Anomalous dimensions without Feynman diagrams

F. Gliozzi
Physics Department, Torino University
July, 202017

The Renormalization Group approach to Wilson Fisher fixed points

* Two small parameters: the coupling constant g which turns on the interaction in the Lagrangian and $\epsilon=d_{u}-d$
* $d_{u}:=$ upper critical dimension, where the perturbation is marginal
*) At $d<d_{u}$ the perturbation becomes slightly relevant at the Gaussian UV fixed point and the system flows to the infrared WF fixed point
戍 The anomalous dimensions of local operators are expressed in terms of a (scheme-dependent) loop expansion
* The vanishing of the Callan-Zymanzik $\beta(g)$ fixes the relation between g and ϵ and gives scheme-independent ϵ-expansions

The CFT approach to Wilson Fisher fixed points

* No Lagrangians
* One small parameter: $\epsilon=d_{u}-d$
* $d_{u}:=$ upper critical dimension, where the free field theory has a scalar primary with scaling dimension $\Delta=\frac{d+2}{2}$
* In $d=d_{u}-\epsilon$, and only there, there is a smooth conformal deformation of the free theory that can be identified with the WF fixed point
\Rightarrow This smoothness fixes uniquely, to the first non-trivial order in the ϵ-expansion, the anomalous dimensions and the OPE coefficients of infinite classes of scalar local operators
* A CFT in d dimensions is defined by a set of local operators $\left\{\mathcal{O}_{k}(x)\right\} x \in \mathcal{R}^{d}$ and their correlation functions

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \ldots \mathcal{O}_{n}\left(x_{n}\right)\right\rangle
$$

* Local operators can be multiplied. Operator Product Expansion:

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(y)=\sum_{k} c_{12 k}(x-y) \mathcal{O}_{k}\left(\frac{x+y}{2}\right)
$$

* $\mathcal{O}_{\Delta, \ell, f}(x)$ are labelled by a scaling dimension Δ

$$
\mathcal{O}_{\Delta, \ell, f}(\lambda x)=\lambda^{-\Delta} \mathcal{O}_{\Delta, \ell, f}(x)
$$

an $S O(d)$ representation ℓ (spin), and possibly a flavor index f

* among the local operators there are the identity and a (unique) energy -momentum tensor $T_{\mu \nu}(x)=\mathcal{O}_{d, 2}(x)$
\Rightarrow a CFT has no much to do with Lagrangians, coupling constants and equations of motion, even if one often uses these terms for simplicity
* Acting with the Lie algebra of $S O(d+1,1)$ on a local operator generates a whole representation of the conformal group. The local operator of minimal Δ is said a primary, the others are descendants
业 Not all the primaries define irreducible representations:
* There are primaries admitting an invariant subspace: there is a descendant which is also primary. It corresponds to a null state
\Rightarrow Denoting with $[\Delta, \ell]$ a null state and with $\left[\Delta^{\prime}, \ell^{\prime}\right]$ its parent primary, in view of the fact that they belong to the same representation, they must share the eigenvalues c_{2}, c_{4}, \ldots of all the Casimir operators C_{2}, C_{4}, \ldots $c_{2}(\Delta, \ell)=c_{2}\left(\Delta^{\prime}, \ell^{\prime}\right) ; c_{4}(\Delta, \ell)=c_{4}\left(\Delta^{\prime}, \ell^{\prime}\right) ; \ldots$
* since $[\Delta, \ell]$ and $\left[\Delta^{\prime}, \ell^{\prime}\right]$ belong to the same rep. $\Rightarrow \Delta=\Delta^{\prime}+n$ and the first two eq.s fix uniquely the possible pairs
* Eigenvalues of the Casimir operators

$$
c_{2}(\Delta, \ell)=\frac{1}{2} \Delta(\Delta-d)+\ell(\ell+d-2)
$$

$$
\begin{aligned}
& c_{4}(\Delta, \ell)=\Delta^{2}(\Delta-d)^{2}+\frac{1}{2} d(d-1) \Delta(\Delta-d)+\ell^{2}(\ell+d-2)^{2} \\
& +\frac{1}{2}(d-1)(d-4) \ell(\ell+d-2)
\end{aligned}
$$

