Results – Part 1 Simplified vessel model Undamped (no isolators)

Tiziano Baroncelli Structural Engineer UoM

1° analysis: general static analysis – vertical loads only

• Von Mises Stress

σ_{vM,max} ~ 5 Mpa

1° analysis: General Static Analysis – vertical loads only

• Total displacement

- Waveform data from *«Blast induced vibration monitoring and waveform analysis» by L.W. Armstrong*
- Wave form type: gold mine blast

- Waveform data from *«Blast induced vibration monitoring and waveform analysis» by L.W. Armstrong*
- Wave form type: gold mine blast

- Waveform data from *«Blast induced vibration monitoring and waveform analysis» by L.W. Armstrong*
- Wave form type: gold mine blast

1° analysis: Modal Eigenvalue Analysis

- Simplified vessel model: no torospherical dished end
- Dynamic implicit performed following modal eigenvalue analysis

Vibrational mode 1 – Torsional f = 2.48 Hz, eigenvalue = 243.3

Vibrational mode 2 – Flexural f = 19.88 Hz, eigenvalue = 15607

• Support system stress history:

• Support system stress history:

LEG 3 σ_{max,V.M.} ~ 27 Mpa

• Ux displacement time history (radial)

Ux,top displacement Ux,max ~ 0.85 mm Ux,bot displacement Ux,max ~ 0.65 mm

• Ux displacement time history (radial)

Ux relative displacement = Ux,top(t) – Ux,bot(t); Ux,max ~ 0.4 mm

• Uz displacement time history (transverse)

Ux,top displacement Ux,max ~ 0.8 mm Ux,bot displacement Ux,max ~ 0.6 mm

• Uz displacement time history (transverse)

Ux relative displacement = Ux,top(t) – Ux,bot(t); Ux,max ~ 0.4 mm

• Uy displacement time history (vertical)

Ux,top displacement Ux,max ~ 0.75 mm Ux,bot displacement Ux,max ~ 0.7 mm

• Uy displacement time history (vertical)

Ux relative displacement = Ux,top(t) – Ux,bot(t); Ux,max ~ 0.25 mm

• Vx total base shear time history

Vx – base shear Vx,max ~ 85 kN

- 1° analysis: Dynamic Implicit Blast in X,Y,Z direction
- PMT along X, ACCELERATION in x direction

- 1° analysis: Dynamic Implicit Blast in X,Y,Z direction
- PMT along X, ACCELERATION in x direction

Acceleration

-4

1.0

2.5

Time

3.0

3.5

A1 PI: vessel body-1 N: 64 NSET PMT1.centre

4.0

2.0

1.5

- 1° analysis: Dynamic Implicit Blast in X,Y,Z direction
- PMT along Z, ACCELERATION in x direction

- 1° analysis: Dynamic Implicit Blast in X,Y,Z direction
- PMT along Z, ACCELERATION in x direction

A1 PI: vessel body-1 N: 2747 NSET PMT2,centre

Results – Part 2 Simplified vessel model Isolated model

Tiziano Baroncelli Structural Engineer UoM

Concept: model vibration isolation through discrete (1D) connectors – elastic behaviour

Analysis with High Damping Rubber Bearings (HDRB) – HDS (soft bearings)

Legenda | Legend

HDS (High Damping Soft) G=0,4N/mm2 - E=10%. HDN (High Damping Normal) G=0.8N/mm2 - E=10% HDH (High Damping Hard) G=1.4N/mm2 - E=16%

Dati tecnici | Technical Data

V____ Carico verticale massimo allo SLU con spostamento nullo Max vertical load at ULS (Ultimate Limit State) with zero displacement V_{utem} Carico verticale in condizione sismica Vertical load under seismic conditions K Rigidezza orizzontale Horizontal stiffness S____ Spostamento di progetto Design displacement E Smorzamento viscoso della gomma Viscous damping of the rubber

Dati geometrici | Geometrical Data D Diametro elastomero Diameter of the elastomer H Altezza totale isolatore Overall height of the isolator te Spessore elastomero Thickness of the elastomer B Dimensione d'incombro dell'isolatore

Overall dimensions (space requirement)

Distance between centers of anchorages

of the isolator (in two directions)

(nelle due direzioni)

(in two directions)

B = D + 50

 $Z = 0.75 \times B$

- Typical frequencies for blast waves: 10-50 Hz
- Natural vibrational frequency: 2.6 Hz
- We impose T1 = vibration period of 1° mode = 1 s(f=1 Hz)
- Even with the smallest available HDS damper we obtain:

T1 = $2\pi\omega \sim 0.85$ s, f = 1.17 Hz

HDS	Vmax	Vsism	Kr	HDN	Vmax	Vsism	Kr	нон	Vmax	Vsism	Kr	н	te	Smax
	[kN]	[kN]	[kN/mm]		[kN]	[kN]	[kN/mm]	поп	[kN]	[kN]	[kN/mm]	(mm)	[mm]	[mm]
Diametro elastomero / Elastomer diameter D = 300mm														
HDS300X48	800	650	0,59	HDN300X48	1650	1400	1,18	HDH300X48	2900	2500	2,06	132	48	100
HDS300X54	800	600	0,52	HDN300X54	1700	1200	1,05	HDH300X54	3050	2100	1,83	140	54	110
HDS300X60	800	520	0,47	HDN300X60	1750	1000	0,94	HDH300X60	3100	1800	1,65	148	60	120
HDS300X66	750	430	0,43	HDN300X66	1550	850	0,86	HDH300X66	2750	1500	1,50	156	66	140
HDS300X72	700	370	0,39	HDN300X72	1400	750	0,79	HDH300X72	2500	1300	1,37	164	72	150
HDS300X78	650	330	0,36	HDN300X78	1300	650	0,72	HDH300X78	2250	1150	1,27	172	78	160
HDS300X84	550	290	0,34	HDN300X84	1150	550	0,67	HDH300X84	1050	1000	1,18	180	84	170
HDS300X90	550	250	0,31	HDN300X90	1100	500	0,63	HDH300X90	1900	900	1,10	188	90	180
HDS300X96	500	210	0,29	HDN300X96	1000	400	0,59	HDH300X96	1750	750	1,03	196	96	200

Analysis with High Damping Rubber Bearings (HDRB) – HDS (soft bearings)

- Equivalent horizontal stiffness: Kr = 0.29 kN/mm
- Minimum number of isolators = 3 -> Kr,tot = 0.87 kN/mm

 Application of linear connectors to column base to simulate HDS isolators

2° analysis: Modal Eigenvalue Analysis

• From the theory of harmonic oscillators: what we expect is

$$T_1^* = 2\pi\omega = 2\pi\sqrt{m/K_{H,tot}} \cong 1.17 s$$

Which is the oscillation period of the first vibration mode of the structure.

• The corresponding fundamental frequency is:

$$f_1^* = \frac{1}{T_1^*} = 1.162 \, Hz$$

2° analysis: Modal Eigenvalue Analysis

Results of modal-eigenvalue analysis: exactly what we expect:
Mode 1 = Mode 2 (translational along X,Z directions)

Vibrational mode 1 – Tranlsational f = 1.17 Hz, eigenvalue = 54.4 Vibrational mode 2 – Flexural f = 1.17 Hz, eigenvalue = 54.4

2° analysis: dynamic implicit Blast in X,Y,Z directions -damped

• Support system stress history: comparison leg1

UNDAMPED

σ_{max,V.M.} ~ 27 Mpa

=

Total base shear Vx (X dir.) - comparison

UNDAMPED

Vx,max ~ 85 kN

2° analysis: dynamic implicit Blast in X,Y,Z directions -damped

ODB: esplicitLA6_step3_dynimp[_x.odb_Abequs/Standard 614______Kapr 2014;21:36 ora solare Australia orient. 2017 Step: dynamic insolici______ instance: 205; Step Time = 3.000

4.0

_temp_45

3.5

=

1.0

1.5

2.0

2.5

Time

3.0

Conclusions:

The results seem to be identical:

This is probably due to the fact that the BC are imposed (over time) in the same part of the model as the isolators: so the structure is forced to move in the same way.

Explicit modelling of a platform will follow – should solve the issue.

Model will be cross checked to ensure consistency;

Different isolators will be modelled to check structural response.

Following steps: refining the model general modelling:

• Apply these simulations to possible shielding structure: qualitative assessment of shielding behaviour under horizontal actions.

SPECIFIC MODELLING:

- Response spectrum analysis VS dynamic implicit
- Take into account the non-linear behaviour of elastomeric bearings;
- Model different types of isolators different ranges of frequency;
- Real geometry of the vessel (if possible: computational cost!);