Standard Model Higgs Effective Field Theory and extensions to the Two Higgs Doublet Model

Margherita Ghezzi

LNF Spring Institute 2017 Frascati, 12th May 2017

Margherita Ghezzi

SMEFT and 2HDM-EFT

Outline

- 2 Higgs Effective Lagrangian
- 3 NLO SM Higgs EFT
- 4 2HDM Effective Field Theory

Introduction

After the discovery of the Higgs boson, we are looking for New Physics signals It is reasonable to think that NP is related to the EW symmetry breaking

Compatibility of data with the SM

Scaling coupling \propto mass follows naturally if the new boson is part of the sector that breaks the EW symmetry

$$\lambda_\psi \propto rac{m_\psi}{v}$$

$$\lambda_V^2 \equiv rac{g_{VVh}}{2v} \propto rac{m_V^2}{v^2}$$

Introduction

Compatibility of data with the SM

We look for small deviations from the SM: precision physics era

SMEFT and 2HDM-EFT

Introduction

- The focus now is on a region of the parameter space around the SM point.
- Following a bottom-up approach, our ignorance of the EWSB sector can be parametrized in terms of an effective Lagrangian.
- The Effective Field Theory approach is possible if there is a gap between m_H and the New Physics scale.
- The couplings of the operators are free parameters.
- The fields correspond to the particles of the SM.
- In case new (not-so-heavy) particles are discovered they can be included in the Lagrangian
 - Example: add a second light Higgs doublet \longrightarrow 2HDM-EFT

Outline

3 NLO SM Higgs EFT

4 2HDM Effective Field Theory

Higgs Effective Field Theory

In searches for new physics we can distinguish among:

• Direct searches

Searches for new resonances.

- Top-down approach: BSM models (model-dependent) Unknowns: model parameters.
- Bottom-up approach: EFT ("model-independent") Unknowns: Wilson coefficients

Assumptions:

- The dynamical degrees of freedom at the EW scale are those of the SM
- New Physics appears at some high scale $\Lambda >> v$ (decoupling)
- Absence of mixing of new heavy scalars with the SM Higgs doublet
- $SU(2)_L \times U(1)_Y$ is linearly realized at high energies

Higgs Effective Field Theory

In searches for new physics we can distinguish among:

• Direct searches

Searches for new resonances.

- Top-down approach: BSM models (model-dependent) Unknowns: model parameters.
- Bottom-up approach: EFT ("model-independent") Unknowns: Wilson coefficients

Assumptions:

- The dynamical degrees of freedom at the EW scale are those of the SM
- New Physics appears at some high scale $\Lambda >> v$ (decoupling)
- Absence of mixing of new heavy scalars with the SM Higgs doublet
- $SU(2)_L \times U(1)_Y$ is linearly realized at high energies

Effective Field Theories

Local operators parametrize the effects of the exchange of new heavy particles:

Integrate out the heavy fields and obtain the effective operator.

SM example: the limit of infinite top mass

$$\Delta \mathcal{L}_{ggh} = \frac{g_S^2}{48\pi^2} G^a_{\mu\nu} G^{a\mu\nu} \frac{h}{v}$$

The coefficient is determined by matching the full theory with the effective theory.

Effective Field Theories

Higgs doublet - EW symmetry is linearly realized

$$\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + \sum_{n>4} \sum_{i} \frac{c_i}{\Lambda^{n-4}} O_i^{D=n}$$

$$\mathcal{L}_{\textit{HEFT}} = \mathcal{L}_{\textit{SM}} + \frac{1}{\Lambda} \mathcal{L}^{D=5} + \frac{1}{\Lambda^2} \mathcal{L}^{D=6} + \frac{1}{\Lambda^3} \mathcal{L}^{D=7} + \frac{1}{\Lambda^4} \mathcal{L}^{D=8} + \dots$$

- $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating
- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

$$\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \mathcal{L}^{D=6}$$

C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433 Buchmüller and Wyler, NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085 Contino, MG, Grojean, Mühlleitner and Spira, JHEP 1307 (2013) 035

SMEFT and 2HDM-EF

Higgs doublet - EW symmetry is linearly realized

$$\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + \sum_{n>4} \sum_{i} \frac{c_i}{\Lambda^{n-4}} O_i^{D=n}$$

$$\mathcal{L}_{\text{HEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}^{D=5} + \frac{1}{\Lambda^2} \mathcal{L}^{D=6} + \frac{1}{\Lambda^3} \mathcal{L}^{D=7} + \frac{1}{\Lambda^4} \mathcal{L}^{D=8} + \dots$$

• $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating

- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

$$\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \mathcal{L}^{D=6}$$

C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433 Buchmüller and Wyler, NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085 Contino, MG, Grojean, Mühlleitner and Spira, JHEP 1307 (2013) 035

Higgs doublet - EW symmetry is linearly realized

$$\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + \sum_{n>4} \sum_{i} \frac{c_i}{\Lambda^{n-4}} O_i^{D=n}$$

$$\mathcal{L}_{\textit{HEFT}} = \mathcal{L}_{\textit{SM}} + \frac{1}{\Lambda} \mathcal{L}^{\textit{D}=5} + \frac{1}{\Lambda^2} \mathcal{L}^{\textit{D}=6} + \frac{1}{\Lambda^3} \mathcal{L}^{\textit{D}=7} + \frac{1}{\Lambda^4} \mathcal{L}^{\textit{D}=8} + \dots$$

• $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating

- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

 $\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \mathcal{L}^{D=6}$

C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433 Buchmüller and Wyler, NPB 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085 Contino, MG, Grojean, Mühlleitner and Spira, JHEP 1307 (2013) 035

Margherita Ghezzi

SMEFT and 2HDM-EFT

12/05/2017 10 / 42

Higgs doublet - EW symmetry is linearly realized

$$\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + \sum_{n>4} \sum_{i} \frac{c_i}{\Lambda^{n-4}} O_i^{D=n}$$

$$\mathcal{L}_{\textit{HEFT}} = \mathcal{L}_{\textit{SM}} + \frac{1}{\Lambda} \mathcal{L}^{\textit{D}=5} + \frac{1}{\Lambda^2} \mathcal{L}^{\textit{D}=6} + \frac{1}{\Lambda^3} \mathcal{L}^{\textit{D}=7} + \frac{1}{\Lambda^4} \mathcal{L}^{\textit{D}=8} + \dots$$

• $\mathcal{L}^{D=5}$ and $\mathcal{L}^{D=7}$: lepton number violating

- $\mathcal{L}^{D=8}$ and higher: parametrically subleading
- $\mathcal{L}^{D=6}$: leading effect

$$\mathcal{L}_{HEFT} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \mathcal{L}^{D=6}$$

C. N. Leung, S. T. Love and S. Rao, Z. Phys. C 31 (1986) 433

Buchmüller and Wyler, NPB 268 (1986) 621

Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085

Contino, MG, Grojean, Mühlleitner and Spira, JHEP 1307 (2013) 035

SMEFT and 2HDM-EF

12/05/2017 10 / 42

Effective Lagrangian for a Higgs doublet GIMR/Warsaw basis

	X^3	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} {\widetilde{G}}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\overline{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{l}_{p} \gamma^{\mu} l_{r})$
$Q_{\varphi \tilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu}^{I} \varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{\mu} e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\overline{q}_{p} \gamma^{\mu} q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu}^{I} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \tilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{u}_p \gamma^{\mu} u_r)$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{d}_{p} \gamma^{\mu} d_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

- 15 bosonic operators
- 19 single-fermionic-current operators

	$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	ating	
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	$Q_{duq} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$		$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	Q_{qqu}	$Q_{qqu} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$		$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$Q_{qqq}^{(1)} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		$[k] [(q_s^{\gamma m})^T C l_t^n]$
$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T\right]$	$\left[Cq_r^{\beta k}\right]\left[(q_s^{\gamma m})^T Cl_t^n\right]$
$O^{(3)}$	$(\overline{l}_{1}^{i}\sigma_{-}\sigma_{-}) = u (\overline{c}^{k}\sigma^{\mu\nu}u_{-})$	0.	$-\alpha\beta\gamma \left[(d\alpha)T \right]$	Cu^{β}	$[(u\gamma)TC\alpha]$