\Rightarrow There are three families of null states:
Parent primary Descendant primary

Δ_{k}^{\prime}	Δ_{k}	ℓ	
$1-\ell^{\prime}-k$	$1-\ell+k$	$\ell^{\prime}+k$	$k=1,2, \ldots$
$\frac{d}{2}-k$	$\frac{d}{2}+k$	ℓ^{\prime}	$k=1,2, \ldots$
$d+\ell^{\prime}-k-1$	$d+\ell+k-1$	$\ell^{\prime}-k$	$k=1,2, \ldots, \ell$

\Rightarrow The canonical scalar field ϕ_{f} of scaling dimension $\Delta_{\phi_{f}}=\frac{d}{2}-1$ could have a primary descendant of dimension $\Delta=\frac{d}{2}+1$

CFT, useful formulae

* The four-point function of local scalar operators $\mathcal{O}_{i}(x)$ in a d-dimensional CFT can parametrised as

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=\frac{g(u, v)}{\left|x_{12}\right|^{\Delta_{12}^{+}}\left|x_{34}\right|^{\Delta_{34}^{+}}}\left(\frac{\left|x_{24}\right|}{\left|x_{14}\right|}\right)^{\Delta_{12}^{-}}\left(\frac{\left|x_{14}\right|}{\left|x_{13}\right|}\right)^{\Delta_{34}^{-}}
$$

$\Delta_{i j}^{ \pm}=\Delta_{i} \pm \Delta_{j}$ and Δ_{i} scaling dimension of $\mathcal{O}_{i}, g(u, v)$ is a
function of the cross-ratios $u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}$ and $v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$

* $g(u, v)$ can be expanded in terms of conformal blocks $G_{\Delta, \ell}^{a, b}(u, v)$ (eigenfunctions of the Casimir operators C_{2}, C_{4}, \ldots of $S O(d+1,1))$:

$$
g(u, v)=\sum_{\Delta, \ell} \mathrm{p}_{\Delta, \ell} G_{\Delta, \ell}^{\mathrm{a}, \mathrm{~b}}(u, v)
$$

$$
a=-\frac{\Delta_{12}^{-}}{2} ; b=\frac{\Delta_{34}^{-}}{2}
$$

WF fixed points

A CFT in $d-\epsilon$, defined by a set of local operators \mathcal{O}_{i}, is a smooth deformation of the free field theory in d dimensions if
(1) $\exists \mathcal{O}_{i} \leftrightarrow \mathcal{O}_{i}^{f}: \Delta_{\mathcal{O}_{i}}=\Delta_{\mathcal{O}_{i}^{f}}+\gamma_{i}^{(1)} \epsilon+\gamma_{i}^{(2)} \epsilon^{2}+\ldots$
(2) $\mathcal{O}_{i}^{f} \times \mathcal{O}_{j}^{f}=\sum_{k} \lambda_{i j k}^{f} \mathcal{O}_{k}^{f}, \quad \mathcal{O}_{i} \times \mathcal{O}_{j}=\sum_{k}\left(\lambda_{i j k}^{f}+O(\epsilon)\right) \mathcal{O}_{k}$

* This definition does not imply that primary operators of free theory are also primary in the deformed CFT.
* For general space dimensions d the deformations $\Delta_{\mathcal{O}} \rightarrow \Delta_{\mathcal{O}_{f}}+O(\epsilon)$ do not define a one-to-one correspondence with the spectrum of the free theory hence they are not smooth deformations
* Consistent smooth deformations exist only at special values of d (upper critical dimension), reduce the number of primaries for $\epsilon \neq 0$ and define WF fixed points
* They are encoded in the analytic properties of conformal blocks $G_{\Delta, \ell}^{a, b}$ as functions of Δ

