Some exact Bradlow vortex solutions

Sven Bjarke Gudnason

In collaboration with
Muneto Nitta
Based on arXiv：1701．04356

IMP，CAS
2017年7月20日

The Zoo

soliton	codimension	homotopy group
domain wall	1	$\pi_{0}\left(\mathcal{M}_{\text {vacuum }}\right)$
vortex	2	$\pi_{1}(G) \simeq \mathbb{Z}$
monopole	3	$\pi_{2}(G / H) \simeq \mathbb{Z}$
instanton	4	$\pi_{3}(G) \simeq \mathbb{Z}$
Skyrmion	3	$\pi_{3}\left(\frac{S U(2) \times S U(2) / \mathbb{Z}_{2}}{S U(2)}\right) \simeq \mathbb{Z}$
baby-Skyrmion	2	$\pi_{2}\left(S^{2}\right) \simeq \mathbb{Z}$
Hopfions	3	$\pi_{3}\left(S^{2}\right) \simeq \mathbb{Z}$
\vdots	\vdots	\vdots

Plan of the talk

- five vortex equations
- integrability on constant-curvature manifolds
- Witten's solution
- Baptista metric
- Bradlow bound(s)
- Bradlow vortices

Warm－up：the Abelian Higgs model

The Abelian Higgs model

Consider 2+1 dimensions and

$$
\begin{equation*}
-\mathcal{L}=\frac{1}{4 e^{2}} F_{\mu \nu}^{2}+\left|D_{\mu} \phi\right|^{2}+\frac{e^{2}}{2}\left(|\phi|^{2}-v\right)^{2}, \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{\mu} \phi=\partial_{\mu}+i A_{\mu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{2}
\end{equation*}
$$

Bogomol'nyi trick for the (static) energy density:
$\mathcal{E}=\frac{1}{2 e^{2}}\left(F_{12}^{2}-e^{2}\left(|\phi|^{2}-v^{2}\right)\right)^{2}+\left|D_{1} \phi+i D_{2} \phi\right|^{2}-v^{2} F_{12}-i \epsilon^{i j} \partial_{i}\left(\phi^{\dagger} D_{j} \phi\right)$

BPS-equations:

$$
\begin{equation*}
F_{12}=e^{2}\left(|\phi|^{2}-v^{2}\right), \quad D_{1} \phi+i D_{2} \phi=0 . \tag{4}
\end{equation*}
$$

BPS-bound:

$$
\begin{equation*}
E \geq-v^{2} \int d^{2} x F_{12} \tag{5}
\end{equation*}
$$

Axial vortices (building intuition)

Ansatz:

$$
\begin{equation*}
\phi=v h(r) e^{i N \phi}, \quad A_{i}=\epsilon_{i j} \frac{N x^{j}}{r^{2}} a(r) . \tag{6}
\end{equation*}
$$

Boundary conditions:

$$
\begin{equation*}
h(0)=0, \quad h(\infty)=1, \quad a(0)=0, \quad a(\infty)=1, \tag{7}
\end{equation*}
$$

BPS-equations:

$$
\begin{equation*}
h^{\prime}=\frac{N}{r}(1-a) h, \quad \frac{N a^{\prime}}{r}=e^{2} v^{2}\left(1-h^{2}\right) . \tag{8}
\end{equation*}
$$

Polar coordinates: $x^{1}+i x^{2}=r e^{i \theta}$; Field strength:

$$
\begin{equation*}
F_{12}=-\frac{N a^{\prime}}{r} . \tag{9}
\end{equation*}
$$

Master equation: (axially symmetric) Taubes equation

$$
\begin{equation*}
-u^{\prime \prime}-\frac{1}{r} u^{\prime}=m^{2}\left(e^{2 u}-1\right) \tag{10}
\end{equation*}
$$

with $u \equiv \log h$ and $m \equiv e v$.

