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What’s this talk about?

  Interest from Beyond the SM for Strong dynamics:  
             ☛ provides a solution to the hierarchy problem 

  What are the model-building requirements ? 

  What are the special properties of the new strong dynamics ?   

                    (beyond QCD-like theories) 

  How could lattice help ? 

  Which could be potential discoveries at the LHC ?



After the Higgs discovery…

We have the theory, 
but now we’d like to understand why it is like it is

… we’ve moved to a new era in particle physics:



Is it a special point? More symmetrical?

In particular, we’d like to understand:

Not in the SM!

MP-MP
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Why the EW-scale is so close to zero ? 
(as compared to MP)

x 1036



Related to the problem of having massless scalars:
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Explains why ΛQCD << MP and the origin of most hadron masses

QCD as an inspiration: pion mass not a fundamental quantity

Explanation for the smallness of the EW-scale
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Composite Higgs

Solves the problem in one shot! 
(in supersymmetry we still need strong dynamics to break susy at some low-scale)

QCD as an inspiration:

CFT

More generically:  we need a 
theory quasi-conformal

(CFT4 ↔ AdS5)

Explanation for the smallness of the EW-scale



Beyond the lamp-post:

perturbation 
theory

Strong  
dynamics

Dealing with strong dynamics….
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We can well-define 
the UV theory:
gauge-symmetry
+ matter content

Questions posed 
to strong dynamics
can be addressed 

by an AdS5

…but we do 
not know the 

UV theory

UV
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IR

…but we do 
not know the 
predictions
at the IR

Lattice can help here

e.g. SU(N) + NF qR,L Holography

predictive theories !

Dealing with strong dynamics….

string theory can help here



Inspiration from QCD and holography has allowed to come up  
with a plausible scenario of strong dynamics at the TeV 

Nevertheless, it has provided a characterization of  
        the expected signals (needed to be searched for)

(as in the 60’, experiments must be driving the field)

But not a well-defined & complete model !
                                (like the MSSM in the susy approach)



Attempt  I
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�

GeV

130 MeV

Technicolor

TeV

QCD

SU(2)L ⇥ SU(2)R
SU(2)V

The strong dynamics breaks the EW-symmetry

SU(2)L ⇥ SU(2)R
SU(2)V

ρ

TC-π

TC-ρ

(Nature likes to be original!)



But no light “Higgs” predicted!
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…although recent lattice analysis 
suggest that a light scalar can emerge 

if more fermions are added

(Nature likes to be original!)
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The Higgs, the lightest of the new strong resonances, 
as pions in QCD: they are Pseudo-Goldstone Bosons (PGB)

�

GeV

130 MeV

Composite Higgs

TeV

125 GeV h

QCD

SU(2)L ⇥ SU(2)R
SU(2)V

Important requirement: mW ' cos ✓WmZ

☛ arising from the symmetry-breaking G➔H

H must contain the SM group and an extra custodial SU(2)

The strong dynamics does not break the EW-symmetry

G/H



from arXiv:1401.2457 

G H C NG rH = rSU(2)⇥SU(2) (rSU(2)⇥U(1)) Ref.
SO(5) SO(4) X 4 4 = (2,2) [11]

SU(3) ⇥ U(1) SU(2) ⇥ U(1) 5 2±1/2 + 10 [10, 35]
SU(4) Sp(4) X 5 5 = (1,1) + (2,2) [29, 47, 64]
SU(4) [SU(2)]2 ⇥ U(1) X⇤ 8 (2,2)±2 = 2 · (2,2) [65]
SO(7) SO(6) X 6 6 = 2 · (1,1) + (2,2) �
SO(7) G2 X⇤ 7 7 = (1,3) + (2,2) [66]
SO(7) SO(5) ⇥ U(1) X⇤ 10 100 = (3,1) + (1,3) + (2,2) �
SO(7) [SU(2)]3 X⇤ 12 (2,2,3) = 3 · (2,2) �
Sp(6) Sp(4) ⇥ SU(2) X 8 (4,2) = 2 · (2,2) [65]
SU(5) SU(4) ⇥ U(1) X⇤ 8 4�5 + 4̄+5 = 2 · (2,2) [67]
SU(5) SO(5) X⇤ 14 14 = (3,3) + (2,2) + (1,1) [9, 47, 49]
SO(8) SO(7) X 7 7 = 3 · (1,1) + (2,2) �
SO(9) SO(8) X 8 8 = 2 · (2,2) [67]
SO(9) SO(5) ⇥ SO(4) X⇤ 20 (5,4) = (2,2) + (1 + 3,1 + 3) [34]

[SU(3)]2 SU(3) 8 8 = 10 + 2±1/2 + 30 [8]
[SO(5)]2 SO(5) X⇤ 10 10 = (1,3) + (3,1) + (2,2) [32]

SU(4) ⇥ U(1) SU(3) ⇥ U(1) 7 3�1/3 + 3̄+1/3 + 10 = 3 · 10 + 2±1/2 [35, 41]
SU(6) Sp(6) X⇤ 14 14 = 2 · (2,2) + (1,3) + 3 · (1,1) [30, 47]

[SO(6)]2 SO(6) X⇤ 15 15 = (1,1) + 2 · (2,2) + (3,1) + (1,3) [36]

Table 1: Symmetry breaking patterns G ! H for Lie groups. The third column denotes whether the
breaking pattern incorporates custodial symmetry. The fourth column gives the dimension NG of the coset,
while the fifth contains the representations of the GB’s under H and SO(4) ⇠= SU(2)L ⇥ SU(2)R (or simply
SU(2)L ⇥U(1)Y if there is no custodial symmetry). In case of more than two SU(2)’s in H and several di↵erent
possible decompositions we quote the one with largest number of bi-doublets.

in turn contains the previous SU(2)L ⇥U(1)Y ). This ensures that the actual custodial SU(2)C

is left unbroken after the Higgs gets its VEV, avoiding excessively large contributions to the

T -parameter of order ⇠ v2/f 2. In this case the coset must contain a 4-plet representation of

SO(4) (that is a 4 = (2,2) of SU(2)L ⇥SU(2)R). In Table 1 we have introduced the column C

to mark the cases with custodial symmetry H � SU(2) ⇥ SU(2), with X, while for the cases

with only H � SU(2) ⇥ U(1) this column is left blank. Notice however, that if there are GB’s

in addition to the single Higgs which are charged under SU(2)⇥SU(2), such as extra doublets

or triplets (under either of the two SU(2)’s), the SU(2)C does not generically remain unbroken

when all the scalars get a VEV. In such a case SO(4) is not large enough, and extra SU(2)’s

or extra discrete symmetries are required to ensure an unbroken custodial symmetry. When

there are additional SU(2)’s, misaligned VEV’s can be allowed if a large enough “custodial”

symmetry is present for SU(2)C to remain unbroken in the vacuum, while for the case with dis-

crete symmetries, the extra parities must enforce vanishing VEV’s for the additional scalars.
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Example:     Just take QCD (with two flavors)  
       replace  SU(3)c by SU(2)c

Galloway, Evans, Luty, Tacchi 10

5 Goldstones = 
                      Higgs doublet + singlet    

 L, 
c
R

4 = 2L + 2RGlobal symmetry:  SU(2)L ⊗ SU(2)R

SU(3)c SU(2)c

SU(4)~SO(6) 

SU(2)V

3 Golstones = π⁰,π⁺, π⁻

SP(4)~SO(5)

<ψψ>≠0 <ψψ>≠0

since  2~2:
_



Fermion masses



models with minimal flavor violation (MFV) [12]. Therefore flavor bounds are easily satisfied for
⇤
IR

⇠ TeV. Nevertheless, due to the compositeness of the right-handed quarks, 4-fermion contact
interactions, as for example,

g2⇤
⇤2

IR

(ūR�µuR)2 , (1.4)

lead to large deviation in dijets distributions, pp ! jj, at high energies, and sizable production
cross sections for composite resonances in the multi-TeV mass range are predicted [13–15]. All these
e↵ects have not been observed at the LHC and severely constrain these models. Similar results can
be found in variations of these ideas with other composite SM fermions [16].

Wrapping up, composite Higgs models must address the SM flavor structure at low energies,
giving then unequivocal predictions for flavor observables. The models proposed so far seem to
clash with some experimental data. Although extra flavor and CP symmetries could be imposed,
for example in the mixing terms ✏fi , to avoid certain experimental bounds, it is unclear how
these symmetries could emerge in the model. One needs to specify the dynamics of the model to
understand whether flavor and CP symmetries can arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can avoid
these severe flavor and CP-violating constraints. The idea is to assume that the operators Ofi of
Eq. (1.1), that mediate the mixing between the SM fermions and the Higgs, get an e↵ective mass
at some energy scale ⇤fi � ⇤

IR

⇠ TeV, and then decouple from the strong sector. This implies
that Yukawa-like couplings

L
bil

⇠ f̄iOHfj , (1.5)

are generated at scales larger than ⇤
IR

, avoiding in this way sizable contributions to flavor and
CP-violating observables. The hierarchies in the fermion spectrum of the SM and the small flavor
mixing angles could be now explained by the di↵erent scales ⇤fi instead of the small ✏fi . The larger
the ⇤fi , the smaller the Yukawa coupling for fi. Without imposing any extra symmetry in the
model, we will derive by simple power-counting which are the strongest flavor and CP-violating
constraints, independently of the details of the models. We find that top-mediated processes give the
largest contribution to flavor-violating observables. These are characterized by only two operators.
One operator generates the �F = 2 processes ✏K , �MBd

and �MBs at a level close to the present
experimental constraints for ⇤

IR

⇠ few TeV. The second operator leads to flavor-violating Z-
couplings, contributing simultaneously to K ! µ+µ�, ✏0/✏, B ! (X)`` and Z ! bb̄ with a size also
close to the experimental bounds. There are also important contributions arising from the scale at
which the charm and strange masses are generated, 107 � 108 GeV, leading also to sizable e↵ects
to ✏K , and forcing dH . 2. Contributions to the neutron EDM are dominated by the top EDM,
being not far from the present experimental bound. On the other hand, in the lepton sector we find
that the dominant contribution to the electron EDM comes at the two-loop level from Barr-Zee
type diagrams [17], and is around the experimental bound, while µ ! e� is found to be very small.
Therefore these scenarios provide realistic examples where the flavor and hierarchy problem can
be dynamically solved without contradicting the present experimental data, and which near future
experiments could be able to explore. Having proposed a di↵erent origin for fermion masses, we
also analyze the expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-Technicolor
idea [18], in which masses from Eq. (1.5) were generated from an extended gauge sector, or from
integrating heavy fermions [19]. Earlier attempts along these lines were considered recently in