Poles and null states

* The conformal blocks can be written as a sum of poles (+ an entire function in the whole Δ complex plane)
* Poles only occur at the special [$\left.\Delta_{k}^{\prime}, \ell^{\prime}\right]$ primaries admitting a primary descendant, i.e. a null state.
\Rightarrow The residue of the pole is proportional to a conformal block:

$$
G_{\Delta^{\prime}, \ell^{\prime}}^{a, b} \sim r\left(\Delta_{k}^{\prime}\right) \frac{G_{\Delta_{k}, \ell}^{a, b}}{\Delta^{\prime}-\Delta_{k}^{\prime}}
$$

* The complete list of the null states for general d coincides with the three families listed in the previous table.

The scalar null state at $\Delta_{1}=\frac{d}{2}+1=\Delta_{\phi_{f}}+2$

In a free field theory this primary descendant has always a vanishing residue in all the possible OPEs that generate ϕ_{f} :

$$
\left[\phi_{f}^{p}\right] \times\left[\phi_{f}^{p \pm 1}\right]=\sqrt{p \pm 1}\left[\phi_{f}\right]+\ldots \quad\left(\left[\phi_{f}\right]^{p}=\phi_{f}^{p} / \sqrt{p!}\right)
$$

$\Rightarrow \Delta_{12}^{-}= \pm \Delta_{\phi_{f}} \Rightarrow r\left(\Delta_{\phi_{t}}\right)=0$
Turning on the interaction in $d-\epsilon$, i.e. putting $\phi_{f}^{n} \rightarrow \phi^{n}$ with

$$
\begin{aligned}
& \Delta_{\phi^{n}}=\Delta_{\phi_{f}^{n}}+\gamma_{n}^{(1)} \epsilon+\gamma_{n}^{(2)} \epsilon^{2}+\cdots \Rightarrow r\left(\Delta^{\prime}\right) \neq 0 \Rightarrow \\
& G_{\Delta_{\phi}}^{a, b}=\frac{(d-2)\left(\gamma_{p}^{(1)}-\gamma_{1+1}^{(1)}\right)^{2} \epsilon^{2}}{4 d\left(\gamma_{\phi}^{(1)} \epsilon+\gamma_{\phi}^{(2)} \epsilon^{2}+\ldots\right)} G_{\Delta_{\phi_{t}+2}}^{a_{t}, b_{f}}+\cdots
\end{aligned}
$$

For general d this is not a smooth deformation since the the free theory does not have a local operator of dimension $\Delta_{\phi_{+}+2}$ unless there is a primary ϕ_{f}^{n} with that dimension, i.e.

$$
\begin{aligned}
& n \Delta_{\phi_{f}}=\Delta_{\phi_{f}}+2, \Rightarrow \quad d=2 \frac{n+1}{n-1}: \text { only } 3 \text { solutions with integer } \mathrm{d} \\
& \quad(d=3, n=5), \quad(d=4, n=3), \quad(d=6, n=2)
\end{aligned}
$$

* Matching the coefficient of $G_{\Delta_{\phi_{t}+2}}^{a_{t}, b_{f}}$ with that of $G_{\Delta_{\phi_{f}^{n}}}^{a_{t}, b_{f}}$ we obtain constraints among anomalous dimensions $\gamma_{n}^{(i)}=\gamma_{\phi^{n}}^{(i)}$

$$
d=4 \quad:
$$

$$
\left[\phi_{f}\right] \times\left[\phi_{f}^{2}\right]=\sqrt{2}\left[\phi_{f}\right]+\sqrt{3}\left[\phi_{f}^{3}\right]+\text { spinning operators }
$$

$$
\left\langle\phi_{f} \phi_{f}^{2} \phi_{f} \phi_{f}^{2}\right\rangle \Rightarrow g_{f}(u, v)=2 G_{\Delta_{\phi_{f}}}^{a_{f}, b_{f}}+3 G_{\Delta_{\phi_{f}^{3}}}^{a_{f}, b_{f}}+\text { spinning conf. blocks }
$$

$$
\left\langle\phi \phi^{2} \phi \phi^{2}\right\rangle \Rightarrow g(u, v)=(2+O(\epsilon)) G_{\Delta_{\phi}}^{a, b}+\ldots
$$

