

Neutron source and neutron sink with THM

Giovanni Luca Guardo

on behalf of the AsFiN group

Reazioni indotte da neutroni

Problemi Sperimentali

> Impossibili da accelerare (carica neutra)

Impossibile realizzare un bersaglio (tempo di decadimento 885.7±0.8 sec)

PRODUZIONE DI FASCI DI NEUTRONI

- Fotodissociazione o assorbimento α del ⁹Be
 - > Spettri monoenergetici
- Reattori nucleari
- Reazioni del tipo (y,n) con fotoni di bremsstrahlung
- Reazioni con particelle cariche del tipