Strongly-Coupled Infrared Fixed Points, Confinement and Chiral Symmetry Breaking

Confinement and RG flow

QCD

- Abelian dual superconductor (dynamical Abelianization) ?

$$
\begin{array}{r}
S U(3) \rightarrow U(1)^{2} \rightarrow \mathbf{1} \\
\langle M\rangle \neq 0
\end{array}
$$

Doubling of the meson spectrum

$$
\begin{equation*}
\Pi_{1}\left(U(1)^{2}\right)=\mathbf{Z} \times \mathbf{Z} \tag{*}
\end{equation*}
$$

- Non-Abelian monopole condensation ?

$$
\begin{array}{ll}
S U(3) \rightarrow S U(2) \times U(1) \rightarrow \mathbf{1} & \\
\text { Problems }\left({ }^{*}\right) \text { avoided } & \Pi_{1}(S U(2) \times U(1))=\mathbf{Z}
\end{array}
$$

But non-Abelian monopoles expected to be strongly coupled (no sign flip of b_{0})

- Both the electric (quarks and gluons) and magnetic (monopoles and dyons) d.o.f. become strongly coupled in the Infrared !

Can $\mathcal{N}=2$ SQCD teach us anything useful?

-Or more humbly: any analogy between the phenomena occurring in $\mathcal{N}=2$ SQCD and in the real-world QCD?
\ominus A recent observation: the most singular ("Argyres-Douglas") SCFT, in $\mathcal{N}^{\mathcal{N}}=2 \mathrm{SU}(\mathrm{N}) \mathrm{QCD}$ with N_{F} flavors, under an $\mathcal{N}^{\circ}=1$ perturbation,

$$
\left.\mu \Phi^{2}\right|_{F}=\mu \psi \psi+\ldots
$$

Giacomelli,' 15 , Bolognesi, Giacomelli, KK''5
flows down (RG) towards an infrared-fixed-point theory described by massless mesons M in the adjoint representation of G_{F}
eFurther relevant deformations (shift of bare mass parameters)
Confinement and flavor symmetry breaking:
M (or a part of it) make metamorphosis to
massless Nambu-Goldstone particles

Blown-up RG flow

Why remarkable:

$\ominus_{\mathcal{N}}=2$ SCFT is a complicated, nonlocal theory of strongly interacting massless monopoles, dyons and quarks *
$\ominus_{\mathcal{N}}=$ I SCFT is a theory of weak coupled local theory of mesons M
eln the nearby $\mathcal{N}=$ I confining vacuum, $M \sim$ NG bosons of symmetry breaking **
\ominus Analogous to the real-world QCD * **

Massless mesons in the adjoint representation of G_{F} in the $I R$

Tools:

eSeiberg-Witten curves for $\mathcal{N}=2$ gauge theories
SCFT by appropriate tuning of the vacuum parameters (VEVs) and m's
eTrace anomalies (any theory)

$$
\left\langle T_{\mu}^{\mu}\right\rangle=\frac{1}{16 \pi^{2}}\left[c\left(R_{\mu \nu \rho \sigma}^{2}-2 R_{\mu \nu}^{2}+\frac{R^{2}}{3}\right)-a\left(R_{\mu \nu \rho \sigma}^{2}-4 R_{\mu \nu}^{2}+R^{2}\right)\right]
$$

Θ For any $\mathcal{N}=I$ susy theory $\quad\left(R=U_{R}(1)\right.$ charge)

$$
a=\frac{3}{32}\left(3 \operatorname{Tr} R^{3}-\operatorname{Tr} R\right) ; \quad c=\frac{1}{32}\left(9 \operatorname{Tr} R^{3}-5 \operatorname{Tr} R\right),
$$

\ominus For $\mathcal{N}=2$ susy fields

$$
\operatorname{Tr} R_{\mathcal{N}=2}^{3}=\operatorname{Tr} R_{\mathcal{N}=2}=48(a-c) ; \quad \operatorname{Tr} R_{\mathcal{N}=2} I_{a} I_{b}=\delta_{a b}(4 a-2 c) .
$$

Any $\mathcal{N}^{\circ}=2$ theory has global R symmetries

$$
S U_{R}(2) \times U_{R}(1) ; \quad \mathcal{R}_{\mathcal{N}=2} \equiv U_{R}(1) \text { charge, } \quad I_{3} \subset S U_{R}(2)
$$

Flowing down from $\mathcal{N}=2$ SCFT to $\mathcal{N}=1$ SCFT

$$
\left.\mu \Phi^{2}\right|_{F}=\mu \psi \psi+\ldots
$$

$\mathcal{N}^{\mathcal{N}}=1$ curves $(\mathbb{N}=2 \mathrm{SW}$ curves + factorization condition)
θ^{125} relations

$$
\left\{R_{\mathcal{N}=2}, I_{3}\right\} \leftrightarrow R_{\mathcal{N}=1}
$$

$$
\begin{array}{rr}
\text { e.g., for } \mathrm{SU}(2), \mathrm{N}_{\mathrm{F}} & =\mathrm{I},
\end{array} \quad R_{\mathcal{N}=1}=\frac{5}{6} R_{\mathcal{N}=2}+\frac{1}{3} I_{3} .
$$

eKnown $\quad\left\{R_{\mathcal{N}=2}, I_{3}\right\}_{\text {of }}^{\mathcal{N}}=2$ SCFT $\Rightarrow \quad R_{\mathcal{N}=1}$
e't Hooft anomaly matching conditions Very nontrivial check / powerful info on $\operatorname{Tr} \mathrm{R}^{3}, \operatorname{Tr} \mathrm{R}, \operatorname{Tr} \mathrm{R}\left(\mathrm{G}_{\mathrm{F}}\right)^{2}$ the massless d.o.f.
eKnown $\operatorname{Tr} \mathrm{R}^{3}, \operatorname{Tr} R$ of the R theory $->\mathrm{a}, \mathrm{c}$ of the IR theory

$$
\text { e.g., for } \mathrm{SU}(2), \mathbf{N}_{\mathrm{F}}=\mathbf{I}, \quad a=\frac{1}{48}, \quad c=\frac{1}{24} \text {, }
$$

- Works for $\mathcal{N}=2$ SCFT with $\operatorname{SU}(\mathrm{N})$ color, any N_{F}
Θ The result has been checked by following different RG paths

Weak GST duals for $\operatorname{SU}(\mathrm{N}) \mathrm{N}_{\mathrm{F}}=2 n$ Infrared theory
$\ominus \mathcal{N}=I$ perturbation \longrightarrow confinement and XSB
in simplest cases: $\quad U S p(2 N), N_{F}=4 ; \quad S U(3), N_{F}=4 ; \quad S U(4), N_{F}=4 ;$
$\mathrm{SO}(2 \mathrm{~N}), \mathrm{N}_{\mathrm{F}}=2$.
eln all cases the GST dual description correctly realize XSB;
eln simplest cases, d.o.f \sim monopoles carrying flavor q.n.s
$\ominus S U(N), N_{F}=2 n, G S T$ dual looked more difficult

$$
S_{N-n+1}-S U(2)-R_{n}, \quad \begin{gathered}
\text { Nonlocal sC } \\
\text { and quarks with flavor gron } \\
\text { sU(2) } \times \text { SU (2n) }
\end{gathered}
$$

$$
A D_{N_{f}=2}(S U(N-n+1))
$$

\ominus Actually $\mathcal{N}=I$ deformation can be worked out also in this case
Free mesons in adjoint representation of $\mathrm{SU}(2 n)$
(Tools; Conformal anomalies, 't Hooft anomaly matching conditions)

To conclude:

Thank you，all Grazie a tutti

ありがとう （arigatou）

＂古稀＂

ありがとう（ARIGATOU）

＝ありがたく（ARIGATAKU）

＝Rare，difficult to have，precious （luck，etc）
＂ひとの生をうくるはかたく，死すべきものの，生命あるもありがたし＂
＂That a man is given life in this universe，where death is normal， is an incredibly rare and precious thing＂

Thank you, all Grazie a tutti

't Hooft anomaly matching conditions between $\mathcal{N}=2$ SCFT and $\mathcal{N}=1$ SCFT $S U(N), N_{F}=2 N-I \quad A D$ vacuum

$$
\begin{aligned}
& a^{\prime}=\frac{7}{24} N(N-1), \quad c^{\prime}=\frac{1}{3} N(N-1), \quad k_{S U(2 N-1)}=2 N-1 \quad \begin{array}{l}
\text { Shapers,Tachikawatto, Giacomellí" } \\
\text { Cecoti, Del Zot }
\end{array} \\
& R_{\mathcal{N}=1}=\frac{2}{3} R_{\mathcal{N}=2}+\frac{2}{3} I_{3} \\
& \Rightarrow \quad \operatorname{Tr} R_{\mathcal{N}=1}=\frac{2}{3} \operatorname{Tr} R_{\mathcal{N}=2}=-\frac{4}{3} N(N-1) \\
& \operatorname{Tr} R_{\mathcal{N}=1}^{3}=\frac{8}{27}\left[\operatorname{Tr} R_{\mathcal{N}=2}^{3}+3 \operatorname{Tr} R_{\mathcal{N}=2} I_{3}^{2}\right]=-\frac{4}{27} N(N-1) \\
& \operatorname{Tr} R_{\mathcal{N}=1} S U(2 N-1)^{2}=\frac{2}{3} \operatorname{Tr} R_{\mathcal{N}=2} S U(2 N-1)^{2}=\frac{1-2 N}{3}
\end{aligned}
$$

No

$$
\begin{aligned}
& \begin{array}{l}
\text { Massless mesons in the adjoint } \\
\text { representation of } S U(N F)!!
\end{array} \\
& a=\frac{(2 N-1)^{2}-1}{48}, \quad c=\frac{(2 N-1)^{2}-1}{24} \\
& \Rightarrow \quad \operatorname{Tr} R_{\mathcal{N}=1}=16(a-c)=-\frac{4}{3} N(N-1), \quad \operatorname{Tr} R_{\mathcal{N}=1}^{3}=\frac{16}{9}(5 a-3 c)=-\frac{4}{27} N(N-1) \\
& \Rightarrow \quad \operatorname{Tr} R_{\mathcal{N}=1} S U(2 N-1)^{2}=\left(R_{\mathcal{N}=1}(M)-1\right)(2 N-1)=\frac{1-2 N}{3}
\end{aligned}
$$

Complex Structure of Susy 4D Gauge Theories

- Chiral superfields

$$
\Phi(x, \theta, \bar{\theta})=\phi(y)+\sqrt{2} \theta \psi(x)+\theta \theta F(y), \quad y=x+i \theta \sigma \bar{\theta}
$$

- Verctor superfields $V^{\dagger}=V$,

$$
W_{\alpha}=-\frac{1}{4} \bar{D}^{2} e^{-V} D_{\alpha} e^{V}=-i \lambda+\frac{\mu}{2}\left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)_{\alpha}^{\beta} F_{\mu \nu} \theta_{\beta}+\ldots
$$

- Supersymmetric Lagrangian ($\int d \theta_{1} \theta_{1}=1$, etc)

$$
\mathcal{L}=\frac{1}{8 \pi} \operatorname{Im} \tau_{c l}\left[\int d^{4} \theta \Phi^{\dagger} e^{V} \Phi+\int d^{2} \theta \frac{1}{2} W_{\alpha} W^{\alpha}\right]+\int d^{2} \theta W(\Phi)
$$

- $W(\Phi)=$ superpotential; $\quad \tau_{c l}=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}$
- Potential (F term and D term)

$$
V_{s c}=\sum_{m a t}\left|\frac{\partial W}{\partial \phi}\right|^{2}+\frac{1}{2} \sum_{a}\left|\sum_{m a t} \phi^{*} t^{a} \phi\right|^{2}
$$

Vacuum Degeneracy (Space of Vacua)

- Non-renormalization Theorem (perturbative) (cfr. Anomaly)
- Q: Superpotential Dynamically Generated?

$$
\begin{array}{cc}
\mathcal{N}=2 \quad \text { if } & \\
& \Phi \sim a d j \quad \text { and } \\
W(\Phi)=0 \quad & (W=M \Phi \tilde{M} \quad \text { in SQCD })
\end{array}
$$

- Fields:

$$
W=\left(A_{\mu}, \lambda\right), \quad \begin{aligned}
& \Phi=(\phi, \psi) \\
& \nwarrow_{S}(2)
\end{aligned}
$$

Moduli of vacua (degeneracy):

$$
\langle\phi\rangle=\left(\begin{array}{cc}
a & 0 \\
0 & -a
\end{array}\right), \quad u=\operatorname{Tr}\left\langle\phi^{2}\right\rangle \quad \text { su(2) U(1):monopoles } F_{\mu \nu} F^{\mu \nu}+i \bar{\lambda} \gamma^{\mu} \mathcal{D}^{\mu} \lambda+i F_{\mu \nu} \tilde{F}^{\mu \nu}+\ldots
$$

- Leff :

$$
L_{e f f}=\operatorname{Im}\left[\int d^{4} \theta \bar{A} \frac{\partial F(A)}{\partial A}+\int d^{2} \theta \frac{\partial^{2} F(A)}{\partial A^{2}} W^{\alpha} W_{\alpha}\right]
$$

- Duality: L=Leff formally inv under $\operatorname{SL}(2, Z) \quad(a d-b c=I) \quad \supset E M$ duality

$$
=A_{D} \quad \partial A^{2} \xrightarrow{ } \quad \tau=F^{\prime \prime}(A)=\frac{d A_{D}}{d A}=\frac{\theta_{\text {eff }}}{2 \pi}+\frac{4 \pi i}{g_{\text {eff }}^{2}}
$$

$$
\binom{A_{D}}{A} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{A_{D}}{A} \quad\binom{\delta L / \delta F_{\mu \nu}^{+}}{F_{\mu \nu}^{+}} \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\delta L / \delta F_{\mu \nu}^{+}}{F_{\mu \nu}^{+}}
$$

-Which description? Depends on u!

- Assume:
massless monopoles at $u= \pm \Lambda^{2}$ $F(A)!$

Seiberg-Witten curve (SU(2) YM)

$$
y^{2}=(x-u)\left(x-\Lambda^{2}\right)\left(x+\Lambda^{2}\right)
$$

- solves the theory

$$
\begin{array}{ll}
\frac{d A_{D}}{d u}=\oint_{\alpha} \frac{d x}{y}, \quad \frac{d A}{d u}=\oint_{\beta} \frac{d x}{y}, \quad \Rightarrow \mathrm{~F}(\mathrm{~A}) & \operatorname{Im} \frac{\oint_{\alpha} \frac{d x}{y}}{\oint_{\beta} \frac{d x}{y}}>0 \\
M_{n_{m}, n_{e}}=\left|n_{m} A_{D}+n_{e} A\right|, \quad A_{D}=\oint_{\alpha} \lambda, \quad A=\oint_{\beta} \lambda,
\end{array}
$$

- Perturbative and nonperturbative quantum effects (instantons) fully encoded in ※
- Effective theory near $u=\Lambda^{2}$

$$
L_{e f f}\left(A_{D}, F_{D}^{\mu \nu}, \ldots\right)+\int d^{4} \theta \bar{M} e^{V_{D}} M+(M \rightarrow \tilde{M})+\sqrt{2} \int d^{2} \theta M A_{D} \tilde{M}
$$

Magnetic monopole coupled minimally to the dual gauge field

Seiberg-Witten curves for general gauge groups

- $\operatorname{SU}(\mathrm{N})$ with N_{F} quarks

$$
y^{2}=\prod_{i=1}^{N}\left(x-\phi_{i}\right)^{2}-\Lambda^{2 N-N_{F}} \prod_{a=1}^{N_{F}}\left(x+m_{a}\right)
$$

- $\mathrm{SO}(\mathrm{N})$ with N_{F} quarks in vector representation

$$
y^{2}=x \prod_{i=1}^{[N / 2]}\left(x-\phi_{i}^{2}\right)^{2}-4 \Lambda^{2\left(N-N_{F}-N_{F}\right)} x^{2+\epsilon} \prod_{a=1}^{N_{F}}\left(x+m_{a}^{2}\right)
$$

- etc.
- $\operatorname{SU}(3)$ with $\mathrm{N}_{\mathrm{F}}=6$ hypermultiplets $\left(Q_{i}, \tilde{Q}_{i}\right.$'s) at infinite coupling

Flavor symmetry $\sim S U(6) \times U(I)$

$$
" \mathbb{N}=2 \text { dualities" }
$$

Explosive developments in studies of ${ }^{\mathcal{N}}=2$ SCFT

- $U(I)^{N-n}$ gauge multiplets
- $\operatorname{SU}(2)$ gauge field coupled to the $\mathrm{SU}(2)$ flavor symmetry of the SCFT A \& B

$$
b_{0}=\frac{N-n}{N-n+2}
$$

- The A sector: the SCFT entering in the Argyres-Seiberg dual of $\operatorname{SU}(\mathrm{n}), N_{F}=2 \mathrm{n}$ with $\mathrm{G}_{\mathrm{F}}=\operatorname{SU}(2) \times \operatorname{SU}(2 n)$, known as Rn
- The B sector: the singular SCFT of the $\operatorname{SU}(\mathrm{N}-\mathrm{n}+\mathrm{I})$ theory with two flavors

eGST solved the problem of wrong dimensions for the masses in EHIY
eGST eliminated a counter example (Shapere-Tachikawa) to the "a" theorem
eGST dualities generalized to $\mathrm{SO}(\mathrm{N}), \mathrm{USp}(2 \mathrm{~N})$ theories

Gaiotto-Seiberg-Tachikawa (GST)

- Apply the basic idea of Argyres-Seiberg duality to the IR f.p.SCFT
- $\operatorname{SU}(\mathrm{N})$ with $\mathrm{N}_{\mathrm{F}}=2 \mathrm{n}$:

$$
y^{2}=\left(x^{N}+u_{1} x^{N-1}+u_{2} x^{N-2}+\cdots+u_{N}\right)^{2}-\Lambda^{2 N-2 n} \prod_{i=1}^{2 n}\left(x+m_{i}\right)
$$

At $\mathrm{u}=\mathrm{m}=0, * \quad \mathrm{y}^{2} \sim \mathrm{x}^{\mathrm{N}+\mathrm{n}} \quad$ (EHIY point)

- Straightforward treatment of fluctuations
relatively non-local massless monopoles and dyons
\Rightarrow wrong scaling laws for the masses
\$ To keep the correct dimensions of masses, introduce two different scalings:

$$
\begin{array}{lll}
u_{N-n+2} \sim O\left(\epsilon_{A}^{2}\right), \quad u_{N-n+3} \sim O\left(\epsilon_{A}^{3}\right), \quad \ldots, \quad u_{N} \sim O\left(\epsilon_{A}^{n}\right) . & a_{i}=\oint_{\alpha_{i}} \lambda, \quad a_{D i}=\oint_{\beta_{i}} \lambda \\
u_{1} \sim O\left(\epsilon_{B}\right), \quad u_{2} \sim O\left(\epsilon_{B}^{2}\right), \quad \ldots, \quad u_{N-n+2} \sim O\left(\epsilon_{B}^{N-n+2}\right) . & \lambda \sim d x y / x^{n} \\
\epsilon_{A}^{2}=\epsilon_{B}^{N-n+2} \quad \Longrightarrow & & m_{\left(n_{m}, n_{e}, n_{i}\right)}=\sqrt{2}\left|n_{m} a_{D}+n_{e} a+n_{i} m_{i}\right|
\end{array}
$$

GST dual for the singular point of $\operatorname{USp}(2 \mathrm{~N})$ (also $\mathrm{SO}(\mathrm{N})$)

- $\mathrm{U}(\mathrm{I})^{\mathrm{N}-\mathrm{n}}$ gauge multiplets
- The A sector: a (in general) non-Lagrangian SCFT having $\operatorname{SU}(2) \times S O(4 n)$ flavor symmetry
- The B sector: a free doublet (coupled to $\mathrm{U}(\mathrm{I})$ gauge boson)

For $N_{F}=2 n=4$, A sector ~ 4 free doublets

Argyres-Douglas

Auzzi, Grena, K.K. '13

Figure 3: Zero loci of the discriminant of the curve of $\mathcal{N}=2, S U(3), n_{f}=4$ theory at small m.
$U=\operatorname{Tr} \Phi^{2} \simeq 3 m^{2} ; \quad V=\operatorname{Tr} \Phi^{3} \simeq 2 m^{3}$

QMS of $\mathrm{N}=2$ SQCD ($\mathrm{SU}\left(\mathrm{n}\right.$) with nf_{f} quarks)

QMS of $\mathrm{N}=2 \mathrm{USp}(2 \mathrm{n})$ Theory $\underset{(\mathrm{m}=0)}{\text { with }} \mathrm{nf}$ Quarks

- $\mathrm{N}=1$ Confining vacua (with $\boldsymbol{\Phi}^{2}$ perturbation)
- $\mathrm{N}=1$ vacua (with $\boldsymbol{\Phi}^{2}$ perturbation) in free magnetic pha
a and coefficients for free particles

$$
c=\frac{1}{120}\left(N_{S}+6 N_{F}+12 N_{V}\right) ; \quad a=\frac{1}{360}\left(N_{S}+11 N_{F}+62 N_{V}\right)
$$

For $\mathrm{N}=2$ hypermultiplet (pair of chiral multiplets Q and Q bar):

$$
a=\frac{1}{360}(4+11)=\frac{1}{24} ; \quad c=\frac{1}{120}(4+6)=\frac{1}{12} .
$$

For $\mathrm{N}=2$ vector multiplet:

$$
a=\frac{1}{360}(2+11+62)=\frac{5}{24} ; \quad c=\frac{1}{120}(2+6+12)=\frac{1}{6} .
$$

For real-world QCD:

$$
\begin{aligned}
c_{U V} & =\frac{1}{20} N_{f} N_{c}+\frac{N_{c}^{2}-1}{10} ; \quad a_{U V}=\frac{11 N_{f} N_{c}}{360}+\frac{31}{180}\left(N_{c}^{2}-1\right) \\
c_{I R} & =\frac{N_{f}^{2}-1}{120} ; \quad a_{I R}=\frac{N_{f}^{2}-1}{360} .
\end{aligned}
$$

