU(2) A

● U(1)N-n  gauge multiplets

● The A sector:  a (in general) non-Lagrangian SCFT having SU(2)xSO(4n) flavor 
symmetry

● The B sector:  a free doublet   (coupled to U(1) gauge boson) 

y2   ∿  x2n  ≈

 For NF  = 2n= 4,  A sector ~   4 free doublets



M1

M2

M3

M4

A1

A3

A4

A5

A2

A6

M6

M5

Figure 3: Zero loci of the discriminant of the curve of N = 2, SU(3), nf = 4 theory at small m.

cycles go through the change

α1 → α1, β1 → β1 − 4α1, α2 → α2, β2 → β2. (2.20)

The monodromy transformation is thus
⎛

⎜

⎜

⎜

⎝

aD1

aD2

a1

a2

⎞

⎟

⎟

⎟

⎠

→ M1

⎛

⎜

⎜

⎜

⎝

aD1

aD2

a1

a2

⎞

⎟

⎟

⎟

⎠

, M1 = M̃4
1 , M̃1 =

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

−1 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

(2.21)

From the well-known formula [12]

M =

(

1 + q⃗ ⊗ g⃗ q⃗ ⊗ q⃗

−g⃗ ⊗ g⃗ 1 − g⃗ ⊗ q⃗

)

(2.22)

one concludes that the (four) massless particles at the singularity ṽ = ũ have charges

(g1, g2; q1, q2) = (1, 0; 0, 0). (2.23)

Analogously, the monodromy transformations around the ṽ = ũ + ũ2

4 , ṽ = ũ − ũ2

4

are determined to be

M2 =

⎛

⎜

⎜

⎜

⎝

−1 0 1 0

0 1 0 0

−4 0 3 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

, M6 =

⎛

⎜

⎜

⎜

⎝

1 1 1 0

0 1 0 0

0 0 1 0

0 −1 −1 1

⎞

⎟

⎟

⎟

⎠

, (2.24)

6

U = Tr�2 ' 3m2 ; V = Tr�3 ' 2m3

Auzzi, Grena, K.K. ‘13

Argyres-Douglas



CONFINEMENT 13

r=1

r = nf /2
- - -

Non Abelian monopoles

Abelian monopoles

(Non-baryonic)
Higgs Branches

Baryonic
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 SQCD (SU(n) with nf quarks)

r=0

<Q> 0

< >  0

N=1 Confining vacua (with   2 perturbation)

N=1 vacua (with   2 perturbation) in free magnetic phase

SCFT

Φ
Φ

Φ ≠
m = mcr

next
slide

Di Pietro, Giacomelli ’11



CONFINEMENT 14

Non Abelian monopoles

Higgs Branches

Special
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 USp(2n) Theory with nf Quarks

<Q> 0

< >  0

N=1 Confining vacua (with   2 perturbation)

N=1 vacua (with   2 perturbation) in free magnetic phase

SCFT

SCFT of 
highest criticality 

EHIY point
non-Lagrangian

Carlino-Konishi-Murayama ‘00Φ

Φ
Φ

m ≠ 0

previous
slide

(m = 0)

(Universality)

Back to 4

≠

≠

Quantum space of vacua in N=2 SQCD with critical mass



a  and  c  coefficients for free particles
(Euler) = R2

µ⌫⇢�

� 4R2
µ⌫

+R2 , (B.34)

the general result is (e.g., review by M. Duff)

c =
1

120

(N
S

+ 6N
F

+ 12N
V

) ; a =

1

360

(N
S

+ 11N
F

+ 62N
V

) (B.35)

where N
F

is the number of Dirac fermions. A check is: for a N = 2 hypermultiplet, N
F

= 1,
N

S

= 4, so
a =

1

360

(4 + 11) =

1

24

; c =
1

120

(4 + 6) =

1

12

. (B.36)

For a N = 2 vector multiplet, N
V

= 1, N
F

= 2, N
S

= 2, so

a =

1

360

(2 + 11 + 62) =

5

24

; c =
1

120

(2 + 6 + 12) =

1

6

. (B.37)

OK.

C a and c ”theorem” for realworld Nf flavor SU(Nc) QCD

In the UV we have free N2
c

� 1 vectors and N
f

N
c

Dirac fermions (Asymptotic freedom!) so

c
UV

=

1

20

N
f

N
c

+

N2
c

� 1

10

; a
UV

=

11N
f

N
c

360

+

31

180

(N2
c

� 1) , (C.38)

whereas in the IR we have (Infrared freedom!) free pions, N2
f

� 1 of them, so

c
IR

=

N2
f

� 1

120

; a
IR

=

N2
f

� 1

360

. (C.39)

In general, for general N
f

and N
c

, no relations can be found. However, by using the AF condition,

11N
c

� 2N
f

> 0 , N
f

<
11

2

N
c

, (C.40)

one has
c
IR

<
N

f

120

· 11Nc

2

<
1

20

N
f

N
c

< c
UV

; (C.41)

and

a
IR

<
N2

f

360

<
N

f

360

· 11Nc

2

=

11N
f

N
c

720

<
11N

f

N
c

360

< a
UV

. (C.42)

This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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☞ For N=2 hypermultiplet   (pair of chiral multiplets Q and Q bar):

☞ For N=2 vector multiplet: 

Back to 8

☞

(Euler) = R2
µ⌫⇢�

� 4R2
µ⌫

+R2 , (B.34)

the general result is (e.g., review by M. Duff)

c =
1

120

(N
S

+ 6N
F

+ 12N
V

) ; a =

1

360

(N
S

+ 11N
F

+ 62N
V

) (B.35)

where N
F

is the number of Dirac fermions. A check is: for a N = 2 hypermultiplet, N
F

= 1,
N

S

= 4, so
a =

1

360

(4 + 11) =

1

24

; c =
1

120

(4 + 6) =

1

12

. (B.36)

For a N = 2 vector multiplet, N
V

= 1, N
F

= 2, N
S

= 2, so

a =

1

360

(2 + 11 + 62) =

5

24

; c =
1

120

(2 + 6 + 12) =

1

6

. (B.37)

OK.

C a and c ”theorem” for realworld Nf flavor SU(Nc) QCD

In the UV we have free N2
c

� 1 vectors and N
f

N
c

Dirac fermions (Asymptotic freedom!) so

c
UV

=

1

20

N
f

N
c

+

N2
c

� 1

10

; a
UV

=

11N
f

N
c

360

+

31

180

(N2
c

� 1) , (C.38)

whereas in the IR we have (Infrared freedom!) free pions, N2
f

� 1 of them, so

c
IR

=

N2
f

� 1

120

; a
IR

=

N2
f

� 1

360

. (C.39)

In general, for general N
f

and N
c

, no relations can be found. However, by using the AF condition,

11N
c

� 2N
f

> 0 , N
f

<
11

2

N
c

, (C.40)

one has
c
IR

<
N

f

120

· 11Nc

2

<
1

20

N
f

N
c

< c
UV

; (C.41)

and

a
IR

<
N2

f

360

<
N

f

360

· 11Nc

2

=

11N
f

N
c

720

<
11N

f

N
c

360

< a
UV

. (C.42)

This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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This is correct because only in AF theories the system becomes strongly coupled in the IR and
produces massless pions.
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For real-world QCD:












