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OVERVIEW

▸ Motivation: The Atlas of Conformal Field Theories. 

▸ State-of-the-art evidence: Vector-models in general 
dimensions. 

▸ A concrete framework: Generalized Free CFTs. 

▸ Deformed GFCFTs: Generalized Wilson-Fisher like critical 
points. 

▸ Examples: multi critical points, O(N) models, multiple 
deformations. 

▸ Outlook



MOTIVATION: THE ATLAS OF CONFORMAL FIELD THEORIES
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STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ Spectrum of normal free CFTs in any d: 

▸ Interacting CFTs (Large-N Vector Models)

Scalar � : �2,�4, ...Tµ⌫ ...
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STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ The “gap equation” implies: 

▸ A critical point is reached when           can kill the UV 
divergence, allowing a regular                 limit i.e. in            . 

▸ An equivalent, and suggestive form of the gap eq. is 

for some “RG” parameter                  .

: �a�a :

N
⇡ 1

g
=

�(1� d
2 )

2d⇡d/2
�

d
2�1 + d⇤

d�2
2F1

✓
1,

d

2
;
d

2
+ 1;� �

⇤2

◆

1/g

⇤ ! 1 d = 3

⇤6�d�(t)
: �a�a :

N
= �2

t = ⇤2/�

 

UV cutoff

For            this has a finite number of poles as            .d > 6 t ! 0



STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸     and               can be calibrated to coincide at           . They 
have a relative “weight” in           . 

▸ A similar story holds for      fermions. 

▸ The role of       and       was studied in an ancient version of 
the conformal bootstrap, that allowed a scan in    . [T.P. (93-94)] 

▸ Scalar and fermionic CFTs were studied for general 
dimensions, and results analytic in     were obtained.         
[See also related work by A. M. Vasiliev et. al (80s) and J. Gracey. (90-93)]
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STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ In contrast to CFTs with gauge fields, all critical quantities 
are proportional to the anomalous dimensions of    and    . �  
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STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ The dimensions of the σ-fields are
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STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ However, the “central charges” are given by 

▸ Quite remarkably for even dimensions, they are non zero:
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[The fermonic results first appeared in Diab et. al. arXiv:1601.07198]



STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ Moreover, the ratios                 and                are integersc̃T (d)
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STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ An atlas of Vector Model CFTs for all dimensions
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STATE-OF-THE-ART EVIDENCE: VECTOR MODELS IN GENERAL DIMENSIONS

▸ We suggest the existence of free CFTs -  the σCFTs - for all even 
dimensions             and             that are decoupled from the 
normal free CFTs for special dimensions: d=even.  

▸ They go beyond the older notion of Generalized Free CFTs [e.g  

Papadodimas & El Showk  arXiv:1101.4163]  that they are non-unitary since  

▸ The can be described by higher-derivative Lagrangians 

▸ They are intimately and universally related to the normal free 
CFTs:              and               are universal marginal couplings.
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ We studied these CFTs with just the help of the OPE unveiling   
a rich and intriguing spectrum [T.P et. al.  arXiv:1604:07310] 

▸ An elementary scalar conformal field has 2-pt function. 

▸ It also satisfies the “elementariness” condition  

▸ For      we had obtained [T.P.  hep-th:9410093].   
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ GFCFTs are fully determined by the 2-pt functions of their 
elementary fields. E.g. the 4-pt function is 

▸ The conformal OPE statement is
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ We wish to be totally agnostic regarding the spectrum. 

▸ The generic CPW for a scalar is 

▸ We learn that if       is nor related to    , the CPW entails a 
natural          expansion
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ A similar results holds for all higher-spin CPWs 

▸ The free 4-pt function involved just the single power                   
but infinite powers of    .  

▸ In fact it holds
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ But the CPWs contain an infinity of additional terms. 
Where are they? 

▸ Terms of order             , without      factors arise from the 
scalar and spin-2 CPWs. They yield 

▸ This gives 

▸ To make it vanish one option is to require
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ This implies that the higher-spin fields have dimensions 

We find the normal free CFT whose 4-pt function is 
constructed just from higher-spin conserved currents. 

▸ When                           we have some other options to “kill” 
the unwanted term from the OPE:  

▸ An intriguing one is to fix        and take the               limit. 
This produces the same OPE as the normal free CFT. 

▸ This is reminiscent of a similar limit in spin-glass systems. It 
is also consistent with the perception that                is the 
mean-field theory limit.
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ The other way to deal with                          is to enhance the 
OPE. For example, the             term could be cancelled by 
the CPW of the scalar 
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ But then, the bag of Aeolus opens up and an infinite 
number of higher-twist higher-spin towers need to be 
included in the unitary case when                         .  

▸ To actually evaluate        one can used the modern 
bootstrap, or even the “old” skeleton expansion. In both 
cases one departs from free CFTs. 

▸ However, when                                                         the twist 
towers terminate for even    . But this requires that we 
enter into the realm of non-unitary CFTs.
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ For the 4-pt functions of      and      we find: 

This means that             is a ghost for                        . 

