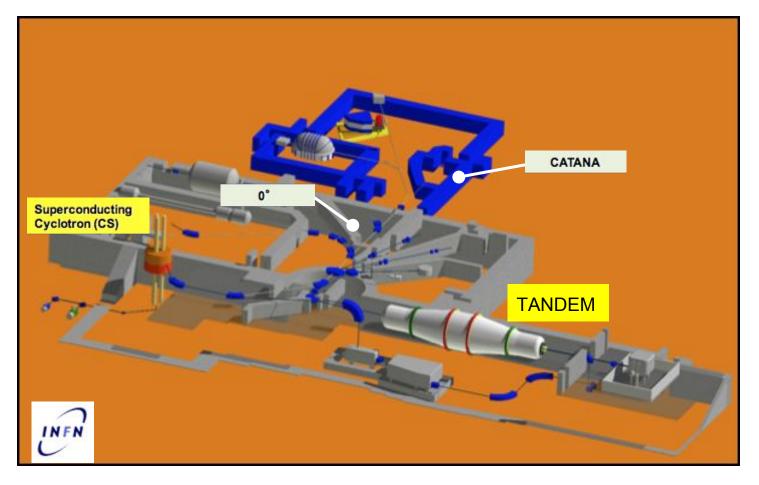
I. Multidisciplinary beamlines at LNS

II. Radiobiological facility

GAP Cirrone, P Pisciotta, FP Cammarata, V Marchese, G Petringa, G Russo

Outline


- CATANA protontherapy beamline
- Zero degrees beamline
- Dosimetric and monitoring devices
- Monte Carlo simulations instruments
- Radiobiology facilities
 - Cells growth laboratory
 - In-vitro and in-vivo activities

Multidisciplinary beamlines

Two experimental rooms available for multidisciplinary irradiations

- CATANA protontherapy room (clinical and monoenergetic proton beams, 62 MeV)
- **0° beamline** (proton and light ions up to 80 AMeV)

Equipments for beam diagnostic, dosimetry and monitoring are available

CATANA beamline

Dedicated to proton therapy irradiation

Dosimetry and radiobiology

In-air only

- Energy passively degraded
- Fast and easy positioning system

- Double scattering system for lateral spread \rightarrow homogeneity below 3%
- Collimated beams (1-35 mm diameter)
- Fixed elements limiting some applications:

Fluence High level homogeneity but no point-like spot like Radiation protection issues during the patient treatments may limit beam current

0° beamline

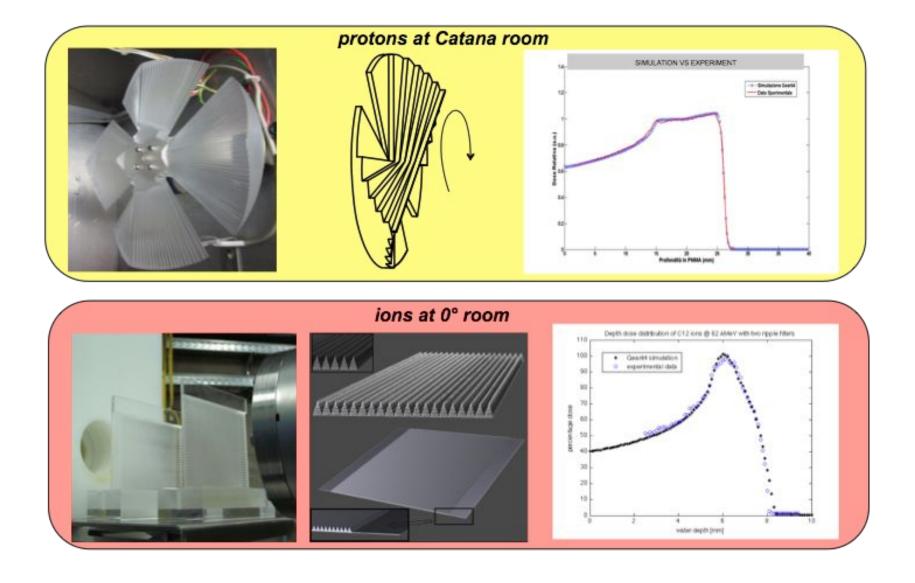
Transported beams: p, He, C, O, Ne, Ar, Kr, Xe, ...