General case

General solution to 1st BPS equation:

$$
\begin{equation*}
\bar{D} \phi=\bar{\partial} \phi+i \bar{A} \phi=\left(-s^{-1} \bar{\partial} s+i \bar{A}\right) v s^{-1} \phi_{0}(z)=0 \tag{11}
\end{equation*}
$$

where ϕ_{0} is holomorphic (and ϕ is "covariantly" holomorphic):

$$
\begin{equation*}
\phi=v s^{-1}(z, \bar{z}) \phi_{0}(z) . \tag{12}
\end{equation*}
$$

\bar{A} is given by the Maurer-Cartan form

$$
\begin{equation*}
\bar{A}=-i \bar{\partial} \log s=i \bar{\partial} \psi . \tag{13}
\end{equation*}
$$

Field strenth:

$$
\begin{equation*}
F_{12}=2 i F_{\bar{z} z}=4 \bar{\partial} \partial \psi . \tag{14}
\end{equation*}
$$

Master eqaution:

$$
\begin{equation*}
4 \bar{\partial} \partial \psi=m^{2}\left(e^{2 \psi}\left|\phi_{0}(z)\right|^{2}-1\right), \tag{15}
\end{equation*}
$$

Setting $e^{2 \psi}\left|\phi_{0}(z)\right|^{2}=e^{2 u}$ we get

$$
\begin{equation*}
4 \bar{\partial} \partial u=m^{2}\left(e^{2 u}-1\right)+2 \pi \sum_{i=1}^{N} \delta^{(2)}\left(z-z_{i}\right) . \tag{16}
\end{equation*}
$$

Vortex equation on curved surface

Assuming a compatible Riemannian metric of the form

$$
\begin{equation*}
d s^{2}=-d t^{2}+\Omega_{0}(z, \bar{z}) d z d \bar{z} \tag{17}
\end{equation*}
$$

The energy changes as

$$
\begin{equation*}
E=\int d^{2} x \Omega_{0}\left[\frac{1}{4 e^{2} \Omega_{0}^{2}} F_{\mu \nu}^{2}+\Omega_{0}^{-1}\left|D_{\mu} \phi\right|^{2}+\frac{e^{2}}{2}\left(|\phi|^{2}-v^{2}\right)\right] . \tag{18}
\end{equation*}
$$

Thus the static energy:

$$
\begin{align*}
E^{\text {static }}=\int d^{2} x \Omega_{0}[& \frac{1}{2 e^{2}}\left(\Omega_{0}^{-1} F_{12}-e^{2}\left(|\phi|^{2}-v^{2}\right)\right)^{2} \\
& +\Omega_{0}^{-1}\left|D_{1} \phi+i D_{2} \phi\right|^{2}-v^{2} \Omega_{0}^{-1} F_{12} \\
& \left.-i \Omega_{0}^{-1} \partial_{i}\left(\phi^{\dagger} D_{j} \phi\right)\right] \tag{19}
\end{align*}
$$

Giving the BPS equations on curved background:

$$
\begin{equation*}
\Omega_{0}^{-1} F_{12}-e^{2}\left(|\phi|^{2}-v^{2}\right)=0, \quad D_{1} \phi+i D_{2}=0, \tag{20}
\end{equation*}
$$

Master equation on curved background

Taubes equation on curved background:

$$
\begin{equation*}
\frac{4}{\Omega_{0}} \bar{\partial} \partial u=m^{2}\left(e^{2 u}-1\right)+\frac{2 \pi}{\Omega_{0}} \sum_{i=1}^{N} \delta^{(2)}\left(z-z_{i}\right) . \tag{21}
\end{equation*}
$$

Witten's solution:

$$
\begin{equation*}
2 u=v-\log \Omega_{0} \tag{22}
\end{equation*}
$$

yielding

$$
\begin{equation*}
2 \bar{\partial} \partial\left(v-\log \Omega_{0}\right)=m^{2} \Omega_{0}\left(\Omega_{0}^{-1} e^{v}-1\right)+2 \pi \sum_{i=1}^{N} \delta^{(2)}\left(z-z_{i}\right) \tag{23}
\end{equation*}
$$

which we can write as

$$
\begin{equation*}
2 \bar{\partial} \partial \log \Omega_{0}=m^{2} \Omega_{0}, \quad 2 \bar{\partial} \partial v=m^{2} e^{v}+2 \pi \sum_{i=1}^{N} \delta^{(2)}\left(z-z_{i}\right) \tag{24}
\end{equation*}
$$

Both geometry and the vortices are determined by Liouville's equation.

