Supersymmetric signals in Z' decays at the LHC

Gennaro Corcella

INFN, Laboratori Nazionali di Frascati

- 1. Introduction
- **2.** Z' bosons in U(1)' and Sequential Standard Model
- 3. Decays into SM and MSSM channels
- 4. Phenomenology at LHC for a reference point in the parameter space
- 5. Impact on exclusion limits
- 6. Conclusions and outlook

G.C. and S. Gentile, Nucl. Phys. B886 (2013) 293; G.C., EPJ C75 (2015) 264 and work in progress

Searches for heavy gauge bosons Z' among the main objectives of LHC GUT-inspired U(1)', Sequential Standard Model, Kaluza–Klein models LHC analyses focus on SM decays, e.g. high-mass dilepton resonances CMS (13 TeV): $\mathcal{L}=13 \text{ fb}^{-1} \Rightarrow m(Z'_{SSM}) > 4.0 \text{ TeV}$, $m(Z'_{GUT}) > 3.50 \text{ TeV}$ ATLAS (13 TeV): $\mathcal{L}=36.1 \text{ fb}^{-1} \Rightarrow m(Z'_{SSM}) > 4.5 \text{ TeV}$, $m(Z'_{GUT}) > 3.8-4.1 \text{ TeV}$ In BSM analyses, one may consider BSM Z' decays, e.g. in supersymmetry Lower SM branching ratios with BSM decays \Rightarrow lower Z' mass exclusion limits Z' standard decays still useful for searches, BSM modes for supersymmetry Z' constrains sparticle invariant masses, e.g. $Z' \rightarrow \tilde{\ell}^+ \tilde{\ell}^- \Rightarrow m_{Z'} = m_{\tilde{\ell} + \tilde{\ell}^-}$ Supersymmetric Z' decays allow study of unexplored phase space Decays $Z' \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$: monojet events and Dark Matter candidates Related work on supersymmetric Z' decays: Gherghetta et al ('98), Kang & Langacker ('05), Baumgart et al ('07), Chang et al ('11)

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

U(1)' gauge groups in GUT-inspired models:

$$\begin{split} \mathbf{E}_6 &\to \mathrm{SO}(10) \times \mathrm{U}(1)'_{\psi} \quad , \quad \mathrm{SO}(10) \to \mathrm{SU}(5) \times \mathrm{U}(1)'_{\chi} \\ & Z'(\theta) = Z'_{\psi} \cos \theta - Z'_{\chi} \sin \theta \\ \mathbf{E}_6 &\to \mathrm{SM} \times \mathrm{U}(1)'_{\eta} \quad \theta = \arccos \sqrt{5/8} \; \Rightarrow \; Z'_{\eta} \end{split}$$

Orthogonal combination to Z'_{η} : $\theta = \arccos \sqrt{5/8} - \pi/2 \Rightarrow Z'_{I}$ Secluded model (singlet S): $\theta = \arctan(\sqrt{15}/9) - \pi/2 \Rightarrow Z'_{S}$

Model Z'_N : Z'_{χ} -like, 'unconventional' SO(10) representations (10 vs 6, $\delta\theta = \arctan 15$)

Model	θ
Z'_{χ}	$-\pi/2$
Z'_ψ	0
Z'_η	$\arccos \sqrt{5/8}$
Z'_I	$\arccos \sqrt{5/8} - \pi/2$
Z'_N	$\arctan\sqrt{15} - \pi/2$
Z'_S	$\arctan(\sqrt{15}/9) - \pi/2$

Analysis will be carried out for Z'_{ψ} and Z'_{η} models, which yield higher cross sections

Minimal Supersymmetric Standard Model and U(1)' (a.k.a. UMSSM)

Extra singlet S to break U(1)' and give mass to the Z'

$$H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$$
 , $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$, $S = S^0$

Higgs sector after EWSB: h, H, A, H^{\pm} (MSSM) and a new scalar H'