Relative and absolute dosimetry

In-air only but also in-vacuum possibility

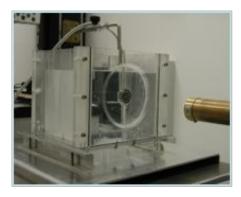
Certified beamline for ESA experiment

Fast and easy positioning system

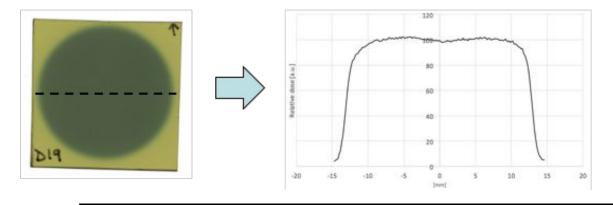

No particular constraints from fixed elements but ...

Homogeneity about 15%

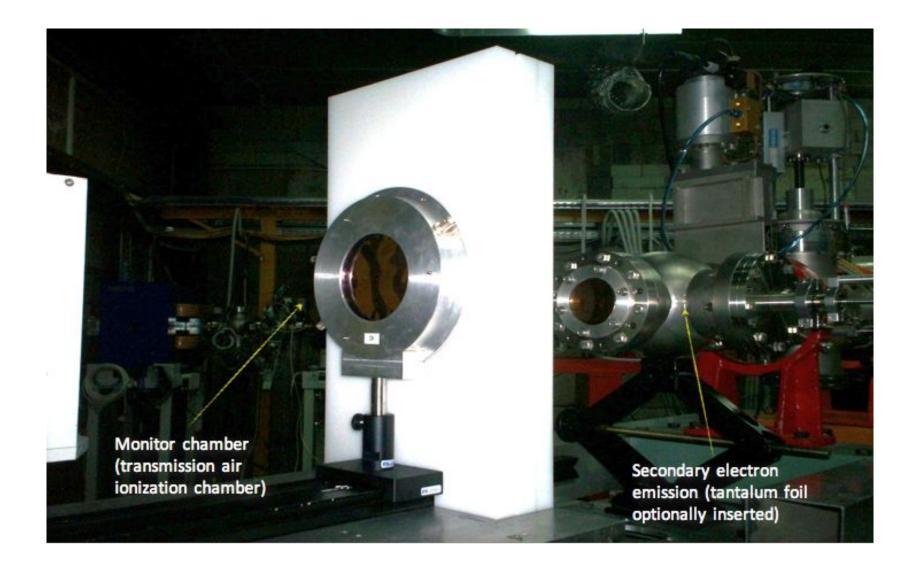
Final collimator can be removed but alignment must be repeated (4 h)