3

Ofi , which are the portals of the SM fermions to the strong sector, decouple at some scale ⇤fi ,
generating the Yukawa terms f̄LOHfR at that scale instead of at ⇤

IR

as in the anarchic case. The
decoupling of the operator Ofi can be due to the fact that some of the constituents of Ofi get a mass
⇠ ⇤fi , or that a dynamically generated mass-gap makes heavy all composite states created by Ofi

(those | i with h0|Ofi | i 6= 0). Using the AdS/CFT correspondence, we can easily visualize this
type of scenarios by warped extra-dimensional models with several branes, as the example shown
in Fig. 5 of Appendix A. In what follows we will estimate the flavor structure of these scenarios
without restricting to any specific UV realization.

The scale at which the Yukawa coupling for the SM fermion f = u, d, e, ... is generated is
determined by the scale ⇤f at which either OfR or OfL decouple from the strong sector. We choose
these scales following Fig. 1. This is our dynamical assumption. No further symmetries will be
imposed. Other options could also be possible, and we will consider later more economical models
with fewer scales ⇤f . Under the assumption of Fig. 1, the Yukawa structure will be the following.
Let us consider first the down-type quark sector. At the lowest scale ⇤b, we have only one pair of
operators OQL3 and ObR , to which only one linear combination of SM left-handed and right-handed
quarks can respectively mix with. We name these linear combinations the 3rd family left-handed
quark, QL3, and right-handed bottom, bR:

L(3)

lin

= ✏(3)bL
Q̄L3 OQL3 + ✏(3)bR

b̄R ObR . (2.1)

Below ⇤b, after integrating out ObR , the following Yukawa-like operator is expected to be generated

L(3)

bil

=
1

⇤dH�1

b

(✏(3)bL
Q̄L3)OH(✏(3)bR

bR) , (2.2)

where OH corresponds to the lowest-dimensional operator that at ⇤
IR

projects into the Higgs,
h0|OH |Hi 6= 0, and dH is its energy dimension. At a larger scale ⇤s � ⇤b, we have another pair
of operators OQL2 and OsR present, coupled to a di↵erent linear combination of SM fermions. By
an SU(3) rotation that does not a↵ect Eq. (2.2) we can always go to the basis where this linear
combination contains only two quarks, QL3 and QL2 (this latter is identified with the second family
left-handed quark), and similarly for the right-handed sector, bR and sR:

L(2)

lin

= (✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2) OQL2 + (✏(2)bR
bR + ✏(2)sR

sR) OsR , (2.3)

that below ⇤s, after integrating OsR , leads to

L(2)

bil

=
1

⇤dH�1

s

(✏(2)bL
Q̄L3 + ✏(2)sL

Q̄L2)OH(✏(2)bR
bR + ✏(2)sR

sR) . (2.4)

Finally, at ⇤d, after integrating OQL1 and OdR , we expect the most general form

L(1)

bil

=
1

⇤dH�1

d

(✏(1)bL
Q̄L3 + ✏(1)sL

Q̄L2 + ✏(1)dL
Q̄L1)OH(✏(1)bR

bR + ✏(1)sR
sR + ✏(1)dR

dR) . (2.5)

Now, at ⇤
IR

we identify the matrix elements of OH with those of the SM Higgs H, which implies
the replacement 3

OH ! g⇤⇤
dH�1

IR

H , (2.6)

3For simplicity we are assuming a single coupling g⇤, but in principle the couplings at the scales ⇤f could be
di↵erent.
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Suggesting an alternative possibility

1) linear-mixing:

1 Introduction

An attractive solution to the hierarchy problem is to require that the Higgs is not an elementary
particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
possibility has important implications for the theory of flavor. Contrary to models with an elemen-
tary Higgs in which the structure of Yukawa couplings can have its origin at very high energies, as
large as the Planck scale, in composite Higgs models the origin of flavor must be addressed at much
lower energies. This is because the Higgs is associated with a composite operator of the strong
sector OH whose dimension dH must be larger than one to avoid the hierarchy problem,1 implying
that f̄LOHfR has dimension larger than 4, that is to say that the Yukawa couplings are irrelevant
at low energies. Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale,
fermion masses will be too small at the electroweak scale.

Di↵erent approaches to flavor in composite Higgs models have been considered. The most
popular one is partial compositeness, in which the SM fermions fi get masses by mixing linearly
with an operator of the strong sector:

L
lin

= ✏fi f̄i Ofi . (1.1)

At the strong scale ⇤
IR

⇠ TeV, which determines the mass-gap of the model, and at which the
Higgs emerges as a composite state, the fermion Yukawa couplings are generated with a pattern

Yf ⇠ g⇤✏fi✏fj , (1.2)

where 1 < g⇤ . 4⇡ characterizes the coupling in the strong sector. The appealing feature of
these scenarios, usually called “anarchic partial compositeness” [2], is the fact that the smallness of
the mixing ✏fi can simultaneously explain the smallness of the fermion masses and mixing angles.
Nevertheless, this approach also predicts flavor-violating higher-dimensional operators of order [3]

g2⇤
16⇡2

g⇤v

⇤2

IR

✏fi✏fj f̄i�µ⌫fj gFµ⌫ ,
g2⇤
⇤2

IR

✏fi✏fj ✏fk✏fl f̄i�
µfj f̄k�µfl , (1.3)

where v ' 174 GeV. The operators in Eq. (1.3) lead for ⇤
IR

⇠ TeV to large contributions to
the electron and neutron electric dipole moment (EDM), µ ! e� and ✏K , above the experimental
bounds [4] (see also Refs. [5–8]), as shown in Table 3. Taking ⇤

IR

above the TeV is possible, but
at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks to be
fully composite [11]. If the strong sector has an accidental SU(3) flavor symmetry and CP symmetry
(something not di�cult to envisage as it occurs in QCD), the flavor bounds can be easily satisfied.
Indeed, in this case the whole flavor structure comes only from the linear mixing of the left-handed
fermions with the strong sector that must then be proportional to the SM Yukawas Yf , as in

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†
H is larger

than ⇠ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH � 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ⇠ 1 together with Dim[OHO†

H ] & 4. Being conservative, we will be considering here dH & 2.
2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of

compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g⇤, but this implies reducing the UV cuto↵ (see for example Ref. [10]).

2

 depending on the dimension of Of, we can have 
relevant or irrelevant couplings

☛ large or small mixings ϵf depending on the dimension:

�i = Dim[Ofi ]� 5/2 > 1✏fi ⇠
✓

⇤IR

⇤UV

◆�i
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dimension at weak coupling:  9/2

dimension needed at strong coupling:  5/2

II. FERRETTI’S MODEL

In Ref. [10], several requirements were put forward for a class of composite Higgs models
based on a hypercolor gauge theory as a UV completion. We begin by listing these require-
ments. The gauge group is assumed to be simple, and the dynamical symmetry breaking
pattern, G → H , to be such that

H ⊃ SU(3)color × SU(2)L × SU(2)R × U(1)X (2.1)

⊃ SU(3)color × SU(2)L × U(1)Y ,

with the SM gauge group in the last line. The group SU(2)R is the familiar custodial sym-
metry of the SM, and the hypercharge is Y = T 3

R+X . The SM Higgs doublet, with quantum
numbers (1, 2, 2)0 under SU(3)color×SU(2)L×SU(2)R×U(1)X , should be contained in the
NGB multiplet associated with the symmetry breaking G → H . In order to accommodate
a partially composite top quark [7], i.e., for the top quark to acquire its mass through lin-
ear couplings to hyperbaryons, there must exist hyperbaryons with quantum numbers that
match those of the SM quarks. This includes a set of right-handed, spin-1/2 hyperbaryons
with quantum numbers (3, 2)1/6 of the SM gauge group SU(3)color×SU(2)L×U(1)Y , which
serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.

The hypercolor model with the smallest gauge group that satisfies all these require-
ments is an SU(4) gauge theory [10]. The hyperfermion content consists of five Majorana
fermions χi, i = 1, . . . , 5, transforming in the six-dimensional two-index antisymmetric irrep
of hypercolor, which is a real representation; and three Dirac fermions ψa, a = 1, 2, 3, in
the fundamental representation. The Majorana field χ can be written in terms of a Weyl
fermion Υ as

χABi =

(

ΥABi

1
2ϵABCD ϵ (ῩCD

i )T

)

, (2.2a)

χAB
i =

1

2
ϵABCDχT

CDi C =
(

−1
2ϵ

ABCD(ΥCDi)T ϵ ῩAB
i

)

. (2.2b)

We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as

ψAa =

(

ΨAa

ϵ ¯̃ΨT
Aa

)

, ψ
A
a =

(

−(Ψ̃A
a )

T ϵ Ψ̄A
a

)

. (2.3)

We suppress spinor indices. C is the charge-conjugation matrix, ϵ = iσ2 is the two-
dimensional ϵ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)
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with quantum numbers (5, 1, 1)(0,−1) for Υ; (1, 3̄, 1)(1/3,5/3) for Ψ; and (1, 1, 3)(−1/3,5/3) for
Ψ̃.4

We assume that dynamical symmetry breaking takes place, generating a condensate
⟨χiχj⟩ ∝ δij that breaks SU(5) → SO(5). Consistent with the general considerations of
Ref. [6], the Majorana bilinear χiχj is antisymmetric on its spinor indices and symmetric
on its hypercolor indices, and so it is symmetric on its flavor indices. In addition, there is
a condensate ⟨ψaψb⟩ ∝ δab that breaks SU(3)× SU(3)′ to its diagonal subgroup, which we
identify with SU(3)color. Both condensates also break U(1)′. The unbroken group is

H = SO(5)× SU(3)color × U(1)X . (2.5)

For heuristic arguments supporting this pattern of symmetry breaking, see Refs. [6, 8]. Of
course, whether this is the actual symmetry breaking pattern is something that can be
investigated on the lattice. Indeed the symmetry breaking pattern of the Dirac fermions,
with SU(3)×SU(3)′ breaking to the diagonal SU(3) subgroup, is consistent with all known
lattice results. A first study of the real-irrep symmetry breaking pattern, in a similar theory
except with four, instead of five, Majorana fermions, has recently appeared in Ref. [16].

