

Search for high mass resonances with ATLAS

Marianna Testa LNF-INFN

Spring Institute: Challenging the Standard Model after the Higgs discovery 12 May 2017 *Laboratori Nazionali di Frascati*

Introduction

- After Higgs discovery, the Standard Model (SM) is a self-consistent theory
- So far in good agreement with data
- Many *experimental* observations not explained in the SM
 - Nature of Dark Matter/Energy
 - Baryon asymmetry
 - neutrino masses
- Theory problems:
 - Hierarchy problem: $m_{EW}/M_{Pl} \sim 10^{-16}$
 - How to accomodate gravity
 - Unexplained hierarchical structure of Yukawa couplings

(*) in this talk

Model and ideas to address them:

- SUSY
- (*)• Compositeness, Extra dimensions
- (*)• Extended Higgs Sector
 - Top Partner
- (*)• W'/Z'
 - Minimal Dark Matter
 - Hidden Sectors

Search of physics beyond the SM is well motivated

Introduction

ATLAS has an extensive search program to prove or discard models

	Sta	tus: August 2016	caren	03	55/				f c de la	$\mathbf{A} \mathbf{I} \mathbf{L} \mathbf{F}$	
		Model	ℓ,γ	Jets†	$\mathbf{E}_{\mathbf{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Limit	$\int \mathcal{L} dt = (3)$	3.2 - 20.3) ID -	$\sqrt{s} = \delta$, 13 le Reference
*)	Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH $\beta \ell q$ ADD QBH high $\sum p_T$ ADD BH high $\sum p_T$ ADD BH multiplt RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$ \begin{array}{c} - \\ 2 e, \mu \\ 1 e, \mu \\ - \\ 2 1 e, \mu \\ - \\ 2 \varphi \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 1 e, \mu \\ 1 e, \mu \\ \end{array} $	$\geq 1 j$ $-$ $1 j$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $-$ $1 J$ $4 b$ $\geq 1 b, \geq 1 J/2$ $\geq 2 b, \geq 4$	Yes Yes 2j Yes	3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.2 13.3 20.3 3.2	Мо Ms Ms Mth Mth Mth Grkt mass Grkt mass Grkt mass KK mass	2.66 TeV 360-860 GeV 2.2 TeV 1.24 TeV 2.2 TeV 1.45 TeV	.58 TeV V eV 8.7 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2 \\ n=3 \ \text{HLZ} \\ n=6 \\ n=6, \ M_D=3 \ \text{TeV}, \ \text{rot BH} \\ n=6, \ M_D=3 \ \text{TeV}, \ \text{rot BH} \\ n=6, \ M_D=3 \ \text{TeV}, \ \text{rot BH} \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=1.0 \\ \text{BR}=0.925 \\ \text{Tier}(1,1), \ \text{BR}(A^{(0,1)} \rightarrow tt)=1 \end{array}$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-06 1606.02285 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-04 1505.07018 ATLAS-CONF-2016-04 1505.07018
*)	Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qqrv \ \mathrm{model} \ h \\ \operatorname{HVT} W' \to WZ \to qqqq \ \mathrm{model} \\ \operatorname{HVT} W' \to WZ \to qqrq \ \mathrm{model} \\ \operatorname{HVT} W' \to WZ \to qqrq \ \mathrm{model} \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W_R \to tb \end{array}$	$2 e, \mu$ 2τ $-$ $1 e, \mu$ $A 0 e, \mu$ $B -$ multi-channe $1 e, \mu$ $0 e, \mu$	- 2 b - 1 J 2 J ≥l b, 0-1 j ≥1 b, 1 J	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass W' mass	4.05 TeV 2.02 TeV 1.5 TeV 4.74 Te 2.4 TeV 3.0 TeV 2.31 TeV 1.92 TeV 1.76 TeV	V	$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-04 1502.07177 1603.08791 ATLAS-CONF-2016-06 ATLAS-CONF-2016-05 ATLAS-CONF-2016-05 1607.05621 1410.4103 1440.0886
^k)	CI	Cl qqqq Cl llqq Cl uutt	 2 e, μ 2(SS)/≥3 e,,	2 j u ≥1 b, ≥1 j	– – Yes	15.7 3.2 20.3	Λ Λ Λ	4.9 Tr	۶V	19.9 TeV $\eta_{LL} = -1$ 25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$	ATLAS-CONF-2016-06 1607.03669 1504.04605
	MQ	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	$\ge 1 j$ 1 j 1 J, $\le 1 j$	Yes Yes Yes	3.2 3.2 3.2	m _A m _A M.	1.0 TeV 710 GeV 550 GeV		$\begin{array}{l} g_q{=}0.25,g_\chi{=}1.0,m(\chi)<250\;{\rm GeV}\\ g_q{=}0.25,g_\chi{=}1.0,m(\chi)<150\;{\rm GeV}\\ m(\chi)<150\;{\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-08
	ΓO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	$\begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array}$	– – Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 TeV 1.05 TeV 640 GeV		$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array} \end{array}$	1605.06035 1605.06035 1508.04735
	Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	$\begin{array}{c} 1 \ e, \mu \\ 1 \ e, \mu \\ 2 \ge 3 \ e, \mu \\ 1 \ e, \mu \\ 2 (\text{SS}) \ge 3 \ e, \rho \end{array}$	$ \begin{array}{l} \geq 2 \ b, \geq 3 \] \\ \geq 1 \ b, \geq 3 \] \\ \geq 2 \ b, \geq 3 \] \\ \geq 2 \ b, \geq 3 \] \\ \geq 2/\geq 1 \ b \\ \geq 2/\geq 1 \ b \\ \geq 4 \ j \\ u \geq 1 \ b, \geq 1 \ j \end{array} $	Yes Yes - Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass Y mass B mass B mass Q mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 990 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-03
)	Excited fermions	Excited quark $q^ \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton t^* Excited lepton γ^*	1 γ - - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass q* mass b* mass b* mass l* mass l* mass v* mass	4.4 TeV 5.6 2.3 TeV 1.5 TeV 3.0 TeV 1.6 TeV	TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-06 ATLAS-CONF-2016-06 1510.02664 1411.2921 1411.2921
	Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ - -	– 2 j – 1 b –	Yes - Yes -	20.3 20.3 13.9 20.3 20.3 20.3 7.0	a⊤ mass N ⁰ mass H ^{±±} mass Bin-1 invisible particle mass multi-charged particle mass monopole mass	960 GeV 570 GeV 400 GeV 657 GeV 785 GeV 1.34 TeV		$\begin{split} m(W_R) &= 2.4 \text{ TeV}, \text{ no mixing} \\ DY \text{ production, BR}(H_{\ell^{\pm\pm}}^{\pm\pm} \rightarrow ee) \text{-1} \\ DY \text{ production, BR}(H_{\ell^{\pm\pm}}^{\pm\pm} \rightarrow \ell\tau) \text{=1} \\ a_{non-ne} &= 0.2 \\ DY \text{ production, } g = 5e \\ DY \text{ production, } g = 1_{gD}, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 ATLAS-CONF-2016-05 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. *†Small-radius (large-radius) jets are denoted by the letter j (J).*

ATLAS Exotics Summary

(*) models tested in this talk Marianna Testa

Search for resonances

Plots from A.C Gonzalez

Search for resonances as for bumps the

- SM background modelling crucial
 - both data driven techniques and simulation
- Various signatures with different resonances widths
- Aim to model independent limits

Use all decay channels

- Fully hadronic
 - di-jet, V(qq)+H(qq)
- With leptons
 - dileptons, lepton + E_T^{miss}
- with Photons
 - photon + E_T^{miss}

in this talk

Search for deviations

Plots from A.C Gonzalez

Search for modifications in angular and mass distributions arising from **new contact interaction (CI) scales**.

New mediating particle with a mass much higher than the energy exchange modeled as contact interaction with new physics at energy scale Λ .

- Dilepton
 - Broad excess in invariant mass distributions
- Dijets
 - Cl is often more isotropic than
 QCD→use angular information

ATLAS

Excellent performance of LHC at Vs =13 TeV in Run 2 (2015+2016) and high **data taking efficiency** by detectors

- ~40 fb-1 @ 13 TeV recorded in 2015 and 2016
- Data quality efficiency 93-95%
- Increased pile-up conditions with
 - \rightarrow challenging reconstruction

Search for new phenomena in di-jets

arXiv:1703.09127

Search for new phenomena in di-jets

Di-jets final states sensitive to a broad class of new phenomena, through **generic** features of Beyond Standard Models (BSM) signals

Resonances searches

Di-jets angular distributions anomalies:

- localized excess in the m_{jj} distribution
- Sensitive to narrow resonance:
 - Quantum Black Hole (QBH), Excited quark (q*), W', excited W*

- BSM give more isotropic signature wrt to QCD
- More sensitive to non-resonant signals
 - Contact interactions at compositeness scale Λ

Resonance Search in di-jets

- Single jet trigger $p_T > 380 \text{ GeV}$
- p_T^{lead(sub)} > 440 (60) GeV
- To suppress t-channel scattering:
 - y* < 0.6(1.2), y* = | y _{lead}-y_{sublead} | / 2
 - m_{jj} > 1.1(1.7) TeV (for W*)
 - fully efficient trigger selection
 - Smooth QCD background from a Sliding Window Fit
- BumpHunter algorithm to scan for excesses
 - Most discrepant interval: 4326 4595 GeV
 - global significance of 0.63 (0.83 for W*)

No evidence of a localized contribution from BSM phenomena

Resonance Search in di-jets: Exclusion limits

	95 %CL exclusion limit		
Model	Observed	Expected	
Quantum Black Hole, ADD	8.9 TeV	8.9 TeV	
Excited quark	6.0 TeV	5.8 TeV	
W'	3.7 TeV	3.7 TeV	
W*	3.4 TeV, 3.8-3.9 TeV	3.6 TeV	

Improved limits from 7% to 40% wrt analysis based on 3.2 fb⁻¹

Limits on generic Gaussian signals

- can be re-interpreted with various signal models at particle level
- MC-based folding methods to factorize physics & detector effects

Marianna Testa

 m_{G} [TeV]

Resonance Search in di-jets: Limits on Z'

Z' model: axial-vector couplings to SM quarks and to Dirac fermion dark matter

Assume decay to DM negligible:

→ rate and resonance width depend only on the coupling to quarks, g_q , and the mass of the resonance $m_{Z'}$

For $g_q=0.6$ the intrinsic width of the Z' in the mass range of interest increases to 15%. \rightarrow Results limited $g_q \le 0.5$

Angular Searches in di-jets

- Single jet trigger $p_T > 380 \text{ GeV}$, $p_T^{\text{lead(sub)}} > 440(60) \text{ GeV}$
- $y^* < 1.7$, $y_B < 1.1$, $m_{jj} > 2.5$ TeV, y_B semi-sum of rapidities
- Signal: Contact interactions at compositeness scale Λ

$$L_{qq} = \Lambda^{2} \eta_{LL}(\bar{q}_{L}\gamma^{\mu}q_{L})(\bar{q}_{L}\gamma_{\mu}q_{L}) + \eta_{RR}(\bar{q}_{R}\gamma^{\mu}q_{R})(\bar{q}_{R}\gamma_{\mu}q_{R}) + 2\eta_{RL}(\bar{q}_{R}\gamma^{\mu}q_{R})(\bar{q}_{L}\gamma_{\mu}q_{L})]$$
$$\eta_{LL} = \pm 1, \eta_{RR} = \eta_{RL} = 0$$

- QCD background described by MC, normalized to data in each m_{jj} bin
- Dominant Uncertainty:
- Jet energy scale (exp) and renormalization/factorization scales (theory) Marianna Testa

,

$$\chi = e^{y*} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

Angular Searches in di-jets: Exclusion limits on contact interactions

to resonance search

Negative (positive) interference of signal model $\eta_{LL} = +1(-1)$ with SM QCD

Diboson Resonances

Many BMS predict resonances decaying to VV, VH, HH (V=W,Z)

Boosted (J) or Resolved (j1,j2) technique used depending on boson p_T

At low mass, exploit leptonic channels, intermediate mass lepton+jets, high mass m_{VH} >1 TeV "all hadronic" decay

Diboson Resonances: V(qq) H(bb) Search

Advantages

Large BRs: W/Z \rightarrow qq (67%), H \rightarrow bb (~70%)

Benchmark :

- Heavy Vector Triplet bosons Z'/W'
 - Couple to the Higgs/SM gauge bosons and to fermions
- *Model A*: comparable BR to fermions and gauge bosons.
- Model B: Suppressed couplings to fermions

Strategy:

- Search highly boosted (pT>1 TeV)
 V→qq and H→bb
 - Better QCD rejections
- Reconstruct large R =1.0 jets to capture decay sub-jets
- → **boson tagging** techniques crucial
 - Discriminate signal jets from background jets from QCD/ pile-up jets

ATLAS-CONF-2017-018

H

Boosted jets: Increasing transverse momentum

W/Z tagging techniques

<u>ATL-PHYS-PUB-2015-033</u>

JETM-2017-004

- Reconstruct large R-jets: Anti-kt, R=1.0 jet
- Use Trimming to improve mass resolution
- Combine tracking information (better angular resolution)

$$m_J \equiv w_{\text{calo}} \times m_J^{\text{calo}} + w_{\text{track}} \times \left(m_J^{\text{track}} \frac{p_T^{\text{calo}}}{p_T^{\text{track}}} \right)$$

Specific for W/Z tagging:

- p_T-dependent mass window
- Cut on D2^{B=1} exploits 2 and 3-point energy correlation functions

$H \rightarrow bb$ tagging techniques

- Require
 - Matching R=0.2 b-tagged track jet(s) to calorimeter jet
 - Trimmed jet mass and the trimmed jet energy correlation ratio $D_2^{\beta=1}$
 - For H $p_T \gtrsim 1$ TeV, track jets start to merge \rightarrow only require one

ATLAS-CONF-2016-039

V(qq) H(bb) Search

Acceptance × Efficiency

- Leading(sub) jet $p_T > 450(250)$ GeV
- Larger mass jet assigned as Higgs candidate
- H and W/Z tagging applied
- Events categorized #b-tagged track jets associated to the H-jet (1-tag and ≥2-tag)
- WH and ZH SRs not orthogonal : ~60% overla
- Multijet background from 0-tag sample
- SR normalization from sideband
- Main systematic uncertainty:
 - signal@m=2TeV : 10-15 %
 - from B-tagging and Jet mass resolution
 - Backgrund: ~ 5%
 - from b-tagging and tt normalization

Higgs boson candidate mass [GeV]

V(qq) H(bb) Results

Probing ZH and WH not orthogonal

4000

m_{JJ} [GeV]

4000

m_{JJ} [GeV]

data

Multijet

pre-fit

uncertainty

3000

Other Backgrounds

VT Model A W' (2 TeV) x 50

data

Multijet

pre-fit

uncertainty

3000

Other Backgrounds

HVT Model A Z' (2 TeV) x 50

V(qq) H(bb) Limits

No large deviations from SM expctations

• Largest excess found at 3.0 TeV in ZH channel, with global significance of 2.2σ, Local 3.3 σ

Limits on Heavy Vector Triplet (HVT) W' and Z'.

- Model A: comparable BR to fermions and gauge bosons.
- Model B: Suppressed couplings to fermions.
- Fit **WH** and **ZH** signal regions separately.

Combining 1-tag and 2-tag regions in each case.

V(qq) H(bb) Results

- The slight excess is not new, but hasn't grown
- CMS: a small excess not in the same place

Search for new resonances decaying to a charged lepton and a neutrino

ATLAS-CONF-2017-016

Search of high-mass resonances in the dilepton final state

ATLAS-CONF-2017-027

Searches with Leptons

Di-lepton and Lepton + E_T^{miss} final states sensitive to a broad class of new phenomena

- 1. Direct search of narrow new heavy resonances
 - Sequential Standard Model (SSM):
 Z',W' with same couplings to fermions as Z/W
 - For Z' :Grand unified Theories (GUT) inspired E6 gauge group:
 - predicts two neutral gauge bosons mixing to Z' $(\theta_{E6}) = Z'_{\psi} \cos(\theta_{E6}) + Z'_{\chi} \sin(\theta_{E6})$
 - Signals considered for 6 values of θ_{E6}
- 2. Non-resonant deviations from predicted SM dilepton mass spectrum.
 - new interactions or compositeness in $qq \rightarrow |+|^{-1}$
 - contact interaction rappresentation

Searches with Leptons: Analysis strategy

Dilepton Selection

- Di electron and single triggers.
- 1 e (μ) with $E_T(p_T) > 30 \text{ GeV}$
- $\epsilon^{tot} = 73\%$ (44%) for ee (µµ) channel for m_{Z'} = 3 TeV
- Look for excess in m_{II} distirbution