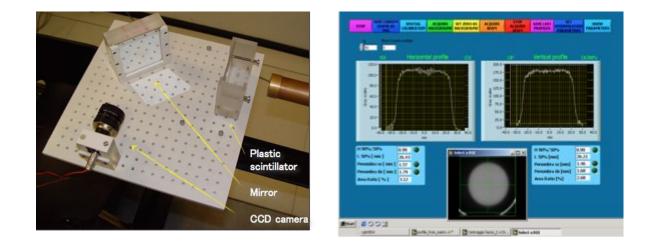

Longitudinal dose distributions

Absolute dosimetry and on-line beam monitoring

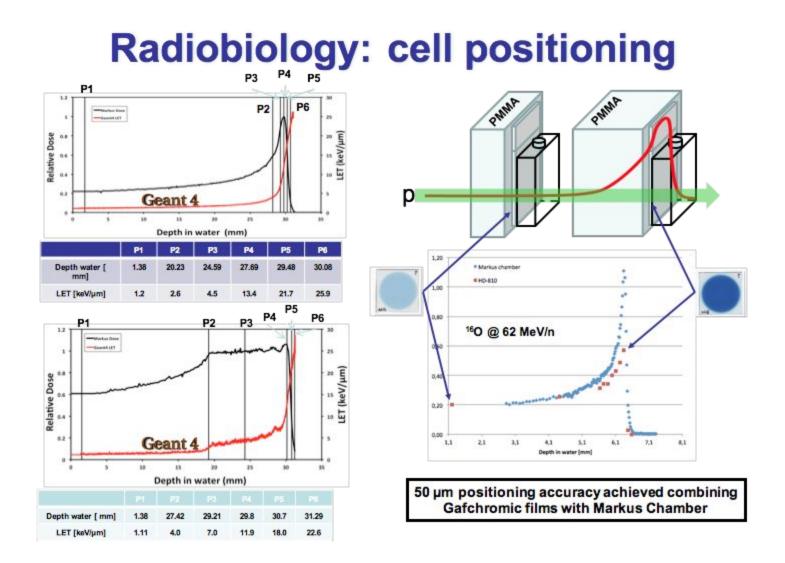

Dose distributions measurements

 Reference absolute dosimetry in a water phantom using plane-parallel PTW Markus ionization chamber, calibrated according to IAEA code of practice.



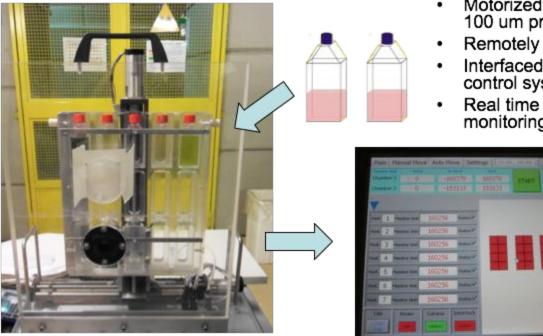

✓ Lateral dose distribution finally checked with radiochromic films (EBT3, HD-V2)

Absolute dosimetry and on-line beam monitoring


Relative dosimetry: Beam profile monitoring

2017 (new set-up) Plastic Scintillator EJ204: 0.5mm - 1mm mm CCD Basler NI supported RECOURSE Dedicated analysis software Relative Dose [%] Si.a.tel SCIONIX 10 -10 15 -15 -5 0 5 20 eretta CON SUPP. TELECAMERA Distance [mm]