• 25 four-fermion operators (assuming barionic number conservation)

15+19+25=59 independent operators (for 1 fermion generation)

Grzadkowski, Iskrzynski, Misiak, Rosiek, JHEP 1010 (2010) 085

From 1 to 3 fermion generations

- Add flavour indices to all operators
- From 59 to 2499 operators!
- Assume some flavour structure to avoid severe constraints from FCNC

Class	N_{op}	CP-even			CP-odd		
		n_g	1	3	n_g	1	3
1	4	2	2	2	2	2	2
2	1	1	1	1	0	0	0
3	2	2	2	2	0	0	0
4	8	4	4	4	4	4	4
5	3	$3n_q^2$	3	27	$3n_q^2$	3	27
6	8	$8n_g^2$	8	72	$8n_g^2$	8	72
7	8	$\frac{1}{2}n_g(9n_g + 7)$	8	51	$\frac{1}{2}n_g(9n_g - 7)$	1	30
$8 : (\overline{LL})(\overline{L})$	L) 5	$\frac{1}{4}n_g^2(7n_g^2 + 13)$	5	171	$\frac{7}{4}n_g^2(n_g - 1)(n_g + 1)$	0	126
$8 : (\overline{R}R)(\overline{R}R)$	$\overline{R}R$) 7	$\frac{1}{8}n_g(21n_g^3 + 2n_g^2 + 31n_g + 2)$	7	255	$\frac{1}{8}n_g(21n_g + 2)(n_g - 1)(n_g + 1)$	0	195
$8 : (\overline{L}L)(\overline{R})$	(R) = 8	$4n_g^2(n_g^2 + 1)$	8	360	$4n_g^2(n_g - 1)(n_g + 1)$	0	288
$8 : (\overline{LR})(\overline{R})$	\overline{L} 1	n_g^4	1	81	n_g^4	1	81
$8 : (\overline{LR})(\overline{LR})$	\overline{R} 4	$4n_g^4$	4	324	$4n_g^4$	4	324
8 : All	25	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 + 89n_g + 2)$	25	1191	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 - 67n_g - 2)$	5	1014
Total	59	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72$	2) 53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$	23	1149

 $1 = F^3 \qquad 2 = H^6 \qquad 3 = H^4 D^2 \qquad 4 = F^2 H^2 \qquad 5 = \phi^2 H^3 \qquad 6 = \psi^2 F H \qquad 7 = \psi^2 H^2 D$

Alonso, Jenkins, Manohar and Trott, JHEP 1404 (2014) 159

Outline

2 Higgs Effective Lagrangian

4 2HDM Effective Field Theory

NLO SMEFT

NLO EFT

One-loop calculations in linear Higgs EFT

Complete anomalous dimension matrix:

(Warsaw basis)

- Grojean, Jenkins, Manohar, Trott 2013
- Jenkins, Manohar, Trott 2013 & 2014
- Alonso, Jenkins, Manohar, Trott 2014

(SILH basis)

- Elias-Miró, Espinosa, Masso and Pomarol 2013
- Elias-Miró, Grojean, Gupta, Marzocca 2014

Some Higgs decays, finite renormalization:

- MG, Gomez-Ambrosio, Passarino and Uccirati 2015 ($h \rightarrow \gamma \gamma, Z\gamma, WW, ZZ$)
- Hartmann, Trott 2015 ($h \rightarrow \gamma \gamma$ in detail)

One-loop calculations in linear Higgs EFT

Complete anomalous dimension matrix:

(Warsaw basis)

- Grojean, Jenkins, Manohar, Trott 2013
- Jenkins, Manohar, Trott 2013 & 2014
- Alonso, Jenkins, Manohar, Trott 2014

(SILH basis)

- Elias-Miró, Espinosa, Masso and Pomarol 2013
- Elias-Miró, Grojean, Gupta, Marzocca 2014

Some Higgs decays, finite renormalization:

- MG, Gomez-Ambrosio, Passarino and Uccirati 2015 $(h \rightarrow \gamma \gamma, Z\gamma, WW, ZZ)$
- Hartmann, Trott 2015 ($h \rightarrow \gamma \gamma$ in detail)

Conventions

Warsaw basis

Each term of the d = 6 Lagrangian is of the form:

$$\frac{c_i}{M_W^2} g_6 g^{n_i} \mathcal{O}_i \qquad g_6 \equiv \frac{1}{\sqrt{2}G_F \Lambda^2} \simeq 0.0606 \left(\frac{\text{TeV}}{\Lambda}\right)^2$$

Insertion of 1-loop corrections in the EFT

Processes starting at tree-level in the SM e.g. $h \rightarrow W^+W^-$:

Processes starting at 1-loop in the SM e.g. $h \rightarrow \gamma \gamma$:

Preliminary steps

Vanishing of the linear H-term

In the SM there is a contribution to the linear H-term from the Higgs potential:

$$V(\phi) = \mu^2 \phi^{\dagger} \phi - \frac{\lambda}{2} \left(\phi^{\dagger} \phi \right)^2 \qquad \phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} -i\sqrt{2}G^+ \\ h + v + iG^0 \end{array} \right)$$

Its cancellation implies:

$$\mu^2 = -\lambda v^2 + \beta_h \qquad (\beta_h = 0 \text{ at tree level})$$

In the dim-6 SMEFT also the operator $\mathcal{O}_{\phi}=\left(\phi^{\dagger}\phi
ight)^{3}$ contributes.

Hence, the cancellation implies:

$$\mu^2 = -\lambda v^2 + 3M_W^2 g_6 a_\phi + \beta_h$$

			\sim	
Marg	hori	± ->	1 - 1	1077
IVIALE.		La	U	ICZZ

Preliminary steps

Redefinition of fields and parameters

All the operators with at least 2 powers of ϕ contribute to the quadratic terms.

All the fields and parameters must be redefined.

Example: $\mathcal{O}_{\phi\Box} = \partial_{\mu}(\phi^{\dagger}\phi)\partial^{\mu}(\phi^{\dagger}\phi)$ $\frac{c_{\phi\Box}}{v^{2}}\mathcal{O}_{\phi\Box} = c_{\phi\Box}\partial_{\mu}h\partial^{\mu}h + \dots$ $\Delta\mathcal{L}_{h} = \frac{1}{2}(1+2c_{\phi\Box})\partial_{\mu}h\partial^{\mu}h + \dots \Rightarrow \overline{h} = (1+2c_{\phi\Box})^{\frac{1}{2}}h$

Redefinition of the gauge parameters

$$\mathcal{L}_{gf} = -\mathcal{C}^{+} \, \mathcal{C}^{-} - \frac{1}{2} \, \mathcal{C}_{Z}^{2} - \frac{1}{2} \, \mathcal{C}_{A}^{2}$$
$$\mathcal{C}^{\pm} = -\xi_{W} \, \partial_{\mu} \, W_{\mu}^{\pm} + \xi_{\pm} \, M \, \phi^{\pm} \qquad \mathcal{C}_{Z} = -\xi_{Z} \, \partial_{\mu} \, Z_{\mu} + \xi_{0} \, \frac{M}{c_{\theta}} \, \phi^{0} \qquad \mathcal{C}_{A} = \xi_{A} \, \partial_{\mu} \, A_{\mu}$$

Redefinition of the ξ_i parameters normalized to 1: $\xi_i = 1 + g_6 \Delta R_{\xi_i}$

Margherita Ghezzi	SMEFT and 2HDM-EFT	12/05/2017 18 / 42

Renormalization

Counterterms for fields and parameters

Define UV-divergent counterterms for the fields:

$${\cal F}=\left(1+rac{1}{2}rac{g^2}{16\pi^2}dZ_F\Delta_{UV}
ight){\cal F}_{ren}$$

and for the parameters:

$$P = \left(1 + \frac{1}{2} \frac{g^2}{16\pi^2} dZ_P \Delta_{UV}\right) P_{ren}$$
$$\Delta_{UV} = \frac{2}{\varepsilon} - \gamma_E - \ln \pi - \ln \frac{\mu_R^2}{\mu^2} \qquad dZ_i = dZ_i^{(4)} + g_6 dZ_i^{(6)}$$

Calculate the self-energies and determine the counterterms

$$\Sigma_{ii} = \frac{g^2}{16\pi^2} \left(\Sigma_{ii}^{(4)} + g_6 \Sigma_{ii}^{(6)} \right) \qquad \qquad \Sigma_{ii}^{(n)} = \Sigma_{ii;UV}^{(n)} \Delta_{UV}(M_W^2) + \Sigma_{ii;fin}^{(n)}$$

Require that the HH, ZZ, $\gamma\gamma$, γZ , WW, ff self-energies are UV-finite.

Margherita Ghezzi	SMEFT and 2HDM-EFT	12/05/2017 19 / 42

Running of the Wilson coefficients

Construct the 3-point (and higher) functions:

- they are $\mathcal{O}^{(4)}$ -finite
- remove the O⁽⁶⁾ UV divergencies by mixing the Wilson coefficients

Running and mixing of Wilson coefficients

$$\bar{c}_i(\mu) = \left(\delta_{ij} + \gamma_{ij}^{(0)} \frac{g_{SM}^2}{16\pi^2} \log\left(\frac{\mu}{M}\right)\right) \bar{c}_j(M)$$

- Compared to the SM, additional logarithmic divergences are present;
- these divergences are absorbed by the running of the coefficients of the local operators;
- the matrix $\gamma_{ii}^{(0)}$ mixes the coefficients;
- the only one-loop diagrams which generate logarithmic divergences are the ones containing one insertion of effective vertices;
- A selection of the operators *a priori* is not possible.

Finite renormalization

On-shell finite renormalization

After removal of the UV poles we have replaced $M_{bare} \rightarrow M_{ren}$. Now we establish the connection to the on-shell masses:

$$M_{ren}^2 = M_{OS}^2 \left[1 + rac{g_{ren}^2}{16\pi^2} \left(d\mathcal{Z}_M^{(4)} + g_6 d\mathcal{Z}_M^{(6)}
ight)
ight] \qquad {
m etc.}$$

$\textit{G}_{\textit{F}}$ and α renormalization schemes

Choose input observables:

- $\{G_F, M_Z, M_W\}$
- $\{\alpha, G_F, M_Z\}$
- • •

and write the corresponding equations that connect renormalized parameters to experimental measurements.

Margherita Ghezzi	SMEFT and 2HDM-EFT	12/05/2017	21 / 42

Finite renormalization

Example: $\{G_F, M_Z, M_W\}$ scheme

• Establish a connection between g_{ren} and G_F

$$\begin{aligned} \text{th.} \qquad & \frac{1}{\tau_{\mu}} = \frac{m_{\mu}^{5}}{192\pi^{3}} \frac{g^{4}}{32M_{W}^{4}} \left(1 + \delta_{\mu}\right) \\ \text{exp.} \qquad & \frac{1}{\tau_{\mu}} = \frac{m_{\mu}^{5}}{192\pi^{3}} G_{F}^{2} \\ \frac{G_{F}}{\sqrt{2}} = \frac{g^{2}}{8M_{W}^{2}} \left[1 + \frac{g^{2}}{16\pi^{2}} \left(\delta_{G} + \frac{\Sigma_{WW}(0)}{M_{W}^{2}}\right)\right] \\ g_{ren}^{2} = 4\sqrt{2} G_{F} M_{W;ren}^{2} \left[1 - \frac{G_{F} M_{W;ren}^{2}}{2\sqrt{2}\pi^{2}} \left(\delta_{G} + \frac{\Sigma_{WW;fin}(0)}{M_{W}^{2}}\right)\right] \end{aligned}$$

Example: Higgs decay to a photon pair $h \rightarrow \gamma \gamma$

$$A^{\mu\nu}_{H\gamma\gamma} = \mathcal{T}_{H\gamma\gamma} T^{\mu\nu} \qquad M^2_H T^{\mu\nu} = p^{\mu}_2 p^{\nu}_1 - p_1 \cdot p_2 \delta^{\mu\nu}$$

$$\mathcal{T}_{H\gamma\gamma} = \kappa_W^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^W + \kappa_t^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^t + \kappa_b^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^b + \mathcal{T}_{H\gamma\gamma}^{NF}$$

The SM contribution

$$\begin{split} \kappa_{W}^{H\gamma\gamma} &= \kappa_{t}^{H\gamma\gamma} = \kappa_{b}^{H\gamma\gamma} = 1 \\ \mathcal{T}_{H\gamma\gamma}^{x} &= \frac{ig^{3}s_{W}^{2}}{8\pi^{2}} \frac{M_{x}^{2}}{M_{W}} T_{H\gamma\gamma}^{x} \qquad C_{0}^{x} \equiv C_{0}(-M_{H}^{2}, 0, 0; M_{X}, M_{x}, M_{x}) \\ \mathcal{T}_{H\gamma\gamma}^{W} &= -6 - 6(M_{H}^{2} - 2M_{W}^{2})C_{0}^{W} \\ \mathcal{T}_{H\gamma\gamma}^{t} &= \frac{16}{3} + \frac{8}{3}(M_{H}^{2} - 4M_{t}^{2})C_{0}^{t} \qquad T_{H\gamma\gamma}^{b} = \frac{4}{9} + \frac{2}{9}(M_{H}^{2} - 4M_{b}^{2})C_{0}^{b} \end{split}$$

MG, Gomez-Ambrosio, Passarino and Uccirati, JHEP 1507 (2015) 175

12/05/2017 23 / 42

Example: Higgs decay to a photon pair $h \rightarrow \gamma \gamma$

$$A^{\mu\nu}_{H\gamma\gamma} = \mathcal{T}_{H\gamma\gamma} T^{\mu\nu} \qquad M^2_H T^{\mu\nu} = p^{\mu}_2 p^{\nu}_1 - p_1 \cdot p_2 \delta^{\mu\nu}$$

$$\mathcal{T}_{H\gamma\gamma} = \kappa_W^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^W + \kappa_t^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^t + \kappa_b^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^b + \mathcal{T}_{H\gamma\gamma}^{NF}$$

The factorizable d = 6 contributions: $\kappa_x^{H\gamma\gamma} = 1 + g_6 \Delta \kappa_x^{H\gamma\gamma}$ (x = W, t, b)

$$\Delta \kappa_W^{H\gamma\gamma} = 2a_{\phi\Box} - \frac{1}{2s_W^2} a_{\phi D} + (6 - s_W^2) a_{AA} + c_W^2 a_{ZZ} + (2 + s_W^2) \frac{c_W}{s_W} a_{AZ}$$

$$\Delta \kappa_t H\gamma\gamma = (6 + s_W^2) a_{AA} - c_W^2 a_{ZZ} + (2 - s_W^2) \frac{c_W}{s_W} a_{AZ} + \frac{3}{16} \frac{M_H^2}{s_W M_W^2} a_{tWB} + a_{t\phi}$$

$$\Delta \kappa_b^{H\gamma\gamma} = (6 - s_W^2) a_{AA} - c_W^2 a_{ZZ} + (2 - s_W^2) \frac{c_W}{s_W} a_{AZ} - \frac{3}{8} \frac{M_H^2}{s_W M_W^2} a_{bWB} - a_{b\phi}$$

