

Trento Institute for Fundamental Physics and Applications

Radiobiological needs for FOOT

E. Scifoni, F. Tommasino

- Target Fragments in proton beam irradiation (inverse kin)
- Projectile Fragments in Oxygen beam irradiation (direct kin)

Modeling and Verification for Ion beam Treatment planning

and Applications

Sebastian Hild (TIFPA)	MG Pugliese (NA)	Giorgio Russo (LNS)	Pablo Cirrone (LNS)			
WP1 RB modeling for TPS	WP2 NTCP/TCP	WP3 Biological Dosimetry	WP4 Facilities			
T1.1: RBE modeling for protons	T2.1: NTCP models on proton patient data including RBE	T3.1: Devices for spatially resolved proton RBE measurement	T4.1: CNAO/TIFPA/LNS lines development for beam delivering			
T1.2: OER and ITH modeling	T2.2: TCP/NTCP including hypoxia for different ions	T3.2: Hypoxic, Coculture and Stem cells devices	T4.2: MC Simulations for beamlines/target stations for in vitro/in vivo exp			
		T3.3: In vivo and Molecular biomarkers	T4.3: Detectors for beam flux and beam energy measurement			
WP0 Coordination& Dissemination Emanuele Scifoni (TIFPA)						
01.02.17	E. Scifo	ni-RDH Meeting	TIFPA Trento Institute for Fundamental Physics			

oVe IT

Interaction with INFN projects

+ Feed from previous related projects: TPS, RDH, UFSD

FOOT Physics

TRiP98 – Biological Based Treatment planning for Particles

Clinical use in pilot project, Research use in GSI, HIT, Aarhus, Lyon etc. Reference for: Siemens SynGo/PT, RaySearch

Biological-based treatment planning

- Bio-TPS for ion beams aims to include as much as possible biological effect information in the planning strategy.
- Relevant for plan recalculation but ideally needed for inverse planning.
- Substantial for assessing differential benefits of different irradiation modalities and selecting the most suitable choice for a given patient case.
- Additional physics data needed, since the different components (E,Z) of the mixed field in a beam should be properly accounted in order to get an overall biological effect.

Phys. Med. Biol. 57 (2012) 5169-5185

doi:10.1088/0031-9155/57/16/5169

The impact of modeling nuclear fragmentation on delivered dose and radiobiology in ion therapy

Armin Lühr^{1,2,3}, David C Hansen^{1,2}, Ricky Teiwes², Nikolai Sobolevsky⁴, Oliver Jäkel^{5,6} and Niels Bassler^{1,2}

- SHIELD-HIT (MC) + TRiP98
- C beam
- 20% in xs => only 3% in RBE

Role of Target fragmentation in proton therapy

Differently from Projectile fragments, their Energy distribution being peaked at very low E Combines with the peak of RBE at low E

Fragment	E (MeV)	LET (keV/µm)	Range (µm)
¹⁵ O	1.0	983	2.3
^{15}N	1.0	925	2.5
14 N	2.0	1137	3.6
¹³ C	3.0	951	5.4
^{12}C	3.8	912	6.2
11 C	4.6	878	7.0
$^{10}\mathbf{B}$	5.4	643	9.9
⁸ Be	6.4	400	15.7
⁶ Li	6.8	215	26.7
⁴ He	6.0	77	48.5
³ He	4.7	89	38.8
$^{2}\mathrm{H}$	2.5	14	68.9

Tommasino & Durante 2015 Cancers

12.04.17

FOOT Physics

¹⁶O beam in TRiP

Yield of secondary particles with depth in water for ¹⁶O at 160 MeV/u (TRiP98)

Exp attenuation data courtesy of C. La Tessa (BNL)

- Large number of fragments
- Few experimental data available
- New data for full spectral characterization are highly needed to assess impact of fragments

Exploiting O beams for hypoxia

Scifoni et al PMB 2013

Oxygen beams for therapy: advanced biological treatment planning and experimental verification

O Sokol¹, E Scifoni^{1,2}, W Tinganelli^{1,2}, W Kraft-Weyrather¹, J Wiedemann¹, A Maier¹, D Boscolo¹, T Friedrich¹, S Brons³, M Durante^{1,2} and M Krämer¹

Submitted to PMB

OER optimized plans with O (kill painting)

- In case of hypoxia, proper optimization accounting for OER may lead to **Inverted peak-to**entrance ratios as compared to a normoxic case
- According to actual oxygenation, O beam may overcome the price of larger entrance channel with the LET advantages
- Trade-off between better LET distribution and worse Fragmentation in entrance and tail

Impact of "high" fragments

Desiderata for Protons

Target fragment producton, at 100-200 MeV:

- Heavy fragment (Z>2) production cross section with uncertainty < 5%
- Fragment energy spectrum (i.e. $d\sigma/dE$) with energy resolution of \approx 1 MeV/u
- Charge ID at the level of 2-3%
- Isotopic ID at the level of 5%
- Not needed accurate angular measurement
- Study light ions production at large angle

Desiderata for Oxygen

Projectile Fragment producton, at 150-400 MeV/u:

- Cross section of projectile fragments with maximum uncertainty of 5-10%
- Fragment energy spectrum (i.e. dσ/dE) with an energy resolution of ≈10 MeV/u
- Charge ID at the level of 2-3%
- Isotopic ID at the level of 5%
- Angular distribution needed for out-of-field biological dose

Our strategy for better figures design

MC Spectra from WP4 (LNS-GEANT4, MILANO-FLUKA) 2 options:

- Voxelized (layered) Spectra dN/dE(Z,z,E,E₀) including eventual buidup
- Pure Fragment Spectra dN/dE(Z,E,E₀) -> YIELD-> TRiP98

12.04.17

Parallel approaches for T_frag impact assessment

Track structure simulations of low energy ions -with no Energy/space cutoff in secondary electrons-

- TRAX
- GEANT4DNA

Milestones related to FOOT

Milestone	Description	Date
M1.1.1	Initial RBE description with tentative cross sections	November 2017
M1.1.2	Final RBE description with FOOT cross sections	July 2019
M2.1.2	Comparison between proton NTCP estimations	November 2019
M2.2.1	NTCP/TCP estimations with different ions, on imported plans	April 2019

INFN

Trento Institute for Fundamental Physics and Applications

FOOT Physics

Thank you

Trento Institute for Fundamental Physics and Applications

FOOT Physics