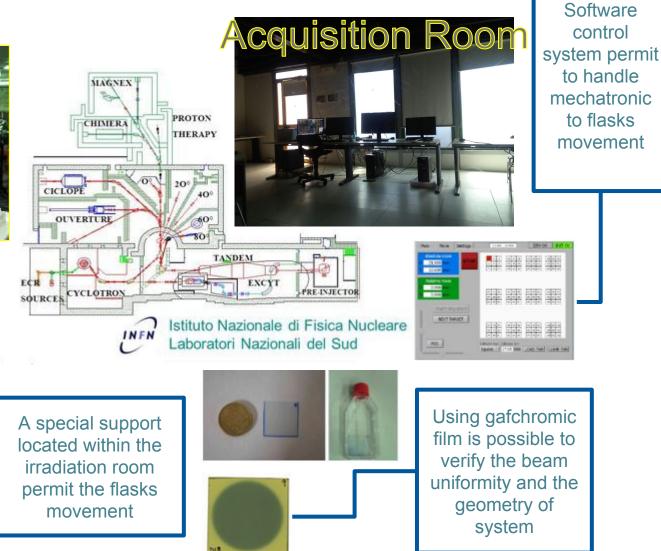
2004


Radiobiology: cells positioning

Radiobiology: irradiation device

Radiobiology: irradiation device

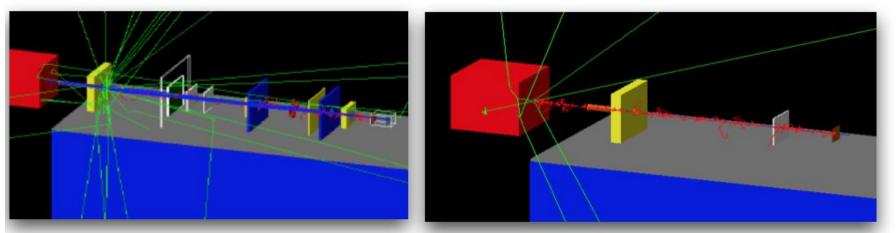
The software for remote cell positioning has been updated



- Motorized system with 100 um precision
- Remotely controlled
- Interfaced with beam control system
- Real time dose-rate monitoring

_ Acquisition room allow the monitoring and controlling of the beam

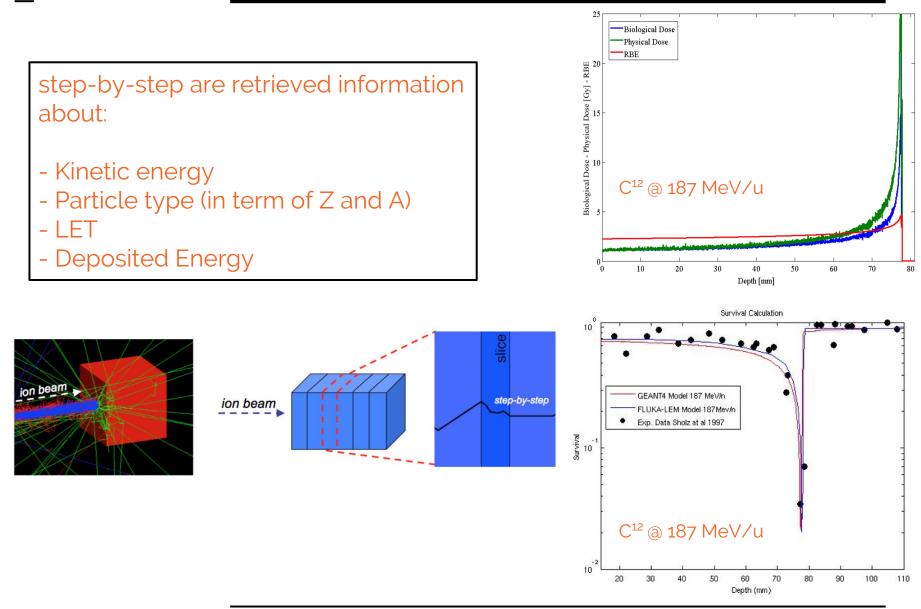
Monte Carlo support with the Geant4 toolkit


Beamline Simulations

CATANA beamline

zero degree beamline

Hadrontherapy example inside the Geant4 distribution


simulating the two LNS beam lines

LET calculation

Total LET-dose Total Dose Primary LET-dose 0 Proton Eluenc Exp. Dose 100 ABODO DIS-35 Total Let-dose 30 <LET>d (keV/µm) 25 Primary LET-dose 20 40 15 $\bar{L}_d^{MC}(z) = \frac{\sum_{k=1}^M dE_k (dE_k/dx_k)}{\sum_{k=1}^M dE_k}$ 10 25 20 120 Total Dose Total LET-dose 0 Primary LET-dose Proton Fluence 45 Exp. Dose 100 step-by-step are retrieved LET (keV/µm) information about: 25 40 - Step Length 15 - Particle type (in term of Z and A) - Deposited Energy 20 25 10 15 PMMA depth (mm)