Lepton + E^T_{miss} Selection

- Single electron(µ) triggers
- Tight ID $e(\mu) p_T > 65(55) \text{ GeV}$
- $E_T^{miss} > 65(55) \text{ GeV, } m_T > 130 \text{ GeV}$
- $\epsilon^{\text{tot}} = 81\%$ (77%) for *e*, 50% (46%) for $\mu @m_{W'} = 2 \text{ TeV} (4 \text{ TeV})$
- Look for excess in m_T distirbution:

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}E_{\mathrm{T}}^{miss}\cdot(1-\cos\Delta\phi)}$$

Backgrounds

Real lepton(s):

- Drell-Yan (dominant) by MC
 - NLO Powheg generator mass dependent correction to NNLO QCD
 - mass-dependent EW-corrections at NLO
- tf, single-top, WW, WZ, and ZZ by MC

jet faking electrons: W +jets and multi-jet events estimated from data

Dilepton Search: Systematics uncertainty

Source	Dielectron channel		Dimuon	channel	
	Signal	Background	Signal	Background	
Luminosity	3.2% (3.2%)	3.2% (3.2%)	3.2% (3.2%)	3.2% (3.2%)	
MC statistical	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
Beam energy	2.0% (4.1%)	2.0% (4.1%)	1.9% (3.1%)	1.9% (3.1%)	
Pile-Up effects	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
DY PDF choice	N/A	<1.0% (8.4%)	N/A	<1.0% (1.9%)	
DY PDF variation	N/A	8.7% (19%)	N/A	7.7% (13%)	1
DY PDF scale	N/A	1.0% (2.0%)	N/A	<1.0% (1.5%)	Largest Theory
DY α_S	N/A	1.6% (2.7%)	N/A	1.4% (2.2%)	uncertainty
DY EW corrections	N/A	2.4% (5.5%)	N/A	2.1% (3.9%)	
DY γ -induced corrections	N/A	3.4% (7.6%)	N/A	3.0% (5.4%)	
Top Quarks theoretical	N/A	<1.0% (<1.0%)	N/A	<1.0% (<1.0%)	
Dibosons theoretical	N/A	<1.0% (<1.0%)	N/A	<1.0% (<1.0%)	
Reconstruction efficiency	<1.0% (<1.0%)	<1.0% (<1.0%)	10% (17%)	10% (17%)	
Isolation efficiency	9.1% (9.7%)	9.1% (9.7%)	1.8% (2.0%)	1.8% (2.0%)	Largest exp.
Trigger efficiency	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	uncertainty
Identification efficiency	2.6% (2.4%)	2.6% (2.4%)	N/A	N/A	
Lepton energy scale	<1.0% (<1.0%)	4.1% (6.1%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
Lepton energy resolution	<1.0% (<1.0%)	<1.0% (<1.0%)	2.7% (2.7%)	<1.0% (6.7%)	Lounat
Multi-jet & W+jets	N/A	10% (129%)	N/A	N/A	Largest
Total	10% (11%)	18% (132%)	11% (18%)	14% (24%)	uncertainty
Backo	round and s	ignal system	natic uncorta	intios at	due to

Background and signal systematic uncertainties at dilepton masses of 2 TeV (4 TeV)

Marianna Testa

extrapolation

Lepton + E_T^{miss} : Systematics uncertainty

Source	Electron	channel	Muon		
	Background	Signal	Background	Signal	
Trigger	negl. (negl.)	negl. (negl.)	2% (2%)	2% (2%)	
Lepton reconstruction and identification	negl. (negl.)	negl. (negl.)	5%~(6%)	5% (7%)	Largest exp.
Lepton momentum scale and resolution	4%~(5%)	4% (3%)	3%~(9%)	1% (1%)	uncertainty
$E_{\rm T}^{\rm miss}$ resolution and scale	$< 0.5\% \ (< 0.5\%)$	< 0.5%~(< 0.5%)	< 0.5% (1%)	1% (1%)	Largest
Jet energy resolution	$< 0.5\% \ (< 0.5\%)$	< 0.5%~(< 0.5%)	$ < 0.5\% \ (< 0.5\%)$	< 0.5%~(< 0.5%)	uncortainty
Pile-up	$1\% \ (< 0.5\%)$	$1\% \ (< 0.5\%)$	< 0.5% (1%)	$1\% \ (< 0.5\%)$	
Multijet background	12% (109%)	N/A (N/A)	1% (1%)	N/A (N/A)	at nigh mas
Diboson & top extrapolation	5%~(21%)	N/A (N/A)	5%~(13%)	N/A (N/A)	due to
PDF choice for DY	1% (19%)	N/A (N/A)	< 0.5% (1%)	N/A (N/A)	extrapolati
PDF variation for DY	8% (20%)	N/A (N/A)	7% (11%)	N/A (N/A)	
EW corrections for DY	4% (9%)	N/A (N/A)	4% (5%)	N/A (N/A)	Largest The
Luminosity	3% (3%)	3%~(3%)	3% (3%)	3%~(3%)	
Total	17% (115%)	5%~(5%)	12% (21%)	6%~(8%)	

Background and signal systematic uncertainties at $m_w' = 2 \text{ TeV} (4 \text{ TeV})$

Marianna Testa

t ainty mass olation

Theory ainty

Dilepton Search: Result

No significant excess is observed

Most significant excess in di-electron mass spectrum is observed at 2.37 TeV, global significance of -0.2σ .

Dilepton Search: Limits

For various Z' models upper limits are set for Z'

cross sections times BR wrt $m_{7'}$

Generic limits:

- fiducial cuts (p_T > 30 GeV, |η|<2.5) on signal templates and a mass window of x 2 the signal width (Breit-Wigner).
- Other models can be interpreted with these cross-sections

Limit increased by up to 700 GeV wrt limit obtained with 3.2 fb⁻¹

Dilepton Search: Exclusion limits on contact interactions

£

- Different chiral structures tested:
 - Left-right ,left-left, right-rights
 - $\eta_{LR(RL)} = \pm 1$
 - $\eta_{LL(RR)} = \pm 1$
 - the others to zero
- (con)destructive interference of signal model η_{ij} = -1(+1) with SM QCD
- Limits on Λ between 23.5 and 40.1 TeV

$$= \underbrace{\frac{g^2}{\Lambda^2}}_{+\eta_{\rm LR}(\overline{q}_{\rm L}\gamma_{\mu}q_{\rm L})} (\overline{\ell}_{\rm L}\gamma^{\mu}\ell_{\rm L}) + \eta_{\rm RR}(\overline{q}_{\rm R}\gamma_{\mu}q_{\rm R}) (\overline{\ell}_{\rm R}\gamma^{\mu}\ell_{\rm R})}_{+\eta_{\rm LR}(\overline{q}_{\rm L}\gamma_{\mu}q_{\rm L}) (\overline{\ell}_{\rm R}\gamma^{\mu}\ell_{\rm R}) + \eta_{\rm RL}(\overline{q}_{\rm R}\gamma_{\mu}q_{\rm R}) (\overline{\ell}_{\rm L}\gamma^{\mu}\ell_{\rm L})]}$$

Lepton + E_T^{miss} Search: Result

No significant excess is observed

Lepton + E_T^{miss} Search: Limits on $\sigma \cdot BR$

- Observed (Exp) limits on m W'_{SSM}
 - 5.22 (5.10) TeV for e channel
 - 4.45 (4.71) TeV for μ channel
 - 5.11 (5.24) TeV combined

Limits improved by ~ 1 TeV wrt previous analysis based on 3.2 fb⁻¹

Searches with Leptons

Significant improvement wrt previous ATLAS searches

Observed limits to the Z'ssm cross section from the combination of di-electron and di-muon channels.

Observed limits to the W'ssm cross section from the combination of electron and muon channels.

- Many BSM introduce e new bosons which can decay into Gauge Bosons:
 - Consider $X \rightarrow Z\gamma$, $Z \rightarrow vv$
 - Search excess of $\gamma + E_T^{miss}$ events
- Benchmark model:
 - Scalar resonance $2 < m_V < 5$ TeV, $\Gamma = 4$ MeV, simulated with Powheg

Event cleaning						
Leading photon	E_{i}					
		3 signal				
$E_{\rm T}^{\rm miss}/\sqrt{\Sigma E_{\rm T}}$	$> 8.5 \text{ GeV}^{1/2}$					regions for
Jets	0 or 1 wit	resonances				
Lepton	veto on e and μ					searches
$E_{\rm T}^{\rm miss}$ [GeV]	SRI1 > 150	SR12 > 225	SRI3 > 300	SRE1 150-225	SRE2 225-300	
Selected events in data Events with 0 jets	2400 1559	729 379	236 116	1671 1180	493 263	

- Background:
 - **Ζ(**νν)+ γ (ISR) (dominant) , $W(\rightarrow Iv)\gamma$, Z($\rightarrow vv)\gamma$, γ + jets
 - From simulation and normalized in dedicated CRs
 - Fake γ from electron and jets from W/Z+jets, diboson and multi-jet events
 - from data

Main uncertainties: Statistical from CRs: 9%.

 $Z\gamma$, $Z \rightarrow vv$ complement to searches using $Z\gamma$, $Z \rightarrow qq$ at higher masses

Conclusions

Search for new physics has been performed using full 2015+2016 dataset

No deviations from SM expectations are observed

- Di-jets final states
 - Limits on resonances masses between 3.4 and 8.9 TeV
 - contact interactions scale $\Lambda > 13 29$ TeV
- Lepton+neutrino final state: W'_{SSM} excluded for M _{W'} > 5.1 TeV
- Dilepton final state:
 - Z'_{SSM} excluded for $M_{Z'}$ > 4.5 TeV
 - contact interactions scale Λ > 23-40 TeV
- Photon + E_T^{miss} final state
 - Upper limits on σxBR for a Z(vv)gamma resonance set for masses between 2-5 TeV.

Backup

Search of W' \rightarrow e v: event yield

- Tight ID electron $p_T > 65 \text{ GeV}$
- E_T^{miss} > 65 GeV, m_T > 130 GeV
- Bkg with "real" leptons estimated with MC
 - Largest from W Drell-Yan production
- Bkg from misidentified objet: data-driven
- Acc $\times \epsilon$ = 81% (77%) @ m_{W'} = 2 TeV (4 TeV)

m _{ll} (TeV)	0.6-1	1-2	2-3	3-7
Obs	1931	246	4	0
Exp SM	1960±140	224±23	5.7±1.4	0.4±0.4
SM+ W' 2 TeV	2260± 160	3930 ±80	380±80	1.4±0.4

 Syst. Uncertainty for Bkg and Signal: 7% (115%) and 21% (10%) m_T = 2 TeV (4 TeV)

No significant excess is observed

most significant excess at $m_{W'}$ = 1.1 TeV: local (global) significance of 2.3 (0.6)

Search of W' $\rightarrow \mu \nu$: event yield

- Tight ID muon $p_T > 55 \text{ GeV}$
- E_T^{miss} > 55 GeV, m_T > 130 GeV
- Bkg with "real" leptons estimated with MC
 - Largest from W Drell-Yan production
- Bkg from misidentified objet: data-driven
- Acc $\times \epsilon$ = 50% (46%) @ m_{W'} = 2 TeV (4 TeV)

m _{ll} (TeV)	0.6-1	1-2	2-3	3-7
Obs	1392	177	3	3
Exp SM	1320±90	150±13	4.7±0.6	0.63±0.13
SM+ W' 2 TeV	1740±100	1870±90	374±28	18±4

 Syst. Uncertainty for Bkg and Signal: 12% (21%) and 6% (8%) m_T = 2 TeV (4 TeV)

No significant excess is observed

most significant excess at $m_{W'} \sim 5$ TeV: local (global) significance of 1.8 (0.1)

Search for new resonances decaying to a charged lepton and a neutrino

- BSM models introduce new heavy charged Spin-1 gauge-bosons W'
- W' \rightarrow Iv experimental signature
- Benchmark model: Sequential Standard Model (SSM)
 - Same fermion coupling as the SM W
 - no coupling to W,Z
 - Interference between W and W' neglected
- Analysis Strategy:
 - exactly one high- p_T lepton and large missing transverse energy
 - Compare transverse mass distribution to SM predictions

$$m_{\rm T} = \sqrt{2p_{\rm T} E_{\rm T}^{miss} \cdot (1 - \cos \Delta \phi)}$$

ATLAS-CONF-2017-016