The effective theory at energy scales much below the hypercolor scale ΛHC thus contains
NGBs parametrizing the U(1)′ group manifold, and the cosets SU(3) × SU(3)′/SU(3)color
and SU(5)/SO(5), amounting to 1, 8 and 14 NGBs for each of these factors, respectively.
These NGBs are massless when all couplings of the hypercolor theory to the SM are turned
off. A non-trivial effective potential is induced both by the SM gauge bosons, as we briefly
review in Sec. III, and by the coupling to the third-generation quarks. The latter, which is
the main subject of this paper, will be studied in Sec. IV.

The Higgs doublet is a subset of the NGBmultiplet parametrizing the coset SU(5)/SO(5).
In more detail, the 14 NGBs corresponding to the generators in this coset are described
by a non-linear field Σ ∈ SU(5) obtained by considering fluctuations around the vacuum
⟨Σ⟩ = Σ0 = 1,

Σ = uΣ0 u
T = exp(iΠ/f)Σ0 exp(iΠ/f)

T = exp(2iΠ/f) , (2.6)

with5

Σ = ΣT ⇒ Π = ΠT . (2.7)

Under g ∈ SU(5), Σ transforms as Σ → gΣgT .
At the level of the algebra, SU(2)L × SU(2)R in Eq. (2.1) is equivalent to the SO(4) ⊂

SO(5) associated with the first four rows and columns. The explicit form of the generators
is given in the appendix. With this choice, the field Π can be written as

Π = Θ+Θ† + Φ0 + Φ+ + Φ†
+ + η , (2.8)

with Θ containing the Higgs doublet H = (H+, H0)T ,

Θ =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 −iH+/
√
2

0 0 0 0 H+/
√
2

0 0 0 0 iH0/
√
2

0 0 0 0 H0/
√
2

−iH+/
√
2 H+/

√
2 iH0/

√
2 H0/

√
2 0

⎞

⎟

⎟

⎟

⎟

⎠

. (2.9)

4 Compare Table 1 of Ref. [8].
5 Note that in Ref. [8], the notation Σ is used for the field u of Eq. (2.6).
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serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.
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At the level of the algebra, SU(2)L × SU(2)R in Eq. (2.1) is equivalent to the SO(4) ⊂

SO(5) associated with the first four rows and columns. The explicit form of the generators
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+ + η , (2.8)
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⎜

⎜

⎜

⎜

⎝
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√
2
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√
2
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√
2
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√
2

−iH+/
√
2 H+/

√
2 iH0/

√
2 H0/

√
2 0

⎞

⎟

⎟

⎟

⎟

⎠

. (2.9)

4 Compare Table 1 of Ref. [8].
5 Note that in Ref. [8], the notation Σ is used for the field u of Eq. (2.6).
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New flavor-violating & CP-violating transitions
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*Caveat: dipoles in the strong sector 
assumed to be “loop” suppressed

models with minimal flavor violation (MFV) [12]. Therefore flavor bounds are easily satisfied for
⇤
IR

⇠ TeV. Nevertheless, due to the compositeness of the right-handed quarks, 4-fermion contact
interactions, as for example,

g2⇤
⇤2

IR

(ūR�µuR)2 , (1.4)

lead to large deviation in dijets distributions, pp ! jj, at high energies, and sizable production
cross sections for composite resonances in the multi-TeV mass range are predicted [13–15]. All these
e↵ects have not been observed at the LHC and severely constrain these models. Similar results can
be found in variations of these ideas with other composite SM fermions [16].

Wrapping up, composite Higgs models must address the SM flavor structure at low energies,
giving then unequivocal predictions for flavor observables. The models proposed so far seem to
clash with some experimental data. Although extra flavor and CP symmetries could be imposed,
for example in the mixing terms ✏fi , to avoid certain experimental bounds, it is unclear how
these symmetries could emerge in the model. One needs to specify the dynamics of the model to
understand whether flavor and CP symmetries can arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can avoid
these severe flavor and CP-violating constraints. The idea is to assume that the operators Ofi of
Eq. (1.1), that mediate the mixing between the SM fermions and the Higgs, get an e↵ective mass
at some energy scale ⇤fi � ⇤

IR

⇠ TeV, and then decouple from the strong sector. This implies
that Yukawa-like couplings

L
bil

⇠ f̄iOHfj , (1.5)

are generated at scales larger than ⇤
IR

, avoiding in this way sizable contributions to flavor and
CP-violating observables. The hierarchies in the fermion spectrum of the SM and the small flavor
mixing angles could be now explained by the di↵erent scales ⇤fi instead of the small ✏fi . The larger
the ⇤fi , the smaller the Yukawa coupling for fi. Without imposing any extra symmetry in the
model, we will derive by simple power-counting which are the strongest flavor and CP-violating
constraints, independently of the details of the models. We find that top-mediated processes give the
largest contribution to flavor-violating observables. These are characterized by only two operators.
One operator generates the �F = 2 processes ✏K , �MBd

and �MBs at a level close to the present
experimental constraints for ⇤

IR

⇠ few TeV. The second operator leads to flavor-violating Z-
couplings, contributing simultaneously to K ! µ+µ�, ✏0/✏, B ! (X)`` and Z ! bb̄ with a size also
close to the experimental bounds. There are also important contributions arising from the scale at
which the charm and strange masses are generated, 107 � 108 GeV, leading also to sizable e↵ects
to ✏K , and forcing dH . 2. Contributions to the neutron EDM are dominated by the top EDM,
being not far from the present experimental bound. On the other hand, in the lepton sector we find
that the dominant contribution to the electron EDM comes at the two-loop level from Barr-Zee
type diagrams [17], and is around the experimental bound, while µ ! e� is found to be very small.
Therefore these scenarios provide realistic examples where the flavor and hierarchy problem can
be dynamically solved without contradicting the present experimental data, and which near future
experiments could be able to explore. Having proposed a di↵erent origin for fermion masses, we
also analyze the expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-Technicolor
idea [18], in which masses from Eq. (1.5) were generated from an extended gauge sector, or from
integrating heavy fermions [19]. Earlier attempts along these lines were considered recently in
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Chiral Perturbation Theory 11

1. The most general effective chiral Lagrangian of O(p4), L4, to be considered at tree

level.

2. One-loop graphs associated with the lowest-order Lagrangian L2.

3. The Wess–Zumino (1971)–Witten (1983) functional to account for the chiral

anomaly.

4.1. O(p4) Lagrangian

At O(p4), the most general§ Lagrangian, invariant under parity, charge conjugation
and the local chiral transformations (3.14), is given by (Gasser and Leutwyler 1985)

L4 =L1 ⟨DµU †DµU⟩2 + L2 ⟨DµU †DνU⟩ ⟨DµU †DνU⟩

+ L3 ⟨DµU
†DµUDνU

†DνU⟩ + L4 ⟨DµU †DµU⟩ ⟨U †χ + χ†U⟩

+ L5 ⟨DµU †DµU
(
U †χ + χ†U

)
⟩ + L6 ⟨U †χ + χ†U⟩2

+ L7 ⟨U †χ − χ†U⟩2 + L8 ⟨χ†Uχ†U + U †χU †χ⟩

− iL9 ⟨F µν
R DµUDνU

† + F µν
L DµU †DνU⟩ + L10 ⟨U †F µν

R UFLµν⟩

+ H1 ⟨FRµνF
µν
R + FLµνF

µν
L ⟩ + H2 ⟨χ†χ⟩ .

(4.1)

The terms proportional to H1 and H2 do not contain the pseudoscalar fields

and are therefore not directly measurable. Thus, at O(p4) we need ten additional
coupling constants Li to determine the low-energy behaviour of the Green functions.

These constants parametrize our ignorance about the details of the underlying QCD

dynamics. In principle, all the chiral couplings are calculable functions of ΛQCD and

the heavy-quark masses. At the present time, however, our main source of information

about these couplings is low-energy phenomenology.

4.2. Chiral loops

ChPT is a quantum field theory, perfectly defined through equation (3.19). As

such, we must take into account quantum loops with Goldstone-boson propagators
in the internal lines. The chiral loops generate non-polynomial contributions, with

logarithms and threshold factors, as required by unitarity.