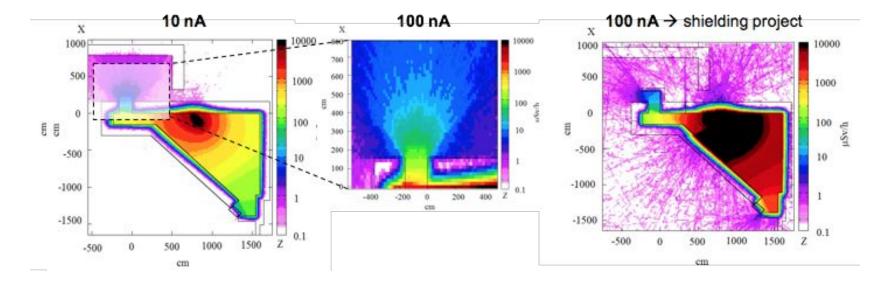
Romano et al. et al. 'A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line'Physics in Medicine and Biology 59 (2014)

RBE class

Radiobiology laboratory

Radiobiology: cell growth laboratory

- <u>New laboratory</u> (larger and more equipped than the previous one)
- Fully equipped with the basic system for a biological ٠ analysis
 - Centrifuge
 - Incubators
 - Sterilizer
 - Microscope
- CO₂ -centralized" system

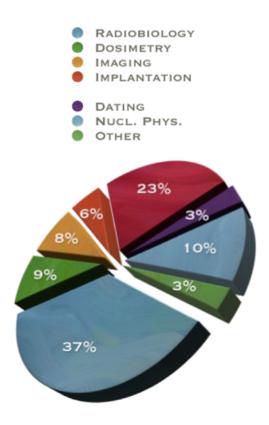


Overlapping of several groups no more critical

High current irradiations

- Requirements for high currents → radiation hardness experiments
- Upgrade for enabling 100 nA beam current at 0° room (10 nA so far)
 - o DIAPIX experiment for CVD diamond detectors radiation damage
 - Radioprotection issues → environmental radiation due on neutron production
 - o Funds from "Progetto Premiale IRPT " for the realization of new shielding solutions
 - o Same funds used also for cabling

Monte Carlo calculations of environmental radiation fields with p beams @ 62 MeV in zero degree room (by S. Russo and R. Leanza)



Users' statistics

- Both Catana and zero degree rooms recently used for scheduled experiments
- Dosimetry / beam monitoring / beam shaping / position procedures: tested and well working

User requirements:

- Mathematical Absolute and relative dosimetry
- On line measurements of beam lateral homogeneity
- Precise fluence measurements and contamination characterization
- Accurate protocol for checking the cell sample position
- In Larger spaces for radiobiology and post experiment cell survival analysis
- High current experiments
- Cabling connection outside/inside the exp. Room (on-going)

2017

12 Groups for an average of 40 shift

Radiobiology	6 (3 in-vivo)
Detectors	5
Imaging	1

cell biology

II. Radiobiological facility

animal sciences

in collaboration with:

RadioBiological Laboratory

PETs - Preclinical Hadrontherapy Studies **MoVe - IT** - Modeling and Verification for Ion beam Treatment planning

In vitro / ex vivo cell-based models

Using different cell lines:

- Tumorigenic: MCF7; MDA-MB-231 (BC cell lines) U87 (Glioma cells)
- Non-tumorigenic: MCF10A (BC cell lines)
- Normal and tumour primary cells from patients biopsies
- Under study:
 - new drugs and/or molecules radio sensitizing (LDS Siena - Betulla, etc...)