Margherita Ghezzi	SMEFT and 2HDM-EFT	12/05/2017	23 / 42
-------------------	--------------------	------------	---------

Example: Higgs decay to a photon pair $h \rightarrow \gamma \gamma$

$$A^{\mu\nu}_{H\gamma\gamma} = \mathcal{T}_{H\gamma\gamma} T^{\mu\nu} \qquad M^2_H T^{\mu\nu} = p^{\mu}_2 p^{\nu}_1 - p_1 \cdot p_2 \delta^{\mu\nu}$$

$$\mathcal{T}_{H\gamma\gamma} = \kappa_W^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^W + \kappa_t^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^t + \kappa_b^{H\gamma\gamma} \mathcal{T}_{H\gamma\gamma}^b + \mathcal{T}_{H\gamma\gamma}^{NF}$$

The **non**-factorizable d = 6 contributions:

$$\mathcal{T}_{H\gamma\gamma}^{NF} = igg_{6} \frac{M_{H}^{2}}{M_{W}} a_{AA} + 1 \frac{g^{3}g_{6}}{16\pi^{2}} \left[a_{AA} \mathcal{T}_{H\gamma\gamma}^{AA}(\mu) + a_{ZZ} \mathcal{T}_{H\gamma\gamma}^{ZZ}(\mu) + a_{AZ} \mathcal{T}_{H\gamma\gamma}^{AZ}(\mu) + a_{tWB} \mathcal{T}_{H\gamma\gamma}^{tWB}(\mu) + a_{bWB} \mathcal{T}_{H\gamma\gamma}^{bWB}(\mu) \right]$$

$$\begin{split} \mathcal{T}_{H\gamma\gamma}^{AA}(\mu) &= -\frac{x_{H}^{2}}{32} \left[8(1-3s_{W}^{2})s_{W}^{2} + (3-4s_{W}^{2}c_{W}^{2})x_{H}^{2} \right] \ln \frac{\mu^{2}}{M_{H}^{2}} + \dots \\ \mathcal{T}_{H\gamma\gamma}^{ZZ} &= \frac{s_{W}^{2}c_{W}^{2}x_{H}^{2}}{8} (6-x_{H}^{2}) \ln \frac{\mu^{2}}{M_{H}^{2}} + \dots \\ \mathcal{T}_{H\gamma\gamma}^{AZ} &= -\frac{s_{W}c_{W}x_{H}^{2}}{16} \left[2(1-6s_{W}^{2}) - (1-2s_{W}^{2})x_{H}^{2} \right] \ln \frac{\mu^{2}}{M_{H}^{2}} + \dots \\ x_{H} &= \frac{M_{H}}{M_{W}} \end{split}$$

MG, Gomez-Ambrosio, Passarino and Uccirati, JHEP 1507 (2015) 175

SMEFT and 2HDM-EFT

12/05/2017 23 / 42

Summary and Outlook - SMEFT

Summary

- We have shown the effective Lagrangian for a Higgs doublet. In the spirit of a bottom-up approach, it is an essential framework to perform searches for new physics in a model-independent way.
- In view of a precision Higgs physics phase, NLO calculations are in need. The whole anomalous dimension matrix is now known and some Higgs processes have been calculated.

Outlook

A lot still to be done:

- The other Higgs decay and production channels
- *S*, *T*, *U* parameters
- Implement $\mathcal{L}_{d=6}$ in automatic tools for NLO calculations
- Fit experimental data!

Outline

2 Higgs Effective Lagrangian

The EFT of the 2HDM

Suppose that a new particle is discovered around the EW scale. We still do not know the UV complete theory, and we would like to extend the EFT approach to include the new field.

Is it a viable option? 2 possibilities:

- there is a gap between the new d.o.f. and the other NP resonances \longrightarrow YES
- the new d.o.f. is heavy and we suppose that it is at the same scale of the rest of the NP particles \longrightarrow NO

In the following:

- We suppose the existence of a second Higgs doublet, not so far from the EW scale, and of a gap w.r.t. the other NP resonances;
- we parametrize our ignorance of the UV-complete theory building an EFT with the dynamical degrees of freedom of the 2HDM.

The EFT of the 2HDM

Suppose that a new particle is discovered around the EW scale. We still do not know the UV complete theory, and we would like to extend the EFT approach to include the new field.

Is it a viable option? 2 possibilities:

- there is a gap between the new d.o.f. and the other NP resonances \longrightarrow YES
- the new d.o.f. is heavy and we suppose that it is at the same scale of the rest of the NP particles \longrightarrow NO

In the following:

- We suppose the existence of a second Higgs doublet, not so far from the EW scale, and of a gap w.r.t. the other NP resonances;
- we parametrize our ignorance of the UV-complete theory building an EFT with the dynamical degrees of freedom of the 2HDM.

The Two Higgs Doublet Model

Margherita Ghezzi

The Two Higgs Doublet Model

$$\mathcal{L}_{2HDM}^{(4)} = -\frac{1}{4} G^A_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^I_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_\mu \varphi_1)^{\dagger} (D^{\mu} \varphi_1) + (D_\mu \varphi_2)^{\dagger} (D^{\mu} \varphi_2) - V(\varphi_1, \varphi_2) + i (\bar{I} \mathcal{D} I + \bar{q} \mathcal{D} q + \bar{u} \mathcal{D} u + \bar{d} \mathcal{D} d) + \mathcal{L}_Y ,$$

$$\begin{aligned} \mathcal{V}(\varphi_{1},\varphi_{2}) &= m_{11}^{2}\varphi_{1}^{\dagger}\varphi_{1} + m_{22}^{2}\varphi_{2}^{\dagger}\varphi_{2} - m_{12}^{2}\left(\varphi_{1}^{\dagger}\varphi_{2} + \varphi_{2}^{\dagger}\varphi_{1}\right) + \frac{\lambda_{1}}{2}\left(\varphi_{1}^{\dagger}\varphi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\varphi_{2}^{\dagger}\varphi_{2}\right)^{2} \\ &+ \lambda_{3}\varphi_{1}^{\dagger}\varphi_{1}\varphi_{2}^{\dagger}\varphi_{2} + \lambda_{4}\varphi_{1}^{\dagger}\varphi_{2}\varphi_{2}^{\dagger}\varphi_{1} + \frac{\lambda_{5}}{2}\left[\left(\varphi_{1}^{\dagger}\varphi_{2}\right)^{2} + \left(\varphi_{2}^{\dagger}\varphi_{1}\right)^{2}\right] \\ &+ \lambda_{6}\left(\varphi_{1}^{\dagger}\varphi_{1}\right)\left(\varphi_{1}^{\dagger}\varphi_{2}\right) + \lambda_{7}\left(\varphi_{2}^{\dagger}\varphi_{2}\right)\left(\varphi_{1}^{\dagger}\varphi_{2}\right) \\ &m_{11}^{2}, \ m_{22}^{2}, \ \lambda_{1,2,3,4} \text{ real} \\ &m_{12}^{2}, \ \lambda_{5,6,7} \text{ complex} \end{aligned}$$

The Two Higgs Doublet Model

FCNC can be avoided imposing an appropriate Z_2 symmetry:

 $Z_2: \phi_1 \rightarrow -\phi_1 \quad \text{ or } \quad \phi_2 \rightarrow -\phi_2$

We keep the m_{12} -term, that softly breaks the symmetry.

$$\begin{aligned} V(\varphi_1,\varphi_2) &= m_{11}^2 \varphi_1^{\dagger} \varphi_1 + m_{22}^2 \varphi_2^{\dagger} \varphi_2 - m_{12}^2 \left(\varphi_1^{\dagger} \varphi_2 + \varphi_2^{\dagger} \varphi_1 \right) + \frac{\lambda_1}{2} \left(\varphi_1^{\dagger} \varphi_1 \right)^2 + \frac{\lambda_2}{2} \left(\varphi_2^{\dagger} \varphi_2 \right)^2 \\ &+ \lambda_3 \varphi_1^{\dagger} \varphi_1 \varphi_2^{\dagger} \varphi_2 + \lambda_4 \varphi_1^{\dagger} \varphi_2 \varphi_2^{\dagger} \varphi_1 + \frac{\lambda_5}{2} \left[\left(\varphi_1^{\dagger} \varphi_2 \right)^2 + \left(\varphi_2^{\dagger} \varphi_1 \right)^2 \right] \\ &+ \lambda_6 \left(\varphi_1^{\dagger} \varphi_1 \right) \left(\varphi_1^{\dagger} \varphi_2 \right) + \lambda_7 \left(\varphi_2^{\dagger} \varphi_2 \right) \left(\varphi_1^{\dagger} \varphi_2 \right) \end{aligned}$$

 $m^2_{11}, m^2_{22}, \lambda_{1,2,3,4}$ real $m^2_{12}, \lambda_{5,6,7}$ complex

Rotation to the physical basis (2HDM)

Lagrangian for the mass terms of the CP-odd (η_a), CP-even (ρ_a) and charged (ϕ_a^+) Higgses:

$$L_{M_{H}}^{(4)} = \frac{1}{2} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}^{T} m_{\eta}^{2} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} + \begin{pmatrix} \phi_{1}^{-} \\ \phi_{2}^{-} \end{pmatrix}^{T} m_{\phi^{\pm}}^{2} \begin{pmatrix} \phi_{1}^{+} \\ \phi_{2}^{+} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix}^{T} m_{\rho}^{2} \begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix}$$

with

$$\begin{split} m_{\eta}^{2} &= \left(v_{1}v_{2}\lambda_{5} - m_{12}^{2}\right) \begin{pmatrix} -\frac{v_{2}}{v_{1}} & 1\\ 1 & -\frac{v_{1}}{v_{2}} \end{pmatrix} \\ m_{\rho}^{2} &= \begin{pmatrix} \lambda_{1}v_{1}^{2} + m_{12}^{2}\frac{v_{2}}{v_{1}} & v_{1}v_{2}\left(\lambda_{3} + \lambda_{4} + \lambda_{5}\right) - m_{12}^{2}\\ v_{1}v_{2}\left(\lambda_{3} + \lambda_{4} + \lambda_{5}\right) - m_{12}^{2} & \lambda_{2}v_{2}^{2} + m_{12}^{2}\frac{v_{1}}{v_{2}} \end{pmatrix} \\ m_{\phi^{\pm}}^{2} &= \left[\frac{v_{1}v_{2}}{2}\left(\lambda_{4} + \lambda_{5}\right) - m_{12}^{2}\right] \begin{pmatrix} -\frac{v_{2}}{v_{1}} & 1\\ 1 & -\frac{v_{1}}{v_{2}} \end{pmatrix} \end{split}$$

Rotation to the physical basis (2HDM)

Lagrangian for the mass terms of the CP-odd (η_a), CP-even (ρ_a) and charged (ϕ_a^+) Higgses:

$$\mathcal{L}_{M_{H}}^{(4)} = \frac{1}{2} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}^{T} m_{\eta}^{2} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} + \begin{pmatrix} \phi_{1}^{-} \\ \phi_{2}^{-} \end{pmatrix}^{T} m_{\phi^{\pm}}^{2} \begin{pmatrix} \phi_{1}^{+} \\ \phi_{2}^{+} \end{pmatrix} + \frac{1}{2} \begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix}^{T} m_{\rho}^{2} \begin{pmatrix} \rho_{1} \\ \rho_{2} \end{pmatrix}$$

Rotation to the physical basis:

	eigenvalues	physical states	Goldstone bosons	rotation angle
$m_{\phi^{\pm}}^2$	0; m ² _±	H^{\pm} (charged)	G^{\pm}	$\beta\equiv\arctan\frac{v_2}{v_1}$
m_η^2	0; <i>m</i> ² _A	A (CP-odd)	G ₀	$\beta\equiv\arctan\frac{v_2}{v_1}$
$m_{ ho}^2$	$m_{h}^{2}; m_{H}^{2}$	h, H (CP-even)	—	α

2HDM-EFT

Assumptions for the effective theory of the 2HDM:

$$\mathcal{L}_{2HDM} = \mathcal{L}_{2HDM}^{(4)} + rac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + rac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathcal{O}igg(rac{1}{\Lambda^{3}}igg)$$

- Its gauge group contains the SM gauge group SU(3)_C × SU(2)_L × U(1)_Y as a subgroup.
- It contains two Higgs doublets as dynamical degrees of freedom, either as fundamental or composite fields.
- At low energies it reproduces the 2HDM, barring the existence of weakly coupled *light* particles, like axions or sterile neutrinos.

Dim-5 the generalization of the Weinberg operator:

$$Q_{\nu\nu}^{11} = (\tilde{\varphi}_1^{\dagger} l_p)^T C(\tilde{\varphi}_1^{\dagger} l_r), \quad Q_{\nu\nu}^{22} = (\tilde{\varphi}_2^{\dagger} l_p)^T C(\tilde{\varphi}_2^{\dagger} l_r)$$

2HDM-EFT

Assumptions for the effective theory of the 2HDM:

$$\mathcal{L}_{2HDM} = \mathcal{L}_{2HDM}^{(4)} + rac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + rac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathcal{O}\left(rac{1}{\Lambda^{3}}
ight)$$

- Its gauge group contains the SM gauge group SU(3)_C × SU(2)_L × U(1)_Y as a subgroup.
- It contains two Higgs doublets as dynamical degrees of freedom, either as fundamental or composite fields.
- At low energies it reproduces the 2HDM, barring the existence of weakly coupled *light* particles, like axions or sterile neutrinos.

Dim-5 the generalization of the Weinberg operator:

$$Q_{\nu\nu}^{11} = (\tilde{\varphi}_1^{\dagger} l_p)^T C(\tilde{\varphi}_1^{\dagger} l_r), \quad Q_{\nu\nu}^{22} = (\tilde{\varphi}_2^{\dagger} l_p)^T C(\tilde{\varphi}_2^{\dagger} l_r)$$

$$\begin{split} & \varphi^6 \\ Q_{\varphi}^{111} = (\varphi_1^{\dagger}\varphi_1)^3 \\ Q_{\varphi}^{112} = (\varphi_1^{\dagger}\varphi_1)^2(\varphi_2^{\dagger}\varphi_2) \\ Q_{\varphi}^{122} = (\varphi_1^{\dagger}\varphi_1)(\varphi_2^{\dagger}\varphi_2)^2 \\ Q_{\varphi}^{222} = (\varphi_2^{\dagger}\varphi_2)^3 \\ Q_{\varphi}^{(1221)1} = (\varphi_1^{\dagger}\varphi_2)(\varphi_2^{\dagger}\varphi_1)(\varphi_1^{\dagger}\varphi_1) \\ Q_{\varphi}^{(1221)2} = (\varphi_1^{\dagger}\varphi_2)(\varphi_2^{\dagger}\varphi_1)(\varphi_2^{\dagger}\varphi_2) \\ Q_{\varphi}^{(1212)1} = (\varphi_1^{\dagger}\varphi_2)^2(\varphi_1^{\dagger}\varphi_1) + h.c. \\ Q_{\varphi}^{(1212)2} = (\varphi_1^{\dagger}\varphi_2)^2(\varphi_2^{\dagger}\varphi_2) + h.c. \end{split}$$

• Higgs doublets only

• They modify the Higgs potential

$\varphi^4 D^2$					
	φD				
$Q^{1(1)}_{\Box} = (arphi^{\dagger}_{1} arphi_{1}) \Box (arphi^{\dagger}_{1} arphi_{1})$	$Q_{\varphi D}^{(1)11(1)} = \left[\left(D_{\mu} \varphi_{1} \right)^{\dagger} \varphi_{1} \right] \left[\varphi_{1}^{\dagger} \left(D^{\mu} \varphi_{1} \right) \right] Q_{\varphi D}^{(1)21(2)} = \left[\left(D_{\mu} \varphi_{1} \right)^{\dagger} \varphi_{2} \right] \left[\varphi_{1}^{\dagger} \left(D^{\mu} \varphi_{2} \right) \right] + h.c.$				
$Q_{\Box}^{2(2)} = (\varphi_2^{\dagger} \varphi_2) \Box (\varphi_2^{\dagger} \varphi_2)$					
$Q_{\Box}^{1(2)} = (\varphi_1^{\dagger} \varphi_1) \Box (\varphi_2^{\dagger} \varphi_2)$	$Q_{\varphi D}^{(1)22(1)} = \left[\left(D_{\mu} \varphi_{1} \right)^{\dagger} \varphi_{2} \right] \left[\varphi_{2}^{\dagger} \left(D^{\mu} \varphi_{1} \right) \right] Q_{\varphi D}^{12(12)} = \left[\varphi_{1}^{\dagger} \varphi_{2} \right] \left[\left(D_{\mu} \varphi_{1} \right)^{\dagger} \left(D^{\mu} \varphi_{2} \right) \right] + h.c.$				
$Q_{\Box}^{2(1)} = (\varphi_2^{\dagger}\varphi_2)\Box(\varphi_1^{\dagger}\varphi_1)$	$ Q_{\varphi D}^{(2)11(2)} = \left[\left(D_{\mu} \varphi_2 \right)^{\dagger} \varphi_1 \right] \left[\varphi_1^{\dagger} \left(D^{\mu} \varphi_2 \right) \right] Q_{\varphi D}^{12(21)} = \left[\varphi_1^{\dagger} \varphi_2 \right] \left[\left(D_{\mu} \varphi_2 \right)^{\dagger} \left(D^{\mu} \varphi_1 \right) \right] + h.c. $				

- Four Higgs doublets and two derivatives
- They modify the kinetic terms of the Higgs fields, the Higgs-gauge boson interactions and the W and Z masses

	$\varphi^2 X^2$				
GG, WW, BB	WB				
$Q^{11}_{arphi X} = (arphi_1^\dagger arphi_1) X_{\mu u} X^{\mu u}$	$Q^{11}_{arphi WB} = (arphi_1^\dagger au^I arphi_1) W^I_{\mu u} B^{\mu u}$				
$Q^{22}_{arphi X} = (arphi_2^{\dagger} arphi_2) X_{\mu u} X^{\mu u}$	$Q^{22}_{arphi WB} = (arphi_2^\dagger au^I arphi_2) W^I_{\mu u} B^{\mu u}$				
$Q^{11}_{arphi ilde{X}} = (arphi_1^\dagger arphi_1) ilde{X}_{\mu u} X^{\mu u}$	$Q^{11}_{arphi ilde{W} B} = (arphi_1^\dagger au^I arphi_1) ilde{W}^I_{\mu u} B^{\mu u}$				
$Q^{22}_{arphi ilde{X}} = (arphi_2^\dagger arphi_2) ilde{X}_{\mu u} X^{\mu u}$	$Q^{22}_{\varphi\tilde{W}B} = (\varphi_2^{\dagger}\tau^{\prime}\varphi_2)\tilde{W}^{\prime}_{\mu\nu}B^{\mu\nu}$				

 $X = G^A$, W^I or B

- Operators with two Higgs doublets and two field strength tensors
- They modify the Higgs-gauge boson interactions

Ψ^2	$\varphi^2 D$
(1)	(3)
$Q^1_{\varphi u d} = i (\tilde{\varphi}^{\dagger}_1 i \overleftrightarrow{D}_{\mu} \varphi_1) (\bar{u}_{ ho} \gamma^{\mu} d_r)$	
$Q^2_{arphi u d} = i (ilde{arphi}_2^\dagger i \overleftrightarrow{D}_\mu arphi_2) (ar{u}_p \gamma^\mu d_r)$	
$Q^{(1)1}_{arphi l} = (arphi_1^\dagger i \overleftrightarrow{D}_\mu arphi_1) (\overline{l}_p \gamma^\mu l_r)$	$Q_{\varphi I}^{(3)1} = (\varphi_1^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} \varphi_1) (\overline{l}_p \tau^I \gamma^{\mu} l_r)$
$Q^{(1)2}_{arphi l} = (arphi_2^\dagger i \overleftrightarrow{D}_\mu arphi_2) (\overline{l}_p \gamma^\mu l_r)$	$Q_{\varphi I}^{(3)2} = (\varphi_2^{\dagger} i D_{\mu}^{I} \varphi_2) (\bar{l}_p \tau^I \gamma^{\mu} l_r)$
$Q^1_{arphi e} = (arphi_1^\dagger i \overleftrightarrow{D}_\mu arphi_1) (ar{e}_p \gamma^\mu e_r)$	
$Q^2_{arphi e} = (arphi_2^\dagger i \overleftrightarrow{D}_\mu arphi_2) (ar{e}_{ m p} \gamma^\mu e_{ m r})$	
$Q^{(1)1}_{arphi q q} = (arphi^{\dagger}_{1} i \overleftrightarrow{D}_{\mu} arphi_{1}) (ar{q}_{ ho} \gamma^{\mu} q_{ ho})$	$Q^{(3)1}_{\varphi q} = (\varphi_1^{\dagger} i D^{\dagger}_{\mu} \varphi_1) (\bar{q}_p \tau^{I} \gamma^{\mu} q_r)$
$Q^{(1)2}_{arphi q} = (arphi_2^\dagger i \overleftrightarrow{D}_\mu arphi_2) (ar{q}_p \gamma^\mu q_r)$	$Q_{\varphi q}^{(3)2} = (\varphi_2^{\dagger} i D_{\mu}^{I} \varphi_2) (\bar{q}_p \tau^{I} \gamma^{\mu} q_r)$
$Q^1_{arphi u} = (arphi_1^\dagger i \overleftrightarrow{D}_\mu arphi_1) (ar{u}_{ ho} \gamma^\mu u_r)$	
$Q^2_{arphi u} = (arphi_2^\dagger i \overleftrightarrow{D}_\mu arphi_2) (ar{u}_p \gamma^\mu u_r)$	
$Q^1_{arphi d} = (arphi_1^\dagger i \overleftrightarrow{D}_\mu arphi_1) (ar{d}_p \gamma^\mu d_r)$	
$Q^2_{\varphi d} = (\varphi^{\dagger}_2 i \overleftrightarrow{D}_{\mu} \varphi_2) (\overline{d}_p \gamma^{\mu} d_r)$	

- Operators containing two fermions, two Higgs doublets and a covariant derivative
- They contribute to the fermion-Z and fermion-W couplings after EWSB

$\Psi^2 arphi X$					
G	W	В			
$Q^1_{dG} = (ar q_p \sigma^{\mu u} T^A d_r) arphi_1 G^A_{\mu u}$	$Q^1_{dW} = (\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi_1 W^I_{\mu\nu}$	$Q^1_{dB} = (\bar{q}_p \sigma^{\mu\nu} d_r) \varphi_1 B_{\mu\nu}$			
$Q_{dG}^2 = (\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi_2 G^A_{\mu\nu}$	$Q_{dW}^2 = (\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi_2 W_{\mu\nu}^I$	$Q_{dB}^2 = (\bar{q}_p \sigma^{\mu\nu} d_r) \varphi_2 B_{\mu\nu}$			
$Q^1_{uG} = (\bar{q}_\rho \sigma^{\mu\nu} T^A u_r) \tilde{\varphi}_1 G^A_{\mu\nu}$	$Q^1_{uW} = (\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi}_1 W^I_{\mu\nu}$	$Q^1_{uB} = (\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi}_1 B_{\mu\nu}$			
$Q^2_{uG} = (\bar{q}_\rho \sigma^{\mu\nu} T^A u_r) \tilde{\varphi}_2 G^A_{\mu\nu}$	$Q_{uW}^2 = (\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi}_2 W_{\mu\nu}^I$	$Q_{uB}^2 = (\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi}_2 B_{\mu\nu}$			
	$Q^1_{eW} = (\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi_1 W^I_{\mu\nu}$	$Q^1_{eB} = (\bar{l}_p \sigma^{\mu u} e_r) \varphi_1 B_{\mu u}$			
	$Q_{eW}^2 = (\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi_2 W_{\mu\nu}^I$	$Q_{eB}^2 = (\bar{l}_p \sigma^{\mu u} e_r) \varphi_2 B_{\mu u}$			