Witten's solution

Solving Liouville's equation yields:

$$
\begin{equation*}
\Omega_{0}=\frac{4}{m^{2}\left(1-|z|^{2}\right)^{2}}, \tag{25}
\end{equation*}
$$

for the background geometry and

$$
\begin{equation*}
e^{v}=\frac{4}{m^{2}\left(1-|g(z)|^{2}\right)^{2}}\left|\frac{d g}{d z}\right|^{2} \tag{26}
\end{equation*}
$$

vortex positions \Leftrightarrow ramification points of g.
Vortex condensate:

$$
\begin{equation*}
|\phi|^{2}=\Omega_{0}^{-1} e^{v}=\frac{\left(1-|z|^{2}\right)^{2}}{\left(1-|g(z)|^{2}\right)^{2}}\left|\frac{d g}{d z}\right|^{2} \tag{27}
\end{equation*}
$$

In the Poincare disc model, solutions are given by g being the Blaschke rational function

$$
\begin{equation*}
g(z)=\prod_{i=1}^{N+1} \frac{z-a_{i}}{1-\bar{a}_{i} z} \tag{28}
\end{equation*}
$$

Generalization of Taubes equation

Generalizing the Taubes equation

$$
\begin{equation*}
-\frac{4}{\Omega_{0}} \bar{\partial} \partial u=m^{2}-m^{2} e^{2 u}-\frac{2 \pi}{\Omega_{0}} \sum_{i=1}^{N} \delta^{(2)}\left(z-z_{i}\right) . \tag{29}
\end{equation*}
$$

\Rightarrow Manton's five vortex equations:

$$
\begin{equation*}
-\frac{4}{\Omega_{0}} \bar{\partial} \partial u=-C_{0}+C e^{2 u}+\frac{2 \pi}{\Omega_{0}} \sum_{i=1}^{N} \delta^{(2)}\left(z-z_{i}\right) . \tag{30}
\end{equation*}
$$

By rescaling Ω_{0} and shifting u, we can reduce the possibilities to

$$
\begin{equation*}
\left\{C_{0}, C\right\}=\{-1,0,1\} \tag{31}
\end{equation*}
$$

four of which

$$
\begin{equation*}
\left(C_{0}, C\right)=(1,-1),(0,0),(1,0),(0,-1), \tag{32}
\end{equation*}
$$

cannot give a positive magnetic flux $F_{12}>0$.

Manton's five vortex equations

Table: Vortex equation constants C_{0} and C for five different theories.

C_{0}	C	name	analytic solutions on
-1	-1	Taubes	\mathbb{H}^{2}
0	1	Jackiw-Pi	\mathbb{R}^{2}, T^{2}
1	1	Popov	S^{2}
-1	0	Bradlow	\mathbb{H}^{2}
-1	1	Ambjørn-Olesen-Manton	\mathbb{H}^{2}

Popov versus Taubes

Taubes: Instantons on $\mathbb{H}^{2} \times S^{2} \Rightarrow$ vortex on \mathbb{H}^{2}.
Popov: Instantons on $\mathbb{H}^{2} \times S^{2} \Rightarrow$ vortex on S^{2} and change the overall sign of RHS.