Three vacuum expectation values v_u, v_d, v_s , $\tan \beta = v_u/v_d$ Gauginos: new \tilde{Z}' and \tilde{H}' imply two new neutralinos: $\tilde{\chi}_1^0, \ldots \tilde{\chi}_6^0$ ($\tilde{\chi}_{5,6}^0$ very heavy) Chargino sector is unchanged, as the Z' is neutral

D-term correction to sfermion masses: $\tilde{m}^2 = \tilde{m}_0^2 + \Delta \tilde{m}^2$ (\tilde{m}_0 soft mass at Z' scale)

$$\Delta \tilde{m}_a^2 = g'^2 Q'_a (Q'_{H_u} v_u^2 + Q'_{H_d} v_d^2 + Q'_S v_S^2)/2 \quad ; \quad g' = \sqrt{\frac{5}{3}} g_1 \ (\text{GUT})$$

New Z' decay modes besides the SM ones:

 $Z' \to \tilde{q}\tilde{q}^*, \ \tilde{\ell}^+\tilde{\ell}^-, \ \tilde{\nu}\tilde{\nu}^*, \ \tilde{\chi}^0_i\tilde{\chi}^0_j, \ \tilde{\chi}^+_{1,2}\tilde{\chi}^-_{1,2}, \ ZH, \ Zh, \ H^+H^-, \ WW$

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

Benchmark: $m_{Z'} = 2$ TeV, consistency with SUSY exclusion and 125 GeV Higgs

 $M_1 = 400 \text{ GeV} \simeq M_2/2$, M' = 1 TeV, $\tan \beta = 30$, $\mu = 200 \text{ GeV}$, $A_f \simeq 4 \text{ TeV}$

$$\begin{array}{l} \mathsf{U}(1)'_{\psi}: \ m_{\tilde{\ell}}^{0} = m_{\tilde{\nu}_{\ell}}^{0} = 1.2 \ \text{TeV} \ , \ m_{\tilde{q}}^{0} = 5.5 \ \text{TeV} \ (q = u, d, c, s), \\ m_{\tilde{b}}^{0} = m_{\tilde{t}}^{0} = 2.2 \ \text{TeV} \ \ (q_{1,2} \simeq q_{L,R}, \ \ell_{1,2} \simeq \ell_{L,R}) \quad \text{A. Arbey et al, arXiv:1112.3028} \end{array}$$

SARAH computes mass matrices at NLO, SPheno creates model files in the UFO format

$m_{\tilde{d}_1}$	$m_{ ilde{u}_1}$	$m_{ ilde{s}_1}$	$m_{ ilde{c}_1}$	$m_{\tilde{b}_1}$	$m_{ ilde{t}_1}$
5609.8	5609.4	5609.9	5609.5	2321.7	2397.2
$m_{ ilde{d}_2}$	$m_{ ilde{u}_2}$	$m_{ ilde{s}_2}$	$m_{ ilde{c}_2}$	$m_{\tilde{b}_2}$	$m_{ ilde{t}_2}$
5504.9	5508.7	5504.9	5508.7	2119.6	2036.3

$m_{ ilde{\ell}_1}$	$m_{\tilde{\ell}_2}$	$m_{ ilde{ au}_1}$	$m_{ ilde{ au}_2}$	$m_{ ilde{ u}_{\ell,1}}$	$m_{ ilde{ u}_{\ell,2}}$	$m_{ ilde{ u}_{ au,1}}$	$m_{ ilde{ u}_{ au,2}}$
1392.4	953.0	1398.9	971.1	1389.8	961.5	1395.9	961.5

m_h	m_H	$m_{H'}$	m_A	$m_{H^{\pm}}$
125.0	1989.7	4225.0	4225.0	4335.6

$\boxed{m_{\tilde{\chi}_1^+}}$	$m_{\tilde{\chi}_2^+}$	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{ ilde{\chi}_5^0}$	$m_{ ilde{\chi}_6^0}$
204.8	889.1	197.2	210.7	408.8	647.9	889.0	6193.5