The loop integrals are homogeneous functions of the external momenta and the
pseudoscalar masses occurring in the propagators. A simple dimensional counting

shows that, for a general connected diagram with Nd vertices of O(pd) (d = 2, 4, . . .)

and L loops, the overall chiral dimension is given by (Weinberg 1979)

D = 2L + 2 +
∑

d

Nd (d − 2) . (4.2)

§ Since we will only need L4 at tree level, the general expression of this Lagrangian has been simplified,
using the O(p2) equations of motion obeyed by U . Moreover, a 3 × 3 matrix relation has been used
to reduce the number of independent terms. For the two-flavour case, not all of these terms are
independent (Gasser and Leutwyler 1984, 1985).
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Simpler derivation of the connection: 
Light Higgs - Light Resonance 

✒ Imposing the Weinberg Sum Rules:

➥ Following Das,Guralnik,Mathur,Low,Young 67 as the charged pion mass:
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where g is the gauge coupling and ⇧
a

(p) is the two-point function of the SO(4) conserved

current in momentum space, ⇧
a

⇠ hJ
a

J
a

i, and similarly ⇧
â

for the current associated to

the broken generators in SO(5)/SO(4); for the precise definitions see ref. [6]. In a large-N

expansion, that we will assume here, these form factors can be written as an infinite sum

over narrow resonances:

⇧
a

(p) = p2
X

n

F 2

⇢n

p2 +m2

⇢n

, ⇧
â

(p) = p2
X

n

F 2

an

p2 +m2

an

+
1

2
f2 , (2.3)

where ⇢
n

and a
n

are vector resonances coming respectively in 6-plets and 4-plets of SO(4),

and F
⇢n,an are referred to as the decay-constants of these resonances.

The Higgs-dependent part of the potential eq. (2.1) is expected to be finite. Indeed,

according to the operator product expansion, the form factor ⇧
1

(p) must drop at large p

as ⇠ hOi/pd�2, where O is the lowest dimension d operator of the strong sector responsible

for the SO(5) ! SO(4) breaking. In large-N
c

QCD, in the limit of massless quarks, we have

hOi ⇠ hqq̄i2 and then d = 6, with the left-right correlator ⇧
LR

(p) = ⇧
V

� ⇧
A

! hqq̄i2/p4
being the equivalent of our ⇧

1

(p). We assume that in the TeV strong sector d > 4, meaning

that the integral
R
d4p⇧

1

(p)/⇧
0

(p) is convergent for ⇧
0

⇠ p2, assuring the finiteness of the

Higgs-dependent part of the potential eq. (2.1). This convergence is equivalent to imposing

a set of requirements on ⇧
1

(p), usually known as the Weinberg sum-rules [12]. These are

lim
p

2!1
⇧

1

(p) = 0 , lim
p

2!1
p2⇧

1

(p) = 0 , (2.4)

that give two constraints to be fulfilled by the decay constants and masses in eq. (2.3).

Following ref. [13], we can now make the extra assumption of truncating the infinite sum in

eq. (2.3) to include only the minimal number of resonances needed to satisfy the sum-rules

eq. (2.4). One can easily realize that only two are needed, ⇢
1

⌘ ⇢ and a
1

. Using the two

constraints eq. (2.4) we can determine F
⇢

and F
a1 , and then calculate ⇧

1

as a function of

the two resonance masses:1

⇧
1

(p) =
f2m2

⇢

m2

a1

(p2 +m2

⇢

)(p2 +m2

a1
)
. (2.5)

eq. (2.5) can now be used to obtain the gauge contribution to the Higgs potential eq. (2.1).

In an expansion g2 ⌧ 1, we have

V (h) = ↵s2
h

+ �s4
h

+ · · · , (2.6)

1This result is straightforward to obtain in the following alternative way. Requiring that ⇧1 has two poles

corresponding to the two massive resonances implies that the denominator of ⇧1 must be (p2+m2
⇢)(p

2+m2
a1
);

the numerator can easily be obtained by requiring ⇧1(0) = f2.
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Top contribution to the Higgs potential:

Encode the strong-sector contribution 
to the top propagator 
in the h-background
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To obtain a convergent result for the Higgs mass from the full top-quark contribution of Eq. (18),

we must impose the two pairs of Weinberg sum-rules, lim
p!1 pn⇧

tL,R

1 (p) = 0 (n = 0, 2), that require

at least two resonances, Q(1)
1 ⌘ Q1 and Q

(4)
1 ⌘ Q4. We obtain

⇧
tL,R

1 = |FL,R

Q4
|2 (m2

Q4
�m2

Q1
)

(p2 +m2
Q4
)(p2 +m2

Q1
)
,

M t

1(p) = |FL

Q4
FR ⇤
Q4

|mQ4mQ1(mQ4 �m
Q1e

i✓)

(p2 +m2
Q4
)(p2 +m2

Q1
)

✓
1 +

p2

m
Q4mQ1

m
Q1 �m

Q4e
i✓

m
Q4 �m

Q1e
i✓

◆
, (24)
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where �F 2 = |FL

Q4
|2 � 2|FR

Q4
|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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Wrapping up

• Global symmetry breaking G➔H

• Fermion operator Otop  with the quantum numbers of the top
      of dim~5/2 such that the mixing with the top
           top x Otop  is  a marginal coupling ~ O(1)

• Lighter fermion resonances seems to be needed for a mH~125 GeV

• Small dipoles seem to be needed to pass bounds on EDM, μ→eγ

Demands on the Strong sector:

1)  Higgs in the coset G/H
2)  H ⊃ SM + extra SU(2)c{
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We present results for the spectrum of a strongly interacting SU(3) gauge theory with Nf = 8 light
fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at
the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably
light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the
context of the search for new physics beyond the standard model at the Large Hadron Collider
(LHC). Connecting our results to models of dynamical electroweak symmetry breaking, we estimate
the vector resonance mass to be about 2 TeV with a width of roughly 450 GeV, and predict additional
resonances with masses below ⇠3 TeV.

PACS numbers: 11.15.Ha, 11.30.Qc, 12.60.Nz, 12.60.Rc

Introduction: Electroweak symmetry breaking
through new strong dynamics provides a potential mech-
anism to produce a composite scalar particle consistent
with the Higgs boson discovered at the LHC [1, 2]. Non-
perturbative lattice calculations are a crucial tool to
study relevant strongly interacting gauge theories, which
must di↵er qualitatively from quantum chromodynam-
ics (QCD) in order to remain phenomenologically viable.
In recent years lattice investigations have begun to ex-
plore novel near-conformal strong dynamics that emerge
upon enlarging the light fermion content of such sys-
tems. Of particular significance is increasing evidence
from this work [3–9] that such near-conformal dynamics
might generically give rise to scalar (0++) Higgs candi-
dates far lighter than the analogous f0 meson of QCD.
(See also the recent review [10] and references therein.)

A straightforward way to enlarge the fermion content is
to increase the number Nf of light fermions transform-
ing under the fundamental representation of the gauge
group SU(3). Previous lattice studies have identified the
case of Nf = 8 as a system that exhibits several fea-
tures quite distinct from QCD, which make it a partic-
ularly interesting representative of the broader class of
near-conformal gauge theories. These features include
slow running of the gauge coupling (a small � func-
tion) [11, 12], a reduced electroweak S parameter [13], a

slowly evolving mass anomalous dimension �m [14], and
changes to the composite spectrum including a light 0++

scalar [4, 13, 15, 16]. Although Refs. [17–19] even argue
that the 8-flavor theory may flow to a chirally symmetric
IR fixed point in the massless chiral limit, we support
the conventional wisdom that chiral symmetry appears
to break spontaneously for Nf = 8 [10–13, 15, 20]. The
8-flavor theory continues to be investigated by several lat-
tice groups in order to learn more about its low-energy
dynamics and relate it to phenomenological model build-
ing.

Here we summarize the main results from our lattice
calculations of the spectrum of the 8-flavor theory, high-
lighting the growing evidence for a light singlet scalar
0++ state. We also determine the vector (1��) and
axial-vector (1++) masses and decay constants and an-
alyze other aspects of the rich composite spectrum of
the theory, which are of phenomenological importance
in the context of searches for new resonances at the
LHC [21, 22]. When the 8-flavor theory is responsible
for electroweak symmetry breaking in models with chi-
ral electroweak couplings assigned to only one doublet
(ND = 1), we estimate that the vector meson has a physi-
cal mass of about 2 TeV and a width of roughly 450 GeV.

In the context of new strong dynamics beyond the stan-
dard model, it is important for lattice calculations to be
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FIG. 3. The pseudoscalar, vector and axial-vector decay
constants F⇡, F⇢ and Fa1 vs. the input fermion mass am.
Only statistical uncertainties are shown, within which F⇢ ⇡
Fa1 throughout the range of masses we investigate.

FIG. 4. Ratios of the Nf = 8 hadron masses divided by the
pseudoscalar decay constant F⇡ at each fermion mass am.

smallest [50], while the vector F⇢ and axial-vector Fa1 are
approximately degenerate within statistical errors. Sim-
ilar behavior was reported in Refs. [13, 28], where it was
related to reductions in the electroweak S parameter.

In Fig. 4 we plot ratios of the hadron masses divided by
F⇡, observing that all the ratios are rather independent of
the fermion mass, although some changes appear at our
lightest mass where the vector meson is above the two-
pseudoscalar threshold. We find that M⇢/F⇡ ⇡ 8 and
MN/F⇡ ⇡ 11, similar to the physical QCD ratios. In
fact, M⇢/F⇡ ⇡ 8 appears to be a generic feature of many
strongly coupled gauge theories, both IR conformal and
chirally broken [8, 15, 29–31].

Let us now specialize to models in which we assign
chiral electroweak couplings to only ND = 1 pair of the
Nf = 8 fermions. This choice sets the physical value

FIG. 5. Comparing our 8-flavor M0++ and M⇢ results with
those of the LatKMI Collaboration [4, 15, 38], using the same
reference scale

p
8t0. We plot these quantities vs. M⇡ and

include a dashed line to highlight degeneracy with the pseu-
doscalar meson. A consistent trend is clearly visible, with the
light singlet scalar 0++ state following the pseudoscalar to the
smallest masses studied so far.

of F = 246 GeV/
p
ND, and is motivated to keep the

electroweak S parameter as close as possible to its small
experimental value [13, 28]. Translating our results into
physical units by identifying F⇡ with the low-energy con-
stant F is strictly correct only in the chiral limit. We can-
not currently carry out a controlled chiral extrapolation,
in part because the e↵ects of a light 0++ scalar on the
low-energy e↵ective theory are not yet well understood
despite ongoing investigations [32–36]. If we assume that
the ratio M⇢/F⇡ shown in Fig. 4 remains relatively insen-
sitive to the fermion masses then we would end up with a
vector meson mass around 2 TeV. Similar considerations
suggest that MN and Ma1 would be around 2.7 TeV.
On the other hand, the physical 0++ mass will depend
sensitively on how long this state continues to track the
pseudoscalar whose mass must vanish in the chiral limit.
At present we can estimate 0 . M0++ . 1 TeV, and this
mass could be reduced further by interactions with the
top quark in realistic models where the strong dynamics
we study is coupled to the standard model [37].

Comparison with previous work: Some aspects of
the Nf = 8 spectrum discussed above were observed in
earlier lattice studies using di↵erent discretizations and
heavier masses [4, 13, 15, 16]. In particular, the remark-
ably light singlet scalar 0++ Higgs candidate was first
reported by Ref. [4]. The increasing evidence [3–9] that
such behavior could be a fairly generic feature of near-
conformal strong dynamics is extremely interesting from
the phenomenological point of view.

In this context the behavior of M0++ in the chiral limit
is particularly important. As a step in this direction, in
Fig. 5 we compare our results for the light meson spec-
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FIG. 2. The pion, rho, isosinglet 0++ and isomultiplet a0 scalar, axial, and nucleon mass of the light flavor spectrum in
units of F⇡. The first narrow panel shows the experimental values for QCD [28] normalized by F⇡ = 94 MeV, while the last
one corresponds to average values obtained from Nf = 12 flavor simulations [7, 16, 29, 30]. The four wider panels show the
Nf = 4 + 8 spectrum as the function of the light quark mass aFm` for amh = 0.100, 0.080, 0.060, and 0.050. If the chirally
broken Nf = 4 + 8 system triggered EWSB, F⇡ ⇡ 250 GeV would set the correct electroweak scale.

ward the IRFP. At the UV energy scale denoted by ⇤UV

the gauge coupling reaches the vicinity of the IRFP. Its
value is close to g? and changes only slowly when further
reducing the energy scale. In this regime the coupling
“walks.” If all fermions were massless, g(µ ! 0) = g?
as is indicated by the solid line in the figure. On the
other hand if some of the fermions are massive, their
mass becomes comparable to the cuto↵ at some energy
scale, denoted by ⇤IR, and they decouple. In this limit
the system behaves like a chirally broken model with N`

massless fermions. The corresponding fast running cou-
pling is denoted by the dashed blue lines in Fig. 1. The
walking range between the scales ⇤UV and ⇤IR can be
tuned by bmh, and a walking behavior in these systems
is guaranteed. The red long-dashed curve in Fig. 1 de-
scribes the case where the heavy fermions decouple before
the gauge coupling reaches the vicinity of the IRFP. This
situation can be avoided by tuning bmh ! 0 and is not
considered here.

Our numerical simulations support the expectations
outlined above. The bottom panel of Fig. 1 shows
the running coupling calculated at five di↵erent values,
bmh = 0.050, 0.060, 0.080, 0.100 and 1 (i.e. Nf = 4). We
define the energy dependent running coupling through
the Wilson flow scheme and match the scales such that
all five systems predict the same g2(µ) in the infrared
limit [31, 32]. The Nf = 4 system shows the expected
fast running, but a shoulder develops as bmh is lowered.
The dashed curves in the bottom panel of Fig. 1 indicate
regions where cuto↵ e↵ects could be significant; however,
theoretical considerations guarantee that the gauge cou-
pling takes its IRFP value as bmh ! 0. The similarity
between the top and bottom panels of Fig. 1 is strik-
ing and suggests that our simulations have entered the
walking regime. A walking gauge coupling leads to the
enhancement of the fermion condensate and is necessary

to satisfy electroweak constraints.

LATTICE SIMULATIONS AND THE HADRON
SPECTRUM

Wilson renormalization group considerations predict
that the 4+8 flavor system shows hyperscaling in the
am` = 0 chiral limit where dimensionless ratios of hadron
masses are independent of the heavy mass amh. How-
ever, these ratios have to neither match the Nf = 12 nor
the Nf = 4 flavor values. In this section we present nu-
merical results for the hadron spectrum of the Nf = 4+8
model at four di↵erent amh values.
We use staggered fermions with nHYP smeared gauge

links [33, 34] and a gauge action that is the combination
of fundamental and adjoint plaquette terms. This action
has been used in Nf = 12 flavor simulations [15, 16, 19]
and we chose the parameters for this work based on those
results. We have carried out simulations at one gauge
coupling, � = 4.0, and four di↵erent values of the mass
of the heavy flavors, amh = 0.050, 0.060, 0.080 and 0.100.
Based on the results of the finite size scaling study [19]
we expect that the three lightest values are within the
scaling regime of the IRFP, while mh = 0.100 could be
on the boundary. We chose the light fermion masses in
the range am` = 0.003 � 0.035 and the lattice volumes
vary from 243⇥48 to 483⇥96. At many (am`, amh) mass
values we consider two volumes to monitor finite volume
e↵ects. We use the Wilson flow transformation to de-
fine the lattice scale [31]. As am` ! 0 and amh ! 0,
our simulations approach the Nf = 12 conformal limit
and consequently the lattice spacing decreases, requiring
simulations on increasingly larger volumes. Since we ob-
serve significant changes in the lattice spacing both when
varying amh and am`, we present our results in terms of
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We propose to construct a chirally broken model based on the infrared fixed point of a conformal
system by raising the mass of some flavors while keeping the others massless. In the infrared limit the
massive fermions decouple and the massless fermions break chiral symmetry. The running coupling
of this system “walks” and the energy range of walking can be tuned by the mass of the heavy
flavors. Renormalization group considerations predict that the spectrum of such a system shows
hyperscaling.

We have studied a model with four light and eight heavy flavors coupled to SU(3) gauge fields
and verified the above expectations. We determined the mass of several hadronic states and found
that some of them are in the 2-3 TeV range if the scale is set by the pseudoscalar decay constant
F⇡ ⇡ 250 GeV. The 0++ scalar state behaves very di↵erently from the other hadronic states. In
most of our simulations it is nearly degenerate with the pion and we estimate its mass to be less
than half of the vector resonance mass.

PACS numbers: 11.15.Ha, 12.60.Rc

INTRODUCTION

Electroweak symmetry breaking (EWSB) and the na-
ture of the Higgs boson are central questions of beyond
the Standard Model (BSM) investigations. A gauge
theory exhibiting spontaneous chiral symmetry break-
ing (S�SB) may describe EWSB when coupled to the
Standard Model. In such a system three of the massless
Goldstone pions become the longitudinal component of
the W± and Z bosons, while all other hadronic states
appear as experimentally observable excitations in the
spectrum. The physical energy scale is set by match-
ing the decay constant of the pseudoscalar (pion) to the
vacuum expectation value of the EWSB, i.e. F⇡ ⇡ 250
GeV. BSM theories based on this construction are par-
ticularly interesting as they predict several resonances
around 2-3 TeV, an energy range accessible at the LHC.
The lightest vector meson state in our model is close to
2 TeV and could correspond to the recently reported res-
onance [1]. These theories are based on similar concepts
originally introduced in the context of technicolor [2–5].
Phenomenologically viable models must have properties
quite di↵erent from QCD, suggesting they are likely near
the conformal boundary. Recent lattice simulations with
many fundamental flavors or with fermions in higher rep-
resentations have indeed revealed non-QCD-like proper-
ties [6–11].

A composite BSM model with two massless fermions
generates the required three Goldstone bosons. If the
number of fermions is larger than two, as is the case
in systems with fundamental flavors near the conformal
boundary, the additional massless pseudoscalars have to
acquire mass. While the precise mechanism of this could
be complicated, for an e↵ective description one can sim-
ply add a mass term to the additional fermion flavors.
In a model with Nf fermions one would keep N` = 2

flavors massless and make Nh = Nf �N` fermions mas-
sive. That way, the system will have only three massless
Goldstone bosons in the infrared limit, yet the additional
flavors will have an influence on the spectrum.

When the total number of fermions increases above a
critical value, the system crosses the conformal bound-
ary. The infrared properties are now characterized by
a non-perturbative infrared fixed point (IRFP). Never-
theless the construction proposed above works just the
same. Lifting the masses of all but N` = 2 flavors will
lead to S�SB with three massless Goldstone bosons in
the infrared limit. The presence of the conformal IRFP
influences both the running of the gauge coupling and the
spectrum. The idea to give mass to some of the flavors
studied was previously discussed in Ref. [12] and a sim-
ilar construction, though with di↵erent phenomenology,
has been proposed e.g. in Refs. [13] and [14].

In this paper we investigate the properties of such a
system, based on the Nf = 12 conformal model [15–20].
We lift the masses of Nh = 8 fermions (heavy flavors) and
keep N` = 4 flavors light. This choice is motivated by the
lattice action we use in our simulations but a chirally bro-
ken model with four light flavors also has phenomenolog-
ical relevance. An example is the composite two Higgs-
doublet model of Ref. [21] that assumes four light flavors
and the Higgs bosons emerge as pseudo-Goldstone states.
More commonly discussed models feature two massless
fermions in the chiral limit and thus require simulations
with N` = 2. Our choice is, however, su�cient to investi-
gate general properties of mass split systems. By chang-
ing mh from zero to 1, our model interpolates between
the conformal 12-flavor and the chirally broken 4-flavor
systems. If mh > 0, chiral symmetry is spontaneously
broken. In the next section, we deduce that the hadron
spectrum of the light flavors shows hyperscaling in mh

assuming mh is in the scaling regime of the IRFP and
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We present results for the spectrum of a strongly interacting SU(3) gauge theory with Nf = 8 light
fermions in the fundamental representation. Carrying out non-perturbative lattice calculations at
the lightest masses and largest volumes considered to date, we confirm the existence of a remarkably
light singlet scalar particle. We explore the rich resonance spectrum of the 8-flavor theory in the
context of the search for new physics beyond the standard model at the Large Hadron Collider
(LHC). Connecting our results to models of dynamical electroweak symmetry breaking, we estimate
the vector resonance mass to be about 2 TeV with a width of roughly 450 GeV, and predict additional
resonances with masses below ⇠3 TeV.

PACS numbers: 11.15.Ha, 11.30.Qc, 12.60.Nz, 12.60.Rc

Introduction: Electroweak symmetry breaking
through new strong dynamics provides a potential mech-
anism to produce a composite scalar particle consistent
with the Higgs boson discovered at the LHC [1, 2]. Non-
perturbative lattice calculations are a crucial tool to
study relevant strongly interacting gauge theories, which
must di↵er qualitatively from quantum chromodynam-
ics (QCD) in order to remain phenomenologically viable.
In recent years lattice investigations have begun to ex-
plore novel near-conformal strong dynamics that emerge
upon enlarging the light fermion content of such sys-
tems. Of particular significance is increasing evidence
from this work [3–9] that such near-conformal dynamics
might generically give rise to scalar (0++) Higgs candi-
dates far lighter than the analogous f0 meson of QCD.
(See also the recent review [10] and references therein.)

A straightforward way to enlarge the fermion content is
to increase the number Nf of light fermions transform-
ing under the fundamental representation of the gauge
group SU(3). Previous lattice studies have identified the
case of Nf = 8 as a system that exhibits several fea-
tures quite distinct from QCD, which make it a partic-
ularly interesting representative of the broader class of
near-conformal gauge theories. These features include
slow running of the gauge coupling (a small � func-
tion) [11, 12], a reduced electroweak S parameter [13], a

slowly evolving mass anomalous dimension �m [14], and
changes to the composite spectrum including a light 0++

scalar [4, 13, 15, 16]. Although Refs. [17–19] even argue
that the 8-flavor theory may flow to a chirally symmetric
IR fixed point in the massless chiral limit, we support
the conventional wisdom that chiral symmetry appears
to break spontaneously for Nf = 8 [10–13, 15, 20]. The
8-flavor theory continues to be investigated by several lat-
tice groups in order to learn more about its low-energy
dynamics and relate it to phenomenological model build-
ing.

Here we summarize the main results from our lattice
calculations of the spectrum of the 8-flavor theory, high-
lighting the growing evidence for a light singlet scalar
0++ state. We also determine the vector (1��) and
axial-vector (1++) masses and decay constants and an-
alyze other aspects of the rich composite spectrum of
the theory, which are of phenomenological importance
in the context of searches for new resonances at the
LHC [21, 22]. When the 8-flavor theory is responsible
for electroweak symmetry breaking in models with chi-
ral electroweak couplings assigned to only one doublet
(ND = 1), we estimate that the vector meson has a physi-
cal mass of about 2 TeV and a width of roughly 450 GeV.

In the context of new strong dynamics beyond the stan-
dard model, it is important for lattice calculations to be
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FIG. 3. The pseudoscalar, vector and axial-vector decay
constants F⇡, F⇢ and Fa1 vs. the input fermion mass am.
Only statistical uncertainties are shown, within which F⇢ ⇡
Fa1 throughout the range of masses we investigate.

FIG. 4. Ratios of the Nf = 8 hadron masses divided by the
pseudoscalar decay constant F⇡ at each fermion mass am.

smallest [50], while the vector F⇢ and axial-vector Fa1 are
approximately degenerate within statistical errors. Sim-
ilar behavior was reported in Refs. [13, 28], where it was
related to reductions in the electroweak S parameter.

In Fig. 4 we plot ratios of the hadron masses divided by
F⇡, observing that all the ratios are rather independent of
the fermion mass, although some changes appear at our
lightest mass where the vector meson is above the two-
pseudoscalar threshold. We find that M⇢/F⇡ ⇡ 8 and
MN/F⇡ ⇡ 11, similar to the physical QCD ratios. In
fact, M⇢/F⇡ ⇡ 8 appears to be a generic feature of many
strongly coupled gauge theories, both IR conformal and
chirally broken [8, 15, 29–31].

Let us now specialize to models in which we assign
chiral electroweak couplings to only ND = 1 pair of the
Nf = 8 fermions. This choice sets the physical value

FIG. 5. Comparing our 8-flavor M0++ and M⇢ results with
those of the LatKMI Collaboration [4, 15, 38], using the same
reference scale

p
8t0. We plot these quantities vs. M⇡ and

include a dashed line to highlight degeneracy with the pseu-
doscalar meson. A consistent trend is clearly visible, with the
light singlet scalar 0++ state following the pseudoscalar to the
smallest masses studied so far.

of F = 246 GeV/
p
ND, and is motivated to keep the

electroweak S parameter as close as possible to its small
experimental value [13, 28]. Translating our results into
physical units by identifying F⇡ with the low-energy con-
stant F is strictly correct only in the chiral limit. We can-
not currently carry out a controlled chiral extrapolation,
in part because the e↵ects of a light 0++ scalar on the
low-energy e↵ective theory are not yet well understood
despite ongoing investigations [32–36]. If we assume that
the ratio M⇢/F⇡ shown in Fig. 4 remains relatively insen-
sitive to the fermion masses then we would end up with a
vector meson mass around 2 TeV. Similar considerations
suggest that MN and Ma1 would be around 2.7 TeV.
On the other hand, the physical 0++ mass will depend
sensitively on how long this state continues to track the
pseudoscalar whose mass must vanish in the chiral limit.
At present we can estimate 0 . M0++ . 1 TeV, and this
mass could be reduced further by interactions with the
top quark in realistic models where the strong dynamics
we study is coupled to the standard model [37].

Comparison with previous work: Some aspects of
the Nf = 8 spectrum discussed above were observed in
earlier lattice studies using di↵erent discretizations and
heavier masses [4, 13, 15, 16]. In particular, the remark-
ably light singlet scalar 0++ Higgs candidate was first
reported by Ref. [4]. The increasing evidence [3–9] that
such behavior could be a fairly generic feature of near-
conformal strong dynamics is extremely interesting from
the phenomenological point of view.

In this context the behavior of M0++ in the chiral limit
is particularly important. As a step in this direction, in
Fig. 5 we compare our results for the light meson spec-
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FIG. 2. The pion, rho, isosinglet 0++ and isomultiplet a0 scalar, axial, and nucleon mass of the light flavor spectrum in
units of F⇡. The first narrow panel shows the experimental values for QCD [28] normalized by F⇡ = 94 MeV, while the last
one corresponds to average values obtained from Nf = 12 flavor simulations [7, 16, 29, 30]. The four wider panels show the
Nf = 4 + 8 spectrum as the function of the light quark mass aFm` for amh = 0.100, 0.080, 0.060, and 0.050. If the chirally
broken Nf = 4 + 8 system triggered EWSB, F⇡ ⇡ 250 GeV would set the correct electroweak scale.

ward the IRFP. At the UV energy scale denoted by ⇤UV

the gauge coupling reaches the vicinity of the IRFP. Its
value is close to g? and changes only slowly when further
reducing the energy scale. In this regime the coupling
“walks.” If all fermions were massless, g(µ ! 0) = g?
as is indicated by the solid line in the figure. On the
other hand if some of the fermions are massive, their
mass becomes comparable to the cuto↵ at some energy
scale, denoted by ⇤IR, and they decouple. In this limit
the system behaves like a chirally broken model with N`

massless fermions. The corresponding fast running cou-
pling is denoted by the dashed blue lines in Fig. 1. The
walking range between the scales ⇤UV and ⇤IR can be
tuned by bmh, and a walking behavior in these systems
is guaranteed. The red long-dashed curve in Fig. 1 de-
scribes the case where the heavy fermions decouple before
the gauge coupling reaches the vicinity of the IRFP. This
situation can be avoided by tuning bmh ! 0 and is not
considered here.

Our numerical simulations support the expectations
outlined above. The bottom panel of Fig. 1 shows
the running coupling calculated at five di↵erent values,
bmh = 0.050, 0.060, 0.080, 0.100 and 1 (i.e. Nf = 4). We
define the energy dependent running coupling through
the Wilson flow scheme and match the scales such that
all five systems predict the same g2(µ) in the infrared
limit [31, 32]. The Nf = 4 system shows the expected
fast running, but a shoulder develops as bmh is lowered.
The dashed curves in the bottom panel of Fig. 1 indicate
regions where cuto↵ e↵ects could be significant; however,
theoretical considerations guarantee that the gauge cou-
pling takes its IRFP value as bmh ! 0. The similarity
between the top and bottom panels of Fig. 1 is strik-
ing and suggests that our simulations have entered the
walking regime. A walking gauge coupling leads to the
enhancement of the fermion condensate and is necessary

to satisfy electroweak constraints.

LATTICE SIMULATIONS AND THE HADRON
SPECTRUM

Wilson renormalization group considerations predict
that the 4+8 flavor system shows hyperscaling in the
am` = 0 chiral limit where dimensionless ratios of hadron
masses are independent of the heavy mass amh. How-
ever, these ratios have to neither match the Nf = 12 nor
the Nf = 4 flavor values. In this section we present nu-
merical results for the hadron spectrum of the Nf = 4+8
model at four di↵erent amh values.
We use staggered fermions with nHYP smeared gauge

links [33, 34] and a gauge action that is the combination
of fundamental and adjoint plaquette terms. This action
has been used in Nf = 12 flavor simulations [15, 16, 19]
and we chose the parameters for this work based on those
results. We have carried out simulations at one gauge
coupling, � = 4.0, and four di↵erent values of the mass
of the heavy flavors, amh = 0.050, 0.060, 0.080 and 0.100.
Based on the results of the finite size scaling study [19]
we expect that the three lightest values are within the
scaling regime of the IRFP, while mh = 0.100 could be
on the boundary. We chose the light fermion masses in
the range am` = 0.003 � 0.035 and the lattice volumes
vary from 243⇥48 to 483⇥96. At many (am`, amh) mass
values we consider two volumes to monitor finite volume
e↵ects. We use the Wilson flow transformation to de-
fine the lattice scale [31]. As am` ! 0 and amh ! 0,
our simulations approach the Nf = 12 conformal limit
and consequently the lattice spacing decreases, requiring
simulations on increasingly larger volumes. Since we ob-
serve significant changes in the lattice spacing both when
varying amh and am`, we present our results in terms of
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that some of them are in the 2-3 TeV range if the scale is set by the pseudoscalar decay constant
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than half of the vector resonance mass.
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INTRODUCTION

Electroweak symmetry breaking (EWSB) and the na-
ture of the Higgs boson are central questions of beyond
the Standard Model (BSM) investigations. A gauge
theory exhibiting spontaneous chiral symmetry break-
ing (S�SB) may describe EWSB when coupled to the
Standard Model. In such a system three of the massless
Goldstone pions become the longitudinal component of
the W± and Z bosons, while all other hadronic states
appear as experimentally observable excitations in the
spectrum. The physical energy scale is set by match-
ing the decay constant of the pseudoscalar (pion) to the
vacuum expectation value of the EWSB, i.e. F⇡ ⇡ 250
GeV. BSM theories based on this construction are par-
ticularly interesting as they predict several resonances
around 2-3 TeV, an energy range accessible at the LHC.
The lightest vector meson state in our model is close to
2 TeV and could correspond to the recently reported res-
onance [1]. These theories are based on similar concepts
originally introduced in the context of technicolor [2–5].
Phenomenologically viable models must have properties
quite di↵erent from QCD, suggesting they are likely near
the conformal boundary. Recent lattice simulations with
many fundamental flavors or with fermions in higher rep-
resentations have indeed revealed non-QCD-like proper-
ties [6–11].

A composite BSM model with two massless fermions
generates the required three Goldstone bosons. If the
number of fermions is larger than two, as is the case
in systems with fundamental flavors near the conformal
boundary, the additional massless pseudoscalars have to
acquire mass. While the precise mechanism of this could
be complicated, for an e↵ective description one can sim-
ply add a mass term to the additional fermion flavors.
In a model with Nf fermions one would keep N` = 2

flavors massless and make Nh = Nf �N` fermions mas-
sive. That way, the system will have only three massless
Goldstone bosons in the infrared limit, yet the additional
flavors will have an influence on the spectrum.

When the total number of fermions increases above a
critical value, the system crosses the conformal bound-
ary. The infrared properties are now characterized by
a non-perturbative infrared fixed point (IRFP). Never-
theless the construction proposed above works just the
same. Lifting the masses of all but N` = 2 flavors will
lead to S�SB with three massless Goldstone bosons in
the infrared limit. The presence of the conformal IRFP
influences both the running of the gauge coupling and the
spectrum. The idea to give mass to some of the flavors
studied was previously discussed in Ref. [12] and a sim-
ilar construction, though with di↵erent phenomenology,
has been proposed e.g. in Refs. [13] and [14].

In this paper we investigate the properties of such a
system, based on the Nf = 12 conformal model [15–20].
We lift the masses of Nh = 8 fermions (heavy flavors) and
keep N` = 4 flavors light. This choice is motivated by the
lattice action we use in our simulations but a chirally bro-
ken model with four light flavors also has phenomenolog-
ical relevance. An example is the composite two Higgs-
doublet model of Ref. [21] that assumes four light flavors
and the Higgs bosons emerge as pseudo-Goldstone states.
More commonly discussed models feature two massless
fermions in the chiral limit and thus require simulations
with N` = 2. Our choice is, however, su�cient to investi-
gate general properties of mass split systems. By chang-
ing mh from zero to 1, our model interpolates between
the conformal 12-flavor and the chirally broken 4-flavor
systems. If mh > 0, chiral symmetry is spontaneously
broken. In the next section, we deduce that the hadron
spectrum of the light flavors shows hyperscaling in mh

assuming mh is in the scaling regime of the IRFP and
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NF=12Lattice results:

a light dilaton?

a Higgs-like particle? Resurrecting Technicolor? 
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AdS predictions

the scalar becomes a factor ~1/2 lighter at dim[qq]=2
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Could this scalar be the Higgs? Resurrecting Technicolor? 

Higgs-like coupling?  Approaching free scalar limit = SM Higgs

Mass?  Not light enough

For MTC-ρ ~ 2-3 TeV   we have  MH ~ MTC-ρ / 2 ~ TeV
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Higgs coupling 't

● We can allow the Higgs boson to have 
BSM decays, i.e.:
– decay to weakly interacting stable 
particles (e.g. dark matter);

– decay to channels not searched      
(e.g. H ? cc);

– decay with unexpected topology    
(e.g. H ? XX ? ??).

● Fit performed constraining |kV|<1.

● The BSM decay changes the global 
Higgs width: 

i =
gHii

gSMHii

Hardly compatible  
with present measurements



)



Phenomenology



Physical implications 
 of TeV strong-dynamics

New resonances

TeV

125 GeV h

Signs of compositeness
in the Higgs (and top) 

New flavor-violating 
& CP-violating

transitions



Well-defined pattern of deviations in Higgs couplings: 
Giudice,Grojean,AP,Rattazzi 07
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small deviations on the h𝜸𝜸(gg)-coupling due to the 
Goldstone nature of the Higgs
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(model dependent but expected f ~ v)
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 = Decay-constant of the PGB Higgs
related to the compositeness scale

Signs of compositeness of the Higgs 
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Signs of compositeness of the Higgs 

MCHM5,10

Higgs mediated processes recover calculability:

Back to the prediction era!
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Finite results!
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as good as massless gauge theories 

But already constrained at LEP
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We could not expect large deviations
in Higgs coupling measurements
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Figure 26: Top: negative log-likelihood contours at 68% and 95% CL in the (F , V ) plane on an enlarged scale for
the combination of ATLAS and CMS and for the global fit of all channels. Also shown are the contours obtained
for each experiment separately. Bottom: negative log-likelihood contours at 68% CL in the ( f

F ,  f
V ) plane for the

combination of ATLAS and CMS and for the individual decay channels as well as for their global combination (F
versus V ), assuming that all coupling modifiers are positive.

53

gh↵

gSM
h↵

ghVV

gSM
hVV

Signs of compositeness of the Higgs 

n=0

n=1

Entering the interesting region: bounds getting below 10%!



Since its mass is large, its mixing with the strong sector must be large:

Signs of compositeness of the top 

tL,tR Resonances

tL,R

tL,R

H,VL

H,VL



Since its mass is large, its mixing with the strong sector must be large:

Signs of compositeness of the top 

tL,tR Resonances

tL,R

tL,R

H,VL

H,VL

tL couplings don’t show much deviations from SM predictions:

see for example,  
arXiv:1512.03360 

arXiv:1504.03785 
arXiv:1601.08193 
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Figure 6: Left: Individual (red) and marginalised (blue) 95% confidence intervals on

dimension-six operators from top pair production and single top production (bottom three).

Right: Marginalised 95 % bounds considering all data from LHC and Tevatron (green) vs

Tevatron only (purple).

power-counting arguments of the previous paragraph that allowed us to reject the operators

OdW , O'ud at order ⇤�2 would not be clear in an anomalous coupling framework. In

addition, the four-quark operator O(3)

qq in eq. (10) can have a substantial e↵ect on single-top

production, but this can only be captured by an EFT approach. For a detailed comparison

of these approaches, see e.g. Ref. [125]. The 95% confidence limits on these operators

from single top production are shown in Fig. (6), along with those operators previously

discussed in top pair production.

Let us compare these results to our findings of section 4.1. The bounds on operators

from top pair production are typically stronger.

The so-called chromomagnetic moment operator OuG is also tightly constrained, owing

to its appearance in both the qq̄ and gg channels, i.e. it is sensitive to both Tevatron and

LHC measurements. For the four-quark operators, the stronger bounds are typically on

the C1

i -type. This originates from the more pronounced e↵ect on kinematic distributions

that they have. The phenomenology of the C2

i -type operators is SM-like, and their e↵ect

becomes only visible in the tails of distributions.

The much wider marginalised bounds on these two operators stems from the relative

sign between their interference term and those of the other operators, which results in

cancellations in the total cross-section that significantly widen the allowed ranges of Ci.

With the exception of Ct, which strongly modifies the single top production cross-

section, the individual bounds on the operator coe�cients from single top production are

typically weaker. This originates from the larger experimental uncertainties on single top

production, that stem from the multitude of di↵erent backgrounds that contaminate this

13

Vtb=1



If tR is highly composite, it will be a challenge to know it!

Best ways to see it in the future: 

Effects grow with the energy!
CMS (1406.7830) and ATLAS looked at this process in Same Sign Leptons
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Figure 7: Contribution of the four-top interaction to the process pp! tt̄tt̄.
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Figure 8: Cross-section for pp ! tt̄tt̄ as a function of c4t arising from the operator O4t (4t), SM diagrams (SM)
and both (ALL).

Due to Eq. (51), we expect the tt̄ pair coming from the four-top interaction to have a larger

invariant mass and transverse momenta than those coming from gluons. Hence, by taking p
T

(t1) >

p
T

(t2) (and the same for the anti-tops), we can identify the top t1 as the scattered top and the

top t2 as the spectator top. We also expect the t1t̄1 pair to have large invariant mass m and to

be produced at large angles and then to have a small pseudorapidity ⌘. These observables can be

useful to discriminate the four-top signal versus backgrounds.