Ambjørn-Olesen-Manton equation

- exact analytic solution on \mathbb{H}^{2}
- period solution on \mathbb{R}^{2}
- describes W condensation in the electroweak theory
- can play a role in non-Abelian vector bootstrap mechanism generating a primordial magnetic field

Finding analytic (integrable) vortex solutions

Consider the background Gaussian curvature:

$$
\begin{equation*}
K_{0}=-\frac{2}{\Omega_{0}} \bar{\partial} \partial \log \Omega_{0} \tag{33}
\end{equation*}
$$

Now define the (singular) Baptista metric

$$
\begin{equation*}
\Omega \equiv \Omega_{0} e^{2 u} \tag{34}
\end{equation*}
$$

corresponding curvature:

$$
\begin{equation*}
K=-\frac{2}{\Omega} \bar{\partial} \partial \log \Omega=-\frac{2}{e^{2 u} \Omega_{0}} \bar{\partial} \partial\left(\log \Omega_{0}+2 u\right), \tag{35}
\end{equation*}
$$

multiply by $e^{2 u}$ to arrive at:

$$
\begin{equation*}
e^{2 u} K=K_{0}-\frac{4}{\Omega_{0}} \bar{\partial} \partial u . \tag{36}
\end{equation*}
$$

Use the vortex equation (ignoring delta functions from now on):

$$
\begin{equation*}
e^{2 u} K=K_{0}-C_{0}+C e^{2 u} . \tag{37}
\end{equation*}
$$

Finding analytic (integrable) vortex solutions

Rearranging:

$$
\begin{equation*}
(K-C) e^{2 u}=K_{0}-C_{0} \tag{38}
\end{equation*}
$$

multiply by Ω_{0} to finally arrive at:

$$
\begin{equation*}
(K-C) \Omega=\left(K_{0}-C_{0}\right) \Omega_{0} \tag{39}
\end{equation*}
$$

(Known) Integrability \Leftrightarrow

$$
\begin{equation*}
K=C, \quad K_{0}=C_{0} \tag{40}
\end{equation*}
$$

Baptista curvature $=C$; and background curvature C_{0}.

Integrable vortex solutions

General solution:

$$
\begin{equation*}
e^{2 u}=\frac{\left(1+C_{0}|z|^{2}\right)^{2}}{\left(1+C|g(z)|^{2}\right)^{2}}\left|\frac{d g}{d z}\right|^{2} . \tag{41}
\end{equation*}
$$

Bolza surface

Energy giving rise to the general equation

Energy:

$$
\begin{equation*}
E=\int d^{2} x \Omega_{0}\left[\frac{1}{4 e^{2} \Omega_{0}^{2}} F_{\mu \nu}^{2}-C \Omega_{0}^{-1}\left|D_{\mu} \phi\right|^{2}+\frac{e^{2}}{2}\left(C|\phi|^{2}-C_{0} v^{2}\right)\right] . \tag{42}
\end{equation*}
$$

Static energy:

$$
\begin{align*}
E^{\text {static }}=\int d^{2} x \Omega_{0}[& \frac{1}{2 e^{2}}\left(\Omega_{0}^{-1} F_{12}+e^{2}\left(C|\phi|^{2}-C_{0} v^{2}\right)\right)^{2} \\
& -C \Omega_{0}^{-1}\left|D_{1} \phi+i D_{2} \phi\right|^{2}+C_{0} v^{2} \Omega_{0}^{-1} F_{12} \\
& \left.+C i \Omega_{0}^{-1} \partial_{i}\left(\phi^{\dagger} D_{j} \phi\right)\right] . \tag{43}
\end{align*}
$$

Giving the BPS equations on curved background:

$$
\begin{equation*}
\Omega_{0}^{-1} F_{12}+C e^{2}\left(|\phi|^{2}-v^{2}\right)=0, \quad D_{1} \phi+i D_{2}=0 \tag{44}
\end{equation*}
$$

Notice: the second BPS equation does not exist for $C=0$.