Branching ratios of Z'_{ψ} into SM (~ 70%) and BSM (~ 30%) final states

Final State	Z_ψ^\prime Branching ratio (%)
$\tilde{\chi}_1^+ \chi_1^-$	10.2
$ ilde{\chi}^0_1 ilde{\chi}^0_1$	4.9
$ ilde{\chi}^0_2 ilde{\chi}^0_2$	5.1
$ ilde{\chi}^0_4 ilde{\chi}^0_4$	8.0
hZ	1.4
W^+W^-	2.9
$\sum_i q \bar{q}$	50.1
$\sum_i u_i \overline{ u}_i$	8.3
$\sum_{i} \ell_{i}^{+} \ell_{i}^{-}$	8.3

 $Z'_{\psi} \to \tilde{\chi}_1^+ \tilde{\chi}_1^-$ exhibits the highest branching ratio: need to consider $\tilde{\chi}_1^{\pm}$ rates

Final State	χ_1^+ branching ratio (%)
$ ilde{\chi}^0_1 \; u ar{d}$	34.3
$ ilde{\chi}^0_1 \; uar{c}$	1.8
$ imes ilde{\chi}^0_1 \; c ar{d}$	1.6
$ ilde{\chi}^0_1 \ c ar{s}$	29.3
$\tilde{\chi}^0_1 \ \ell^+ \nu_\ell$	32.9

Final states with leptons ($\ell = e, \mu$) and missing transverse energy

In the reference point, at $\sqrt{s} = 14$ TeV, using MadGraph and LO CTEQL1:

$$\begin{split} &\sigma(pp \to Z'_{\psi}) \simeq 0.13 \text{ pb} \ ; \ \mathrm{BR}(Z'_{\psi} \to \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}) \simeq 10.2\% \ ; \ \mathrm{BR}(\tilde{\chi}_{1}^{+} \to \tilde{\chi}_{1}^{0} \ell^{+} \nu_{\ell}) \simeq 24\% \\ &\sigma(pp \to Z'_{\psi} \to \ell^{+} \ell^{-} + \mathrm{MET}) \simeq 8 \times 10^{-4} \text{ pb} \Rightarrow N \simeq 80 \ (100 \text{ fb}^{-1}) \ , \ N \simeq 240 \ (300 \text{ fb}^{-1}) \\ &\mathsf{Competitive process:} \ pp \to \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \to (\tilde{\chi}_{1}^{0} \ell^{+} \nu_{\ell}) (\tilde{\chi}_{1}^{0} \ell^{-} \bar{\nu}_{\ell}) \ \ (\sigma \simeq 1.15 \times 10^{-2} \text{ pb}) \end{split}$$

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

 $\tilde{\chi}_1^0$ DM signals in Z' decays: $Z'_{\eta \eta} \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1$ Z'(MadGraph+HERWIG – χ_1^0 mostly higgsino) $\tilde{\chi}_1^0$ $BR(Z'_{\psi} \to \tilde{\chi}^0_1 \tilde{\chi}^0_1) \simeq 10\% \Rightarrow \sigma(pp \to Z'_{\psi} \to \tilde{\chi}^0_1 \tilde{\chi}^0_1) \simeq 6.4 \times 10^{-3} \text{ pb at 14 TeV}$ $N \simeq 640$ (100 fb⁻¹) or 2×10^3 (300 fb⁻¹) with possible Dark Matter candidates Competitive process: $Z'_{\psi} \rightarrow \nu \bar{\nu}$: $\sigma \simeq 1.1 \times 10^{-2}$; $N \simeq \mathcal{O}(10^3)$ Solid: Z'ų→ MET Dashes: Z'_#→ neutralinos Dots: Z'_{\$}→ neutrinos (pb/GeV) do∕d MET 10

 10^{-6} 100 200 300 400 MET (GeV)

Similar shapes $(m_{\tilde{\chi}_1^0} \ll m_{Z'})$, but $\sigma(pp \to \text{MET})$ increases by 60% adding neutralinos In progress: implementation of jet/photon clustering algorithms