$\lim _{\epsilon \rightarrow 0} g(u, v)=2\left(G_{\Delta_{\phi_{f}}}^{a_{t}, b_{f}}+\frac{\epsilon\left(\gamma_{\phi^{2}}^{(1)}\right)^{2}}{8\left(\gamma_{\phi}^{(1)}+\epsilon \gamma_{\phi}^{(2)}\right)} G_{\Delta_{\phi_{f}+2}=\Delta_{\phi_{f}^{3}}}^{a, b_{f}}\right)+$ spinning conf. b.

$$
\gamma_{\phi}^{(1)}=0, \quad \frac{\left(\gamma_{\phi^{2}}^{(1)}\right)^{2}}{\gamma_{\phi}^{(2)}}=12 .
$$

In the general case from the fusion rule

$$
\left[\phi^{p}\right] \times\left[\phi^{p+1}\right]=\sqrt{p+1}\left([\phi]+\sqrt{\frac{3}{2}} p\left[\phi^{3}\right]+\sqrt{\frac{5}{6}} p(p-1)\left[\phi^{5}\right]\right)+\ldots
$$

we get in the $d=4$ case the recursion relation

$$
\frac{\left(\gamma_{p+1}^{(1)}-\gamma_{p}^{(1)}\right)^{2}}{\gamma_{\phi}^{(2)}}=12 p^{2}
$$

$\gamma_{0}^{(1)}=\gamma_{1}^{(1)}=0 \quad \Rightarrow$

$$
\gamma_{\phi^{p}}^{(1)} \equiv \gamma_{p}^{(1)}=\frac{\kappa_{4}}{2} p(p-1), \quad \kappa_{4}= \pm \sqrt{12 \gamma_{\phi}^{(2)}}
$$

and similarly in $d=3$

$$
\gamma_{\phi p}^{(1)} \equiv \gamma_{p}^{(1)}=\frac{\kappa_{3}}{3} p(p-1)(p-2), \quad \kappa_{3}= \pm \sqrt{10 \gamma_{\phi}^{(2)}}
$$

In $d=4$ there is another way to calculate $\gamma_{\phi^{3}}^{(1)}=3 \kappa_{4}$

* The scaling dimensions of the null states are universal and depend only on d
* in $d=4-\epsilon$ the primary descendant of ϕ_{f} has scaling dimensions
$\Delta_{\phi_{f}}+2=3-\epsilon / 2$ which should coincide with the scaling dimensions of ϕ^{3}
* the smooth deformation requires

$$
\Delta_{\phi^{3}}=3 \Delta_{\phi_{t}}+\gamma_{\phi^{3}}^{(1)} \epsilon=3+\left(\gamma_{\phi^{3}}^{(1)}-\frac{3}{2}\right) \epsilon+O\left(\epsilon^{2}\right)
$$

$\Rightarrow \gamma_{\phi^{3}}^{(1)}=1$, then $\kappa_{4}=\frac{1}{3}, \gamma_{\phi}^{(2)}=\frac{1}{108}$
Similarly in $d=3 \rightleftharpoons \gamma_{\phi^{5}}^{(1)}=20 \kappa_{3}$, matching with the primary descendant of ϕ yields $\gamma_{\phi^{5}}^{(1)}=2$, thus

$$
\kappa_{3}=\frac{1}{10}, \quad \gamma_{\phi}^{(2)}=\frac{1}{1000}
$$

* All these results in $d=4$ and $d=3$ coincide with those obtained with Feynman diagrams in quantum field theory