Generalized Bradlow bounds

Integrating the general vortex equation:

$$
\begin{equation*}
2 \pi N=-C_{0} A_{0}+C A \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\int d^{2} x \Omega=\int d^{2} x \Omega_{0} e^{2 u} \tag{46}
\end{equation*}
$$

is the Baptista area.
Taubes equation \Rightarrow

$$
\begin{equation*}
A_{0} \leq 2 \pi N \tag{47}
\end{equation*}
$$

called the Bradlow bound.
Bradlow equation \Rightarrow

$$
\begin{equation*}
A_{0}=2 \pi N \tag{48}
\end{equation*}
$$

Amjørn-Olesen-Manton equation \Rightarrow

$$
\begin{equation*}
A_{0} \geq 2 \pi N \tag{49}
\end{equation*}
$$

Jackiw-Pi equation \Rightarrow

$$
\begin{equation*}
A=2 \pi N \tag{50}
\end{equation*}
$$

i.e. the Baptista area is equal to 2π times the vortex number

So far all exact solutions have been found are for constant background curvature: $K_{0}=$ const.

But... the Bradlow equation is very simple...

The Bradlow equation

The Bradlow equation reads:

$$
\begin{equation*}
-4 \bar{\partial} \partial u=\Omega_{0}-2 \pi \sum_{i=1}^{N} \delta^{(2)}\left(z-z_{i}\right), \tag{51}
\end{equation*}
$$

Notice that the field is directly related to the background geometry.

Axially symmetric Bradlow vortex on \mathbb{D}^{2}

Let's consider axial symmetry and a disc:

$$
\begin{equation*}
u=-\frac{r^{2}}{4}+u_{0}+N \log r \tag{52}
\end{equation*}
$$

Fixing the boundary condition $u=0$:

$$
\begin{equation*}
u=-\frac{r^{2}-R^{2}}{4}+N \log \frac{r}{R} \tag{53}
\end{equation*}
$$

Generalized Bradlow bound yields:

$$
\begin{equation*}
N=\frac{1}{2} R^{2} . \tag{54}
\end{equation*}
$$

which fixed the radius in terms of number of vortices N.

General solution

The general solution can readily be found:

$$
\begin{equation*}
u=-\frac{|z|^{2}}{4}+u_{0}+\frac{1}{2} \sum_{i=1}^{N} \log \left|z-z_{i}\right|^{2}+g(z)+\overline{g(z)} \tag{55}
\end{equation*}
$$

However, it is impossible to impose $u=0$ at the boundary of a circular disc.
Attempting yields

$$
\begin{equation*}
-u_{0}=\frac{1}{2} \sum_{i=1}^{N} \log \left|R e^{i \theta}-z_{i}\right|^{2}=\frac{1}{2} \sum_{i=1}^{N} \log \left|\frac{R z}{|z|}-z_{i}\right|^{2} \tag{56}
\end{equation*}
$$

and $g=\bar{g}=0$.
But, still BC are not satisfied..

Conjecture

The only solution satisfying the Bradlow equation on the flat disc, \mathbb{D}^{2}, with a finite radius $R<\infty$ and the boundary condition $u(R)=0$, is the axially symmetric solution (see above) where all $z_{i}=0, \forall i$.

Approximate solution for large disc

Assume a large disc and consider:

$$
\begin{equation*}
u=\frac{R^{2}-|z|^{2}}{4}+\frac{1}{2} \sum_{i=1}^{N} \log \frac{\left|z-z_{i}\right|^{2}}{R^{2}} \tag{57}
\end{equation*}
$$

then u at the boundary reads
$u(|z|=R)=\frac{1}{2} \sum_{i=1}^{N} \log \left|\frac{z}{|z|}-\frac{z_{i}}{R}\right|^{2} \simeq-\frac{1}{2} \sum_{i=1}^{N}\left[\frac{z_{i}|z|}{R z}+\frac{\bar{z}_{i}|z|}{R \bar{z}}+\mathcal{O}\left(\frac{\left|z_{i}\right|^{2}}{R^{2}}\right)\right]$,
which becomes small for $R \gg\left|z_{i}\right|, \forall i$.