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

 $\mathsf{U}(1)'_{\eta}$ model: $m^0_{\tilde{\ell}} = m^0_{\tilde{\nu}_{\ell}} = 1.5~\mathrm{TeV}$, $m^0_{\tilde{q}} = 3~\mathrm{TeV}$ (degenerate squarks)

$m_{\tilde{d}_1}$	$m_{\tilde{u}_1}$	$m_{\tilde{s}_1}$	$m_{\tilde{c}_1}$	$m_{\tilde{b}_1}$	$m_{\tilde{t}_1}$
3130.8	3129.8	3130.8	3129.8	3130.8	3175.5
$m_{\tilde{d}_2}$	$m_{ ilde{u}_2}$	$m_{\tilde{s}_2}$	$m_{ ilde{c}_2}$	$m_{ ilde{b}_2}$	$m_{ ilde{t}_2}$
3065.9	2863.6	3065.9	2863.6	3065.9	2823.5

$m_{ ilde{\ell}_1}$	$m_{\tilde{\ell}_2}$	$m_{ ilde{ au}_1}$	$m_{ ilde{ au}_2}$	$m_{\tilde{\nu}_{\ell,1}}$	$m_{\tilde{ u}_{\ell,2}}$	$m_{ ilde{ u}_{ au,1}}$	$m_{\tilde{\nu}_{\tau,2}}$
1194.6	1364.5	1208.8	1307.7	1361.8	456.0	1368.0	456.05

m_h	m_H	$m_{H'}$	m_A	m_{H^+}
124.9	2004.2	4229.4	4229.4	4230.0

$\boxed{m_{\tilde{\chi}_1^+}}$	$m_{\tilde{\chi}_2^+}$	$m_{ ilde{\chi}^0_1}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{ ilde{\chi}_5^0}$	$m_{ ilde{\chi}_6^0}$
206.5	882.4	199.3	212.5	408.2	882.3	1562.8	2569.2

Branching ratios of Z'_{η} into SM (~ 78%) and BSM (~ 22%) final states

Final State	Z'_η Branching ratio (%)
$\tilde{\chi}_1^+ \chi_1^-$	5.6
$ ilde{\chi}^0_1 ilde{\chi}^0_1$	1.9
$ ilde{\chi}^0_2 ilde{\chi}^0_2$	2.1
$ ilde{\chi}^0_1 ilde{\chi}^0_2$	1.5
$\sum_{\ell} \tilde{\nu}_{\ell,2} \tilde{\nu}_{\ell,2}^*$	9.4
W^+W^-	3.0
$\sum_i q_i \bar{q}_i$	41.6
$\sum_i u_i \overline{ u}_i$	27.8
$\sum_{i} \ell_{i}^{+} \ell_{i}^{-}$	5.3

 $Z' \rightarrow \tilde{\nu}_2 \tilde{\nu}_2^*$ exhibits the largest branching fraction

$ ilde{ u}_2$ Final State	Branching ratio (%)	$ ilde{\chi}^0_2$ Final State	Branching ratio (%)
$ ilde{\chi}^0_1 u_2$	4.0	$\sum_i ilde{\chi}^0_1 q_i ar{q}_i$	63.3
$ ilde{\chi}^0_2 u_2$	37.3	$\sum_i \tilde{\chi}_1^0 \ell_i^+ \ell_i^-$	13.4
$ ilde{\chi}_3^0 u_2$	58.7	$\sum_i ilde{\chi}_1^0 u_i ar{ u}_i$	20.6

Main $\tilde{\chi}_3^0$ decay: $\mathsf{BR}(\tilde{\chi}_3^0 \to \tilde{\chi}_1^{\pm} W^{\mp}) \simeq 56\%$

Final states with leptons and missing transverse energy

In the reference point, at $\sqrt{s} = 14$ TeV (MadGraph and LO CTEQL1): $\sigma(pp \to Z'_n) \simeq 0.18 \text{ pb} ; \text{BR}(Z'_n \to \tilde{\nu}_2 \tilde{\nu}_2^*) \simeq 9.4\%$