In vitro positioning system

Preclinical Hadrontherapy facilities

PETs - Preclinical Hadrontherapy Studies **MoVe - IT** - Modeling and Verification for Ion beam Treatment planning

In vivo approach with mouse models

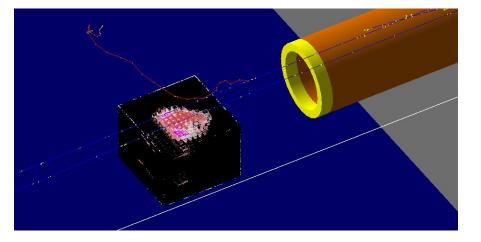
- Animal facility
- Health ministry authorization
- **Dosimetry** and **simulation** studies
- Personnel Felasa cat.C

CATANA facility @ INFN-LNS

In vivo positioning system

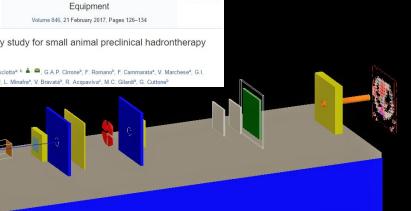
Hadrontherapy on tumours inoculated in mice

- **RBE** relative biological effectiveness
- intra-tumor heterogeneity.


Preclinical Monte Carlo studies

State of art

- Validation: \bigcirc
 - **Experimental validation** using gafchromic films and ionization chamber
- Preliminary in vivo test: 0
 - Small animal treatment plans. **Dose** distribution and **LET** assessment.



Juclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

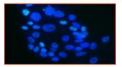
Preliminary study for small animal preclinical hadrontherapy facility

G. Russo^a, P. Pisciotta^{a, b,} 📥 🖼, G.A.P. Cirrone^b, F. Romano^b, F. Cammarata^a, V. Marchese^a, G.I. Forte^a, D. Lamia^a, L. Minafra^a, V. Bravatá^a, R. Acquaviva^c, M.C. Gilardi^a, G. Cuttone

- Reproduces mouse tissue based on **DICOM** micro-CT images
- Reproduces CATANA beam line
- Permits to evaluate a **3D dose maps** for different beam configurations (e.g. modulators, range shifters, collimator diameters. etc.)

Biomarkers discovery by proteogenomic technologies

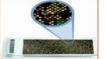
studies performed by



Morphologic and Clonogenic Assay

Evaluation of morphology and cell viability in terms of reproductive capacity, by clonogenic survival assay of treated cells

Immunofluorescence



Analysis of y-H2AX foci formation after treatment, as a marker of sensitive early cell response to the presence of DNA double-strand breaks

Luminex

Evaluation of inflammatory response induced by treatment and able to influence cell fate decision

Comparative differential gene expression analysis beween treated and untreated cells by Microarray

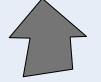
Genotyping AATACA GTTAA GTTTCC 71

Analysis of genetic alterations that could regulate radio-sensitivity and cell survival/death balance

Hadrontherapy

2. In vivo approach with mouse models

Unica filiera nazionale dalla Preclinica alla Terapia



New research platform and Radiopharmaceutical production

Unica filiera nazionale INFN dalla Preclinica alla Terapia (

Coming soon

"CAPIR" Center for Advanced Preclinical in vivo Research PET Already _ready!!! facility (checked in 4th May 2017) **Optical Imaging and Ultrasound Imaging facility** Coming soon "Behaviour" platform "CATANA" Centro di AdroTerapia e Applicazioni Cyclotron and Nucleari Avanzate Development of innovative Radiopharmaceuticals radiopharmaceuticals: production for internal clinical Proton irradiation of small purpose: animals [¹⁸F]-FLT ^{[18}F]-MISO [18F]-FDG Laboratory Animal Science [¹⁸F]-Fluoruro [¹¹C]-Colina FELASA cat.C [18F]-Colina [¹¹C]-Metionina Coming soon [⁶⁸Ga]-DOTATOC Quantification and elaboration of diagnostics imaging

Infrastructure update of RadioBiological Laboratory & **Preclinical Facilities:**

- Fluorescence microscopy (innovative radiobiological biomarker)
- -80 fridge and liquid nitrogen dewar
- metabolic cage

LNS

Thanks to

Amico Antonio

Cammarata Francesco

Leanza Renata

Marchese Valentina

Milluzzo Giuliana

Pisciotta Pietro

Petringa Giada

Russo Giorgio

The technical staff of LNS accelerators division