 $\sigma^{\mu\nu}=i\,[\gamma^\mu,\gamma^\nu]/2$

- Operators containing two fermion fields, one Higgs doublet and a field strength tensor
- They give rise to dipole interactions after EWSB

Crivellin, MG, Procura, JHEP 1609 (2016) 160

Margherita Ghezzi

SMEFT and 2HDM-EFT

12/05/2017 35 / 42

$\Psi^2 \varphi^3$				
е	d	и		
$Q_{earphi}^{111}=(ar{l}_{ ho}e_{r}arphi_{1})(arphi_{1}^{\dagger}arphi_{1})$	$Q_{darphi}^{111}=(ar{q}_{p}d_{r}arphi_{1})(arphi_{1}^{\dagger}arphi_{1})$	$Q^{111}_{uarphi}=(ar{q}_{P}u_{r} ilde{arphi}_{1})(arphi_{1}^{\dagger}arphi_{1})$		
$Q_{earphi}^{122}=(ar{l}_{p}e_{r}arphi_{1})(arphi_{2}^{\dagger}arphi_{2})$	$Q_{darphi}^{122}=(ar{q}_{ ho}d_{ ho}arphi_1)(arphi_2^{\dagger}arphi_2)$	$Q^{122}_{uarphi}=(ar{q}_{ ho}u_{ ho} ilde{arphi}_{1})(arphi_{2}^{\dagger}arphi_{2})$		
$Q^{222}_{earphi}=(ar{l}_{ ho}e_{r}arphi_{2})(arphi_{2}^{\dagger}arphi_{2})$	$Q_{darphi}^{222}=(ar{q}_{ m ho}d_{ m r}arphi_2)(arphi_2^{\dagger}arphi_2)$	$Q^{222}_{uarphi}=(ar{q}_{ ho}u_{r} ilde{arphi}_{2})(arphi_{2}^{\dagger}arphi_{2})$		
$Q_{e\varphi}^{211}=(ar{l}_{ ho}e_{r}arphi_{2})(arphi_{1}^{\dagger}arphi_{1})$	$Q^{211}_{d\varphi}=(ar{q}_p d_r arphi_2)(arphi_1^\dagger arphi_1)$	$Q^{211}_{uarphi}=(ar{q}_{ ho}u_{r} ilde{arphi}_{2})(arphi_{1}^{\dagger}arphi_{1})$		

- Operators with two fermion fields and three Higgs doublets
- They modify the relation between fermion masses and Higgs-fermion couplings

2HDM-EFT: kinetic terms

$$\begin{split} L_{\mu_{\rm kin}}^{(4)+(6)} &= \frac{1}{2} \begin{pmatrix} \partial_{\mu} \rho_1 \\ \partial_{\mu} \rho_2 \end{pmatrix}^T \begin{pmatrix} 1 + \frac{2\Delta_{\square}^{11}}{2A} + \frac{\Delta_{\varphi D}^{11}}{2A^2} & \frac{\Delta_{\square}^{12}}{A} + \frac{\Delta_{\varphi D}^{12}}{2A^2} \\ \frac{\Delta_{\square}^{12}}{A^2} + \frac{\Delta_{\varphi D}^{12}}{2A^2} & 1 + \frac{2\Delta_{\square}^{22}}{A^2} + \frac{\Delta_{\varphi D}^{22}}{2A^2} \end{pmatrix} \begin{pmatrix} \partial_{\mu} \rho_1 \\ \partial_{\mu} \rho_2 \end{pmatrix} \\ &+ \frac{1}{2} \begin{pmatrix} \partial_{\mu} \eta_1 \\ \partial_{\mu} \eta_2 \end{pmatrix}^T \begin{pmatrix} 1 + \frac{\Delta_{\varphi D}^{11}}{2A^2} & \frac{\Delta_{\varphi D}^{12}}{2A^2} \\ \frac{\Delta_{\varphi D}^{12}}{2A^2} & 1 + \frac{\Delta_{\varphi D}^{22}}{2A^2} \end{pmatrix} \begin{pmatrix} \partial_{\mu} \eta_1 \\ \partial_{\mu} \eta_2 \end{pmatrix} \\ &+ \begin{pmatrix} \partial_{\mu} \phi_1^+ \\ \partial_{\mu} \phi_2^+ \end{pmatrix}^{\dagger} \begin{pmatrix} 1 & \frac{\Delta_{\varphi D}^+}{2A^2} \\ \frac{\Delta_{\varphi D}^+}{2A^2} & 1 \end{pmatrix} \begin{pmatrix} \partial_{\mu} \phi_1^+ \\ \partial_{\mu} \phi_2^+ \end{pmatrix} \end{split}$$

Example: $\mathcal{O}_{\phi\Box} = \partial_{\mu}(\phi^{\dagger}\phi)\partial^{\mu}(\phi^{\dagger}\phi)$

$$\frac{c_{\phi\square}}{v^2}\mathcal{O}_{\phi\square} = c_{\phi\square}\partial_{\mu}h\partial^{\mu}h + \dots$$

$$\Delta \mathcal{L}_{h} = \frac{1}{2} (1 + 2c_{\phi \Box}) \partial_{\mu} h \partial^{\mu} h + \dots \qquad \Rightarrow \qquad \bar{h} = (1 + 2c_{\phi \Box})^{\frac{1}{2}} h$$

2HDM-EFT: kinetic terms

$$\begin{split} L_{\mathcal{H}_{\rm kin}}^{(4)+(6)} &= \frac{1}{2} \begin{pmatrix} \partial_{\mu} \rho_1 \\ \partial_{\mu} \rho_2 \end{pmatrix}^T \begin{pmatrix} 1 + \frac{2\Delta_{\square}^{11}}{2A^2} + \frac{\Delta_{\varphi D}^{11}}{2A^2} & \frac{\Delta_{\square}^{12}}{A^2} + \frac{\Delta_{\varphi D}^{22}}{2A^2} \\ \frac{\Delta_{\square}^{12}}{A^2} + \frac{\Delta_{\varphi D}^{12}}{2A^2} & 1 + \frac{2\Delta_{\square}^{22}}{A^2} + \frac{\Delta_{\varphi D}^{22}}{2A^2} \end{pmatrix} \begin{pmatrix} \partial_{\mu} \rho_1 \\ \partial_{\mu} \rho_2 \end{pmatrix} \\ &+ \frac{1}{2} \begin{pmatrix} \partial_{\mu} \eta_1 \\ \partial_{\mu} \eta_2 \end{pmatrix}^T \begin{pmatrix} 1 + \frac{\Delta_{\varphi D}^{11}}{2A^2} & \frac{\Delta_{\varphi D}^{12}}{2A^2} \\ \frac{\Delta_{\varphi D}^{12}}{2A^2} & 1 + \frac{\Delta_{\varphi D}^{22}}{2A^2} \end{pmatrix} \begin{pmatrix} \partial_{\mu} \eta_1 \\ \partial_{\mu} \eta_2 \end{pmatrix} \\ &+ \begin{pmatrix} \partial_{\mu} \phi_1^+ \\ \partial_{\mu} \phi_2^+ \end{pmatrix}^{\dagger} \begin{pmatrix} 1 & \frac{\Delta_{\varphi D}^+}{2A^2} \\ \frac{\Delta_{\varphi D}^+}{2A^2} & 1 \end{pmatrix} \begin{pmatrix} \partial_{\mu} \phi_1^+ \\ \partial_{\mu} \phi_2^+ \end{pmatrix} \end{split}$$