 $\mathrm{BR}(\tilde{\nu}_2 \to \tilde{\chi}_2^0 \nu_2) \times \mathrm{B}(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+ \ell^-) \simeq 3.3\%$

 $\sigma(pp \to Z'_{\eta} \to 4\ell + \text{MET}) \simeq 1.90 \times 10^{-4} \text{ pb} \Rightarrow N \simeq 20 \ (100 \text{ fb}^{-1}), \ N \simeq 60 \ (300 \text{ fb}^{-1})$

Supersymmetric extensions of the SSM (S-SSM): the Z' couples to fermions, sfermions and gauginos like the Z ($Z' \rightarrow WW$ must be suppressed because of unitarity)

Effective model: \tilde{Z}' is too heavy to be relevant at LHC

$m_{\tilde{d}_1}$	$m_{\tilde{u}_1}$	$m_{\tilde{s}_1}$	$m_{ ilde{c}_1}$	$m_{\tilde{b}_1}$	$m_{ ilde{t}_1}$
5000.0	5000.0	5000.0	5000.0	1480.6	1486.8
$m_{ ilde{d}_2}$	$m_{ ilde{u}_2}$	$m_{ ilde{s}_2}$	$m_{ ilde{c}_2}$	$m_{\tilde{b}_2}$	$m_{ ilde{t}_2}$
5000.0	5000.0	5000.0	5000.0	1460.7	1390.2

$m_{ ilde{\ell}_1}$	$m_{ ilde{\ell}_2}$	$m_{ ilde{ u}_{1,\ell}}$	$m_{ ilde{ u}_{2,\ell}}$
502.0	502.0	495.0	495.0

m_h	m_H	m_A	m_{H^+}
125.8	638.7	632.8	637.8

$m_{\tilde{\chi}^+_1}$	$m_{\tilde{\chi}^+_2}$	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}_4^0}$
198.6	835.8	193.5	197.7	413.6	836.0

Branching ratios of $Z^\prime_{\rm S-SSM}$ into SM and BSM final states

Final State	Z' Branching ratio (%)		
$\tilde{\chi}_1^+ \chi_1^-$	16.6		
$ ilde{\chi}^0_3 ilde{\chi}^0_4$	3.4		
$\sum_i ilde{ u}_i ilde{ u}_i^*$	4.0		
$\tilde{\chi}_2^+ \tilde{\chi}_2^-$	2.5		
hZ	2.0		
$\sum_i q_i \bar{q}_i$	47.8		
$\sum_i u_i ar u_i$	12.2		
$\sum_i \ell_i^+ \ell_i^-$	6.1		

As in Z'_{ψ} case, the mode $Z'_{\rm S-SSM} \to \tilde{\chi}^+_1 \chi^-_1$ has the highest BR

Final State	$ ilde{\chi}_1^+$ branching ratio (%)		
$\tilde{\chi}^0_1 u d$	38.9		
$\tilde{\chi}_1^0 \ c \overline{s}$	28.9		
$\tilde{\chi}_1^0 \ \ell + \nu_\ell$	30.9		

 $\sigma(pp \to Z'_{\rm S-SSM} \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to \ell^+ \ell^- + {\rm MET}) \simeq 6 \times 10^{-3} {\rm \ pb}$

 $N\simeq 600$ ($\mathcal{L}{=}100~{
m fb}^{-1}$), $N\simeq 2 imes 10^3$ ($\mathcal{L}{=}300~{
m fb}^{-1}$), with same spectra as Z'_ψ

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Mass exclusion limits in the SUSY reference point (Run I data)

Solid: SM+BSM decays ; Dashes: only SM decays; $R_{\sigma} = (\sigma \text{ BR})_{Z'}/(\sigma \text{ BR})_Z$ Black: CMS (right) and ATLAS (left) 95% C.L. limits; Red: Z'_{SSM} ; Blue: Z'_{ψ} Excluded-mass shift: Z'_{SSM} : $\Delta m \simeq 300 \text{ GeV}$; Z'_{ψ} : $\Delta m \simeq 200 \text{ GeV}$ In progress: extension to 13 TeV and comparison with the latest LHC data