Toy model for Bradlow vortex

$$
\begin{align*}
& E= \int_{M_{0}} d^{2} x \Omega_{0}\left\{\frac{1}{2 e^{2} \Omega_{0}^{2}} F_{12}^{2}+\Omega_{0}^{-1}\left|D_{a} \phi\right|^{2}+\Omega_{0}^{-1}|\phi|^{2} F_{12}+\frac{1}{2} e^{2} v^{4}\right\} \\
&=\int_{M_{0}} d^{2} x \Omega_{0}\left\{\frac{1}{2 e^{2}}\left(\Omega_{0}^{-1} F_{12}+e^{2} v^{2}\right)^{2}+\Omega_{0}^{-1}\left|D_{1} \phi+i D_{2} \phi\right|^{2}\right. \\
&\left.-i \Omega_{0}^{-1} \epsilon^{a b} \partial_{a}\left(\bar{\phi} D_{b} \phi\right)\right\} \\
&-v^{2} \int_{M_{0}} d^{2} x F_{12}, \tag{59}
\end{align*}
$$

BPS-equation:

$$
\begin{align*}
D_{1} \phi+i D_{2} \phi & \equiv 2 D_{\bar{z}} \phi=0, \tag{60}\\
-\frac{1}{\Omega_{0}} F_{12} & =m^{2}, \tag{61}
\end{align*}
$$

Total energy:

$$
\begin{equation*}
E=v^{2} m^{2} A_{0}=e^{2} v^{4} A_{0}=2 \Lambda A_{0} \tag{62}
\end{equation*}
$$

Boundary term for the disc solution

$$
\begin{align*}
& -i \int_{D} d^{2} x \epsilon^{a b} \partial_{a}\left(\bar{\phi} D_{b} \phi\right)=2 \int_{D} d^{2} x \partial_{\bar{z}}\left(e^{2 u} \partial_{z} u\right) \\
& =-i \oint_{\partial D} d z e^{\frac{R^{2}-|z|^{2}}{2}} \prod_{j=1}^{N} \frac{\left|z-z_{j}\right|^{2}}{R^{2}}\left(-\frac{\bar{z}}{4}+\sum_{i=1}^{N} \frac{1}{2\left(z-z_{i}\right)}\right) \tag{63}
\end{align*}
$$

is in general complicated;
for $N=1$, it simplifies:

$$
\begin{equation*}
2 \pi\left[\left(1+\frac{\left|z_{1}\right|^{2}}{R^{2}}\right)\left(-\frac{R^{2}}{4}+\frac{1}{2}\right)-\frac{\left|z_{1}\right|^{2}}{2 R^{2}}\right]=-\frac{\pi\left|z_{1}\right|^{2}}{2} \tag{64}
\end{equation*}
$$

which can be seen to vanish for $z_{i}=0 \forall i$.
The negative sign can be interpreted as the boundary pulling in the vortices and the symmetric configuration being marginally unstable.
For axial symmetry and general N :

$$
\begin{equation*}
-i \oint_{\partial D} d z\left(-\frac{R^{2}}{4 z}+\frac{N}{2 z}\right)=2 \pi\left(-\frac{R^{2}}{4}+\frac{N}{2}\right)=0 \tag{65}
\end{equation*}
$$

bv the generalized Bradlow bound.

So for nonconstant background curvature..

Nontrivial backgrounds

Let us consider metrics of the form (for simplicity):

$$
\begin{equation*}
d s^{2}=d t^{2}-\Omega_{0}\left(|z|^{2}\right) d z d \bar{z}, \tag{66}
\end{equation*}
$$

Formal solution:

$$
\begin{equation*}
u=u_{0}-F\left(|z|^{2}\right)+\frac{1}{2} \sum_{i=1}^{N} \log \left|z-z_{i}\right|^{2}+g(z)+\overline{g(z)} \tag{67}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla^{2} F=\Omega_{0} \tag{68}
\end{equation*}
$$

Axial symmetry and $u(R)=0$ yields

$$
\begin{equation*}
u=F\left(R^{2}\right)-F\left(|z|^{2}\right)+\frac{N}{2} \log \frac{|z|^{2}}{R^{2}} . \tag{6}
\end{equation*}
$$