In Fig. 9 we plot the four-top normalized di↵erential cross-section arising from the four-top

contact interaction, and compare this with that of the SM. We show the normalized di↵erential

cross-section versus the invariant mass of the scattered top pair m(t1, t̄1), the transverse momentum

of t1, p
T

(t1), and its pseudorapidity ⌘(t1); being normalized distributions, they do not depend on
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for a recent analysis, see arXiv:1611.05032 
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Fig. 3. Natural expectations for the mass spectrum in supersymmetric models (left) and com-
posite Higgs models (right).

in most natural scenarios is the Higgsino, or the Gravitino for the case of GMSB
models. For composite Higgs models, the top partners are color fermionic resonances
with electric charges Q = 5/3, 2/3, �1/3 [15], and a phenomenology described in
detail in [50]. This is depicted in Fig. 3 where it is shown the mass spectrum of a
natural supersymmetric and composite Higgs model. Present limits on top partners
from the LHC Run 1 are around 500�800 GeV [51], scratching at present the most
natural region of the parameter space of the MSSM and MCHM. Nevertheless, it
will not be until the LHC Run 2 where the naturalness of these BSM will be really
at stake.

Clues for cosmological conundrums

Could TeV physics be behind other fundamental questions in particle physics and
cosmology, such as the origin of Dark Matter (DM), the abundance of matter
over anti-matter in our universe (Baryogenesis), the origin of inflation or neutrino
masses? Though not necessary the case, as the mandatory new-physics at the
Planck scale could be the true responsible for these phenomena, it is well possible
that some of these questions are addressed by TeV physics, opening an exciting
possibility of resolving these mysteries in well controlled experiments, such as TeV
colliders. The most likely of the above important questions to be addressed by TeV
new-physics is the DM origin. This hope arises from the so-called ”WIMP miracle”:
A stable particle with mass of order the electroweak scale and O(1) renormalizable-
interactions is in the ballpark of the needed relic abundance for a DM candidate.
In the MSSM, as well as in the MCHM, we find many DM candidates [52]. For in-
stance, the lightest superpartner, if neutral, as the neutralinos (superpartners of the
Z, photon or Higgs), can be a good candidate for DM in certain ”well-tempered”
region of the parameter space [53]. Similarly, DM can arise in composite Higgs mod-

Expected spectrum of the TeV Composite Sector
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new-physics is the DM origin. This hope arises from the so-called ”WIMP miracle”:
A stable particle with mass of order the electroweak scale and O(1) renormalizable-
interactions is in the ballpark of the needed relic abundance for a DM candidate.
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in most natural scenarios is the Higgsino, or the Gravitino for the case of GMSB
models. For composite Higgs models, the top partners are color fermionic resonances
with electric charges Q = 5/3, 2/3, �1/3 [15], and a phenomenology described in
detail in [50]. This is depicted in Fig. 3 where it is shown the mass spectrum of a
natural supersymmetric and composite Higgs model. Present limits on top partners
from the LHC Run 1 are around 500�800 GeV [51], scratching at present the most
natural region of the parameter space of the MSSM and MCHM. Nevertheless, it
will not be until the LHC Run 2 where the naturalness of these BSM will be really
at stake.

Clues for cosmological conundrums

Could TeV physics be behind other fundamental questions in particle physics and
cosmology, such as the origin of Dark Matter (DM), the abundance of matter
over anti-matter in our universe (Baryogenesis), the origin of inflation or neutrino
masses? Though not necessary the case, as the mandatory new-physics at the
Planck scale could be the true responsible for these phenomena, it is well possible
that some of these questions are addressed by TeV physics, opening an exciting
possibility of resolving these mysteries in well controlled experiments, such as TeV
colliders. The most likely of the above important questions to be addressed by TeV
new-physics is the DM origin. This hope arises from the so-called ”WIMP miracle”:
A stable particle with mass of order the electroweak scale and O(1) renormalizable-
interactions is in the ballpark of the needed relic abundance for a DM candidate.
In the MSSM, as well as in the MCHM, we find many DM candidates [52]. For in-
stance, the lightest superpartner, if neutral, as the neutralinos (superpartners of the
Z, photon or Higgs), can be a good candidate for DM in certain ”well-tempered”
region of the parameter space [53]. Similarly, DM can arise in composite Higgs mod-
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|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
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Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term

of Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =

[

T T5/3

B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L ̸∂ qL + t̄R ̸∂ tR

+ Tr
{

Q̄ ( ̸∂ − MQ)Q
}

+ ¯̃T ( ̸∂ − MT̃ ) T̃ + Y∗ Tr{Q̄H} T̃ + h.c

+ ∆L q̄L (T, B) + ∆R t̄RT̃ + h.c.

(2)
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• m(B|singlet) > 0.83 TeV (was 0.69 TeV)	

• m(T|singlet) > 0.78 TeV (was 0.66 TeV)	

• sensitivity to T via H → WW* or Z → l+l-  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in most natural scenarios is the Higgsino, or the Gravitino for the case of GMSB
models. For composite Higgs models, the top partners are color fermionic resonances
with electric charges Q = 5/3, 2/3, �1/3 [15], and a phenomenology described in
detail in [50]. This is depicted in Fig. 3 where it is shown the mass spectrum of a
natural supersymmetric and composite Higgs model. Present limits on top partners
from the LHC Run 1 are around 500�800 GeV [51], scratching at present the most
natural region of the parameter space of the MSSM and MCHM. Nevertheless, it
will not be until the LHC Run 2 where the naturalness of these BSM will be really
at stake.

Clues for cosmological conundrums

Could TeV physics be behind other fundamental questions in particle physics and
cosmology, such as the origin of Dark Matter (DM), the abundance of matter
over anti-matter in our universe (Baryogenesis), the origin of inflation or neutrino
masses? Though not necessary the case, as the mandatory new-physics at the
Planck scale could be the true responsible for these phenomena, it is well possible
that some of these questions are addressed by TeV physics, opening an exciting
possibility of resolving these mysteries in well controlled experiments, such as TeV
colliders. The most likely of the above important questions to be addressed by TeV
new-physics is the DM origin. This hope arises from the so-called ”WIMP miracle”:
A stable particle with mass of order the electroweak scale and O(1) renormalizable-
interactions is in the ballpark of the needed relic abundance for a DM candidate.
In the MSSM, as well as in the MCHM, we find many DM candidates [52]. For in-
stance, the lightest superpartner, if neutral, as the neutralinos (superpartners of the
Z, photon or Higgs), can be a good candidate for DM in certain ”well-tempered”
region of the parameter space [53]. Similarly, DM can arise in composite Higgs mod-

Expected spectrum of the TeV Composite Sector

Before 13 TeV LHC bounds 
dominated by indirect effects

scalar resonances?



Concluding…

 Strong dynamics at the TeV is still one of the best ways to tackle 
       the hierarchy problem
   Present situation: We can “visualize” plausible realistic scenarios,          
    and provide signals to future experiments (LHC) 

                    ☛ top mass, the big challenge!
    but difficult to make progress from here… 
  In the future:   
     ● Lattice can shed light on conformal theories (γ of fermionic operators)
     ● String theory could help to connect realistic 5D models to their 4D duals 
 

 The dream situation would be to have experimental data (e.g. LHC), 
leading the field in the future
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Inspiration from QCD: Chiral lagrangian for pions:

Ordinary basis:

Experiments say:
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1. The most general effective chiral Lagrangian of O(p4), L4, to be considered at tree

level.

2. One-loop graphs associated with the lowest-order Lagrangian L2.

3. The Wess–Zumino (1971)–Witten (1983) functional to account for the chiral

anomaly.

4.1. O(p4) Lagrangian

At O(p4), the most general§ Lagrangian, invariant under parity, charge conjugation
and the local chiral transformations (3.14), is given by (Gasser and Leutwyler 1985)

L4 =L1 ⟨DµU †DµU⟩2 + L2 ⟨DµU †DνU⟩ ⟨DµU †DνU⟩

+ L3 ⟨DµU
†DµUDνU

†DνU⟩ + L4 ⟨DµU †DµU⟩ ⟨U †χ + χ†U⟩

+ L5 ⟨DµU †DµU
(
U †χ + χ†U

)
⟩ + L6 ⟨U †χ + χ†U⟩2

+ L7 ⟨U †χ − χ†U⟩2 + L8 ⟨χ†Uχ†U + U †χU †χ⟩

− iL9 ⟨F µν
R DµUDνU

† + F µν
L DµU †DνU⟩ + L10 ⟨U †F µν

R UFLµν⟩

+ H1 ⟨FRµνF
µν
R + FLµνF

µν
L ⟩ + H2 ⟨χ†χ⟩ .

(4.1)

The terms proportional to H1 and H2 do not contain the pseudoscalar fields

and are therefore not directly measurable. Thus, at O(p4) we need ten additional
coupling constants Li to determine the low-energy behaviour of the Green functions.

These constants parametrize our ignorance about the details of the underlying QCD

dynamics. In principle, all the chiral couplings are calculable functions of ΛQCD and

the heavy-quark masses. At the present time, however, our main source of information

about these couplings is low-energy phenomenology.

4.2. Chiral loops

ChPT is a quantum field theory, perfectly defined through equation (3.19). As

such, we must take into account quantum loops with Goldstone-boson propagators
in the internal lines. The chiral loops generate non-polynomial contributions, with

logarithms and threshold factors, as required by unitarity.

The loop integrals are homogeneous functions of the external momenta and the
pseudoscalar masses occurring in the propagators. A simple dimensional counting

shows that, for a general connected diagram with Nd vertices of O(pd) (d = 2, 4, . . .)

and L loops, the overall chiral dimension is given by (Weinberg 1979)

D = 2L + 2 +
∑

d

Nd (d − 2) . (4.2)

§ Since we will only need L4 at tree level, the general expression of this Lagrangian has been simplified,
using the O(p2) equations of motion obeyed by U . Moreover, a 3 × 3 matrix relation has been used
to reduce the number of independent terms. For the two-flavour case, not all of these terms are
independent (Gasser and Leutwyler 1984, 1985).

L� =
f2

4
hDµUDµUi+ · · ·

Smaller by a “loop” ~ 1/Nc ~ 1/3!
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In a “SILH basis”:
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