Conclusions and outlook

Novel investigation on Z' phenomenology in supersymmetry at the LHC Supersymmetric modes decrease SM rates; the Z' constrains sparticle invariant masses BSM branching ratios can be 30% in U(1)' models Up to $\mathcal{O}(10^3)$ events with leptons and missing energy via Z' decays Discrimination from dilepton decays and other supersymmetric modes is feasible Z' decays into the lightest neutralinos channel for Dark Matter candidates $(\Delta m_{Z'})_{\min} \approx 200\text{-}300 \text{ GeV}$ for a reference point in the parameter space In progress:

Implementation of the leptophobic model to enhance SUSY rates

Investigation of DM signals in mono-X events

Comparison with 13 TeV exclusion limits and Standard Model backgrounds (ALPGEN) Inclusion of higher-order QCD effects in production and decay cross sections Same methods can be applied to any Z' decays in BSM channels

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

U(1)' gauge groups in GUT-inspired models:

$$E_{6} \rightarrow SO(10) \times U(1)'_{\psi} \quad , \quad SO(10) \rightarrow SU(5) \times U(1)'_{\chi}$$
$$Z'(\theta) = Z'_{\psi} \cos \theta - Z'_{\chi} \sin \theta$$
$$E_{6} \rightarrow SM \times U(1)'_{\eta} \quad \theta = \arccos \sqrt{5/8} \Rightarrow Z'_{\eta}$$

Orthogonal combination to Z'_{η} : $\theta = \arccos \sqrt{5/8} - \pi/2 \Rightarrow Z'_{I}$ Secluded model (singlet S): $\theta = \arctan(\sqrt{15/9}) - \pi/2 \Rightarrow Z'_{S}$ Representations of E₆, SO(10) and SU(5):

E₆ : 27 =
$$(Q, u^c, e^c, L, d^c, \nu^c, H, D^c, H^c, D, S^c)_L$$

$$\mathbf{SU}(5): 10 = (Q, u^c, e^c), \overline{5} = (L, d^c), 1 = (\nu^c), \overline{5} = (H, D^c), 5 = (H^c, D), 1 = (S^c)$$

'Conventional' SO(10) : 16 = $(Q, u^c, e^c, L, d^c, \nu^c)$, 10 = (H, D^c, H^c, D) , 1 = (S^c)

'Unconventional' SO(10) : $16 = (Q, u^c, e^c, H, D^c, \nu^c), 10 = (L, d^c, H^c, D), 1 = (S^c)$

From conventional to unconventional SO(10) (Nardi–Rizzo '94): $\theta \rightarrow \theta + \arctan \sqrt{15}$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

U(1)' coupling and charges in the conventional assignments:

		$2\sqrt{10} O'$	$2\sqrt{6} O'$	$2\sqrt{15} O'$
		$2\sqrt{10} Q_{\chi}$	$2\sqrt{0} \sqrt{2}\psi$	$2\sqrt{10} \sqrt{2}\eta$
	Q	-1	1	2
	u^c	-1	1	2
1	d^c	3	1	-1
	L	3	1	-1
	e^{c}	-1	1	2
	$ u_e^c$	-5	1	5
	H	-2	-2	-1
	H^c	2	-2	-4
	S^c	0	4	5
	D	2	-2	-4
ļ	D^c	-2	-2	-1

 $g' = \sqrt{\frac{5}{3}} g_1 \; ; \; Q'(\Phi) = Q'_{\psi}(\Phi) \cos \theta - Q'_{\chi}(\Phi) \sin \theta$

 $Q = (u \ d)_L$, $L = (e \ \nu_e)_L$, D: (s)quarks, H: (s)leptons, S: singlet Assumption: D and H are exotic quarks and leptons much heavier than the Z'ZZ' mixing is also neglected (J.Erler et al., JHEP09: $\sin \theta_{ZZ'} \sim 10^{-3}$ - 10^{-4}) Analysis will be carried out for Z'_{ψ} and Z'_{η} models, which yield higher cross sections