A class of metrics

Consider:

$$
\begin{equation*}
d s^{2}=d t^{2}-\kappa^{-1}\left(1 \pm|z|^{2 k}\right)^{\ell} d z d \bar{z} \tag{70}
\end{equation*}
$$

with $k \in \mathbb{Z}_{>0}, \ell \in \mathbb{Z}, \kappa \in \mathbb{R}_{>0}$.
Gaussian background curvature:

$$
\begin{equation*}
K_{0}=-\frac{1}{2 \Omega_{0}} \nabla^{2} \log \Omega_{0}=\mp \frac{2 \kappa \ell k^{2}|z|^{2 k-2}}{\left(1 \pm|z|^{2 k}\right)^{\ell+2}} \tag{71}
\end{equation*}
$$

is indeed in general nonvanishing.
Special cases: constant curvature cases: $k=1$ and $\ell=-2$: upper sign is S^{2} and lower sign is \mathbb{H}^{2}.
Analytic solution:

$$
\begin{equation*}
F^{(\ell, k)}=\frac{|z|^{2}}{4 \kappa}{ }_{3} F_{2}\left[k^{-1},-\ell, k^{-1} ; 1+k^{-1}, 1+k^{-1} ; \mp|z|^{2 k}\right] \tag{72}
\end{equation*}
$$

where ${ }_{3} F_{2}$ is a hypergeometric function.

Checks

As a good check, let us first consider $\ell=-2$ and $k=1$ for which the Gaussian curvature is constant:

$$
\begin{equation*}
F^{(-2,1)}= \pm \frac{1}{4 \kappa} \log \left(1 \pm|z|^{2}\right) \tag{73}
\end{equation*}
$$

Another check is $\ell=0$

$$
\begin{equation*}
F^{(0, k)}=\frac{|z|^{2}}{4 \kappa} \tag{74}
\end{equation*}
$$

i.e. flat disc

Other solutions

Other families of solutions that can be written as fractions are, for $\ell=1$:

$$
\begin{equation*}
\kappa F^{(1, k)}=\frac{|z|^{2}}{4} \pm \frac{|z|^{2 k+2}}{4(1+k)^{2}}, \tag{75}
\end{equation*}
$$

and for $\ell=2$:

$$
\begin{equation*}
\kappa F^{(2, k)}=\frac{|z|^{2}}{4} \pm \frac{|z|^{2 k+2}}{2(1+k)^{2}}+\frac{|z|^{4 k+2}}{4(1+2 k)^{2}}, \tag{76}
\end{equation*}
$$

and for generic $\ell \geq 1$:

$$
\begin{equation*}
F^{(\ell \geq 1, k)}=\frac{|z|^{2}}{4 \kappa} \sum_{p=0}^{\ell}\binom{\ell}{p} \frac{(\pm 1)^{p}|z|^{2 p k}}{(1+p k)^{2}} \tag{77}
\end{equation*}
$$

Finally, for $\ell=-1$ we can write the solution as

$$
\begin{equation*}
F^{(-1, k)}=\frac{|z|^{2}}{4 \kappa k^{2}} \Phi\left[\mp|z|^{2 k}, 2, k^{-1}\right]=\frac{|z|^{2}}{2 \kappa} \sum_{p=0}^{\infty} \frac{(\pm 1)^{p}|z|^{2 p k}}{(1+p k)^{2}} \tag{78}
\end{equation*}
$$

where Φ is the Hurwitz-Lerch transcendent.

Flux matching

Using the generalized Bradlow bound:

$$
\begin{equation*}
2 \pi N=\int_{M_{0}} d^{2} x \Omega_{0}=A_{0}, \tag{79}
\end{equation*}
$$

For the metrics:

$$
\begin{equation*}
A_{0}^{(\ell, k)}=\frac{2 \pi}{\kappa} \int_{0}^{R} d r r\left(1 \pm r^{2 k}\right)^{\ell}=\frac{\pi R^{2}}{\kappa}{ }_{2} F_{1}\left[k^{-1},-\ell ; 1+k^{-1} ; \mp R^{2 k}\right] \tag{80}
\end{equation*}
$$

As a consistency check, we can set $\ell=0$

$$
\begin{equation*}
A_{0}^{(0, k)}=\frac{\pi R^{2}}{\kappa}, \tag{81}
\end{equation*}
$$

for flat disc, \mathbb{D}^{2}.

Flux matching

We can again simplify the hypergeometric function in cases of positive ℓ; in particular for $\ell=1$:

$$
\begin{equation*}
A_{0}^{(1, k)}=\frac{\pi R^{2}}{\kappa}\left(1 \pm \frac{R^{2 k}}{1+k}\right) \tag{82}
\end{equation*}
$$

and for $\ell=2$:

$$
\begin{equation*}
A_{0}^{(2, k)}=\frac{\pi R^{2}}{\kappa}\left(1 \pm \frac{2 R^{2 k}}{1+k}+\frac{R^{4 k}}{1+2 k}\right) \tag{83}
\end{equation*}
$$

and for generic $\ell \geq 1$:

$$
\begin{equation*}
A_{0}^{(\ell, k)}=\frac{\pi R^{2}}{\kappa} \sum_{p=0}^{\ell}\binom{\ell}{p} \frac{(\pm 1)^{p} R^{2 p k}}{1+p k} \tag{84}
\end{equation*}
$$

Flux matching

Let us consider the lower sign with the radius $R=1-\epsilon$, where ϵ is an infinitesimal real number. In this case, we can expand the Gaussian hypergeometric function to get

$$
\begin{equation*}
A_{0}^{(\ell, k)}=-\frac{\pi^{2} R^{2} \csc (\pi \ell) \Gamma\left(1+k^{-1}\right)}{\kappa \Gamma(-\ell) \Gamma\left(1+k^{-1}+\ell\right)}(1+2 \epsilon)+\epsilon^{\ell}\left(-\frac{2^{1+\ell} k^{\ell} \pi r^{2}}{\kappa(1+\ell)} \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right) \tag{85}
\end{equation*}
$$

However, for $\ell \geq 0$, the area renders finite and as a few examples we get for $R=1$

$$
\begin{align*}
& A_{0}^{(0, k)}<\frac{\pi}{\kappa} \tag{86}\\
& A_{0}^{(1, k)}<\frac{\pi}{\kappa} \frac{\Gamma\left(1+k^{-1}\right)}{\Gamma\left(2+k^{-1}\right)} \tag{87}\\
& A_{0}^{(2, k)}<\frac{2 \pi}{\kappa} \frac{\Gamma\left(1+k^{-1}\right)}{\Gamma\left(3+k^{-1}\right)}, \tag{88}
\end{align*}
$$

and for general $\ell \geq 0$:

$$
\begin{equation*}
A_{0}^{(\ell \geq 0, k)}<\frac{\ell!\pi}{\kappa} \frac{\Gamma\left(1+k^{-1}\right)}{\Gamma\left(\ell+1+k^{-1}\right)} \tag{89}
\end{equation*}
$$

Flux matching

Let us consider $\ell=-2$, for which we get

$$
\begin{equation*}
A_{0}^{(-2, k)}=\left(1-\frac{1}{k}\right) \frac{\pi}{\kappa} \Gamma\left(1+\frac{1}{k}\right) \Gamma\left(1-\frac{1}{k}\right)=\frac{k-1}{k^{2}} \pi^{2} \csc \left(\frac{\pi}{k}\right) . \tag{90}
\end{equation*}
$$

This area is maximal for the two limits: $k=1$ and $k \rightarrow \infty$: both yielding

$$
\begin{equation*}
A_{0}^{(-2,1)}=A^{(-2, \infty)}=\frac{\pi}{\kappa}, \tag{91}
\end{equation*}
$$

Thanks！ありがとう！谢谢！Merci！Tak！Danke！Tack！ Grazie！

Happy birthday Ken！！誕生日おめでとう小西さん！！