▸ Morever, for                          it becomes null, despite the fact 
that its 3-pt function with the σ’s is non-zero. 

▸ What happens is that because the e.o.m. is high-derivative, 
one can construct a tower of higher-twist conformal 
primaries, until the HS current towers is reached. 
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A CONCRETE FRAMEWORK: GENERALIZED FREE CFTS

▸ A caricature of the OPE in free σCFTs 

▸ For e.g.      all fields with spins                               contribute 
to the e.m. tensor.                     
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DEFORMED GFCFTS: GENERALIZED WILSON-FISHER LIKE CRITICAL POINTS.

▸ Going over to non-unitary Generalized Free CFTs gives an 
unexpected bonus: the analytic structure of the free OPE 
becomes interesting.  

▸ Up to an overall factor we have (I now switch to the 
“modern” notation..) 

▸ This contains terms like         that can be expanded as 

Conformal block
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DEFORMED GFCFTS: GENERALIZED WILSON-FISHER LIKE CRITICAL POINTS.

▸ The OPE coefficients are calculated as 

▸   

▸ with 

▸ Setting                                   these have poles at
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DEFORMED GFCFTS: GENERALIZED WILSON-FISHER LIKE CRITICAL POINTS.

▸ Since the expanded function is regular, the poles must 
cancel. 

▸ This can be done by conformal blocks like                              
that must be present in the OPE. 

▸ Indeed,  generic conformal blocks have poles for certain 
values of dimensions and spin [Kos et. al.  arXiv:1406.4858] 

▸ Notice that          and         are different. 
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DEFORMED GFCFTS: GENERALIZED WILSON-FISHER LIKE CRITICAL POINTS.

▸ The deep reason for this cancellation is the fact that the 
conformal blocks with  with        and          have the same 
eigenvalues wrt to the quadratic and quartic Casimirs. 
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DEFORMED GFCFTS: GENERALIZED WILSON-FISHER LIKE CRITICAL POINTS.

▸ Solving the Casimir equations, we get three series of poles 

▸          are the poles found in [Kos et. al.  arXiv:1406.4858] 

▸          are the poles of our OPE coefficients. 

▸ Then, schematically it holds
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DEFORMED GFCFTS: GENERALIZED WILSON-FISHER LIKE CRITICAL POINTS.

▸ We learn that the spectrum of Generalized Free CFTs is actually 
very rich. 

▸ Nevertheless, their 4pt function look very simple, due to some 
highly nontrivial cancellations. 

▸ In CFT language (Zamolodchikov), a descendant becomes a null 
state, and it is cancelled out. 

▸ But in an interacting CFT descendants may become quasi 
primaries. Then it is tempting to try to “guess” the deformed 4pt 
function by matching it smoothly to the known free 4pt function as 
[Rychkov & Tan, 1505.00963, Nakayama unpublished notes] 
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ Example at                   . Consider the normal free CFT d = 3� ✏
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ The conformal block of the interacting theory has a pole as 

▸ This should reproduce the free OPE, hence 

▸ This means that                   and we find
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ If we next consider 

▸ The interacting OPE has now the pole 
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ But        is not in the free OPE, hence we must have                   
leading to 

▸ One can do a similar analysis for other correlation 
functions obtaining the known results 
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ We can play this game for all non-unitary GFCFTs with  

▸ We consider OPEs of the form 

▸ In the interacting theory, the OPE coefficients are 
deformed by terms that vanish when  

▸ Moreover, the operator               becomes a descendant 
and it should drop out of the spectrum. 

▸ Essentially, the above operator becomes the now regular 
part of the conformal block of 
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ The generic conformal block of        has a singularity when 

▸ Hence, the above mechanism (multiplet recombination) 
happens when  

▸ This is equivalent to having a marginal e.o.m. of the form
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ Our results for the anomalous dimensions are: 

▸ and for the OPE coefficients
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ We can study O(N) models the same way…. 

▸ We can also study models with marginal deformations (like 
our σCFTs before in                  ) where the theory is 
deformed by         and          (we also assume O(N) 
symmetry). 

▸ Here                                     becomes a descendant of    . 

▸ However the following remains a primary.
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EXAMPLES: MULTI CRITICAL POINTS, O(N) MODELS, MULTIPLE DEFORMATIONS

▸ We obtain the following results that are consistent with the 
complicated loop calculations of [Giombi et. al. arXiv: 1404.1094]
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= 0



OUTLOOK

▸ Generalized Free CFTs provide the backbone structure in the web of CFTs 
in any dimension. 

▸ They have a rich analytic structure.  

▸ They provide crucial information regarding the theory space near them. 

▸ Using this information, we have confirmed all known results for the leading 
order anomalous dimensions at multicritical points in d=3,4,6 and and also 
2<d<3 dimensions, including those for theories with O(N) symmetry. 

▸ We have new results for non-unitary theories in d>6. 

▸ The holographic duals? 

▸ The d—> infinity limit? 

▸ The relationship to real systems with long-range interactions?