$$\begin{split} \rho_1 &\to \rho_1 \left(1 - \frac{\Delta_{\varphi D}^{11} + 4\Delta_{\Box}^{11}}{4\Lambda^2} \right) - \left(\frac{\Delta_{\varphi D}^{12} + 4\Delta_{\Box}^{12}}{4\Lambda^2} \right) \rho_2 & \qquad \phi_1^+ \to \phi_1^+ - \frac{\Delta_{\varphi D}^+}{4\Lambda^2} \phi_2^+ \\ \rho_2 &\to \rho_2 \left(1 - \frac{\Delta_{\varphi D}^{22} + 4\Delta_{\Box}^{22}}{4\Lambda^2} \right) - \frac{\Delta_{\varphi D}^{12} + 4\Delta_{\Box}^{12}}{4\Lambda^2} \rho_1 & \qquad \phi_2^+ \to \phi_2^+ - \frac{\Delta_{\varphi D}^+}{4\Lambda^2} \phi_1^+ \\ \eta_1 \to \eta_1 \left(1 - \frac{\Delta_{\varphi D}^{11}}{4\Lambda^2} \right) - \frac{\Delta_{\varphi D}^{12}}{4\Lambda^2} \eta_2 & \qquad \eta_2 \to \eta_2 \left(1 - \frac{\Delta_{\varphi D}^{22}}{4\Lambda^2} \right) - \frac{\Delta_{\varphi D}^{12}}{4\Lambda^2} \eta_1 \end{split}$$

2HDM-EFT: mass terms

$$\begin{split} \mathcal{L}_{M_{H}}^{(4)+(6)} &= \frac{1}{2} \left(\begin{array}{c} \eta_{1} \\ \eta_{2} \end{array}\right)^{T} \left(m_{\eta}^{2} + \Delta m_{\eta}^{2}\right) \left(\begin{array}{c} \eta_{1} \\ \eta_{2} \end{array}\right) \\ &+ \left(\begin{array}{c} \phi_{1}^{-} \\ \phi_{2}^{-} \end{array}\right)^{T} \left(m_{\phi^{\pm}}^{2} + \Delta m_{\phi^{\pm}}^{2}\right) \left(\begin{array}{c} \phi_{1}^{+} \\ \phi_{2}^{+} \end{array}\right) \\ &+ \frac{1}{2} \left(\begin{array}{c} \rho_{1} \\ \rho_{2} \end{array}\right)^{T} \left(m_{\rho}^{2} + \Delta m_{\rho}^{2}\right) \left(\begin{array}{c} \rho_{1} \\ \rho_{2} \end{array}\right) \end{split}$$

$$\begin{split} \Delta m_{\eta}^{2} &= \Delta m_{\varphi D \eta}^{2} + \Delta m_{\varphi^{6} \eta}^{2} \\ \Delta m_{\rho}^{2} &= \Delta m_{\varphi D \rho}^{2} + \Delta m_{\varphi^{6} \rho}^{2} \\ \Delta m_{\phi^{\pm}}^{2} &= \Delta m_{\varphi D \phi^{\pm}}^{2} + \Delta m_{\varphi^{6} \phi^{\pm}}^{2} \end{split}$$

Crivellin, MG, Procura, JHEP 1609 (2016) 160

Margherita Ghezzi

$$m_{\phi\pm}^{2} \text{ and } m_{\eta}^{2}$$

$$\downarrow$$

$$\beta \equiv \arctan \frac{v_{2}}{v_{1}}$$

$$m_{\rho}^{2}$$

$$\downarrow$$

$$\alpha$$
2HDM-EFT:
$$g_{\pm} + \Delta m_{\phi\pm} \text{ ar}$$

2HDM:

$$m_{\phi^{\pm}}^{2} + \Delta m_{\phi^{\pm}} \text{ and } m_{\rho}^{2} + \Delta m_{\rho}^{2}$$

$$\downarrow$$

$$\beta_{\phi}^{\pm}, \beta_{\eta} \neq \beta$$

$$m_{\rho}^{2} + \Delta m_{\rho}^{2}$$

$$\downarrow$$

$$\alpha' \neq \alpha$$

Yukawa sector

The couplings of the Higgs doublets with fermions in the 2HDM

$$\mathcal{L}_{Y} = -Y_{1}^{e} \bar{l}\varphi_{1}e - Y_{2}^{e} \bar{l}\varphi_{2}e - Y_{1}^{d} \bar{q}\varphi_{1}d - Y_{2}^{d} \bar{q}\varphi_{2}d - Y_{1}^{u} \bar{q}\tilde{\varphi}_{1}u - Y_{2}^{u} \bar{q}\tilde{\varphi}_{2}u + h.c.$$
(Require $Y_{1}^{f} = 0$ or $Y_{2}^{f} = 0$ to avoid FCNC)

Paschos-Glashow-Weinberg theorem:

If all right-handed fermions with the same quantum numbers couple to the same Higgs multiplet, then FCNC are absent.

model	u _R	d _R	e _R
Type I	φ_2	φ_2	φ_2
Type II	φ_2	φ_1	φ_1
Lepton - specific	φ_2	φ_2	φ_1
Flipped	φ_2	φ_1	φ_2

Yukawa sector

The couplings of the Higgs doublets with fermions in the 2HDM-EFT

$$\mathcal{L}_{Y} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$
 $\mathcal{O}_{ijk} \sim \left(\bar{f}_{L} f_{R} \phi_{i}\right) \left(\phi_{j}^{\dagger} \phi_{k}\right)$ $i, j, k = 1, 2$

After the EW symmetry breaking:

new contributions to the fermion masses

$$m^{f} = \frac{v_{1}Y_{1}^{f}}{\sqrt{2}} + \frac{v_{2}Y_{2}^{f}}{\sqrt{2}} + \frac{1}{2\sqrt{2}\Lambda^{2}} \left(v_{1}^{3} C_{f\varphi}^{111} + v_{1}v_{2}^{2} C_{f\varphi}^{122} + v_{2}^{3} C_{f\varphi}^{222} + v_{1}^{2}v_{2} C_{f\varphi}^{211}\right)$$

Modifications to the Higgs-fermion-fermion and Higgs-Higgs-fermion-fermion couplings

Application: Higgs pair production

SMEFT

$$\mathcal{O} \sim \left(\bar{f}_L f_R \phi\right) \left(\phi^{\dagger} \phi\right)$$

- The same operator controls f f h and f f hh couplings;
- it contributes also to the ffZ vertex
- hence, it is strongly constrained by the EWPT at LEP

2HDM-EFT

$$\mathcal{O}_{ijk} \sim \left(\bar{f}_L f_R \phi_i \right) \left(\phi_j^{\dagger} \phi_k \right) \quad i, j, k = 1, 2$$

- Many operators, that enter in different combinations in the ffh and ffhh vertices;
- the *f f hh* vertex is not constrained by EWPT;
- enhancements of the *gghh* cross section are possible.

Summary and Outlook - 2HDM-EFT

Summary

- We have discussed in which cases the EFT approach can be extended to include new degrees of freedom.
- We have built the effective Lagrangian for the dynamical degrees of freedom of the 2HDM.
- We have shown that the rotations to the physical basis are affected by the dim-6 operators and tan β gets modifications.

Outlook

This is just the beginning:

- Calculate contributions from the effective operators to the observables.
- Set new bounds on the 2HDM and on (linear combination of) Wilson coefficients.
- Study the impact of the Z_2 symmetry and of FCNC in the effective sector.