OPE coefficients in $d=4$

Other results can be obtained by considering deformations of OPE free theories in which a ϕ_{f}^{3} contribution on the RHS appears

$$
\left[\phi_{f}^{2}\right] \times\left[\phi_{f}^{5}\right]=\sqrt{10}\left[\phi_{f}^{3}\right]+5 \sqrt{2}\left[\phi_{f}^{5}\right]+\sqrt{21}\left[\phi_{f}^{7}\right]+\text { spinning op. }
$$

or

$$
\left[\phi_{f}\right] \times\left[\phi_{f}^{4}\right]=2\left[\phi_{f}^{3}\right]+\sqrt{5}\left[\phi_{f}^{5}\right]+\text { spinning op. }
$$

the ϕ_{f}^{3} contribution should be replaced by the conformal block of ϕ in the deformed theory.

$$
\begin{aligned}
& \lambda_{\phi^{2} \phi^{5} \phi}^{2}=5 \gamma_{\phi}^{(2)} \epsilon^{2}+O\left(\epsilon^{3}\right)=\frac{5}{108} \epsilon^{2}+O\left(\epsilon^{3}\right) ; \\
& \lambda_{\phi \phi^{4} \phi}^{2}=2 \gamma_{\phi}^{(2)} \epsilon^{2}+O\left(\epsilon^{3}\right)=\frac{1}{54} \epsilon^{2}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

Generalizations

* For any generalized free field of dimension $\Delta_{\phi}=\frac{d}{2}-k$ and any integer m one can define an upper critical dimension $d_{u}=2 k m /(m-1)$ (in general a fractional number) in which
$\Rightarrow \phi^{2 m}$ is a marginal perturbation
\Rightarrow in $d_{u}-\epsilon$ there is a (generalized) WF critical point characterized by the following spectrum of anomalous dimensions

$$
\begin{align*}
& \gamma_{p}^{(1)}=\frac{m-1}{(m)_{m}}(p-m+1)_{m}, \quad(p>1) \\
& \gamma_{\phi}^{(2)}=(-1)^{k+1} 2 \frac{m\left(\frac{k}{m-1}\right)_{k}}{k\left(\frac{m k}{m-1}\right)_{k}}(m-1)^{2}\left[\frac{(m!)^{2}}{(2 m)!}\right]^{3} \tag{1}
\end{align*}
$$

$O(N)$ - invariant models

* generalized free theories with scalar fields $\phi_{i}, i=1,2, \ldots, N$ transforming as vectors under $O(N)$
* $\gamma_{p, s}^{(i)} \equiv$ anomalous dimensions of symmetric traceless rank-s tensors $\phi^{2 p} \phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{s}}-\operatorname{traces}$
\Rightarrow for $d_{u}=4 k \gamma_{p, s}^{(1)}=\frac{s(s-1)+p(N+6(p+s)-4)}{N+8}, \gamma_{\phi}^{(2)}=\frac{(-1)^{k+1}(k)_{k}(N+2)}{2 k(2 k)_{k}(N+8)^{2}}$
\Rightarrow for $d_{u}=3 k$

$$
\begin{aligned}
\gamma_{p, s}^{(1)} & =\frac{(2 p+s-2)(s(s-1)+p(3 N+10(p+s)-8))}{3(3 N+22)} \\
\gamma_{\phi}^{(2)} & =\frac{(-1)^{k+1}(k / 2)_{k}(N+2)(N+4)}{8 k(3 k / 2)_{k}(3 N+22)^{2}}
\end{aligned}
$$

Conclusions

(1) It is possible to define smooth deformations and Wilson Fisher fixed points in $d-\epsilon$ only using CFT notions, with no reference to Lagrangians, coupling constants or equations of motion
(2) $O(N)$ symmetric models and generalized free fields allow to define a more general class of WF fixed points
(3) Simple constraints on anomalous dimensions and OPE coefficients up to $O\left(\epsilon^{2}\right)$ are easily obtained. Higher order calculations require more constraints from conformal bootstrap equations.

祝 古希 誕生日おめでとう

小西憲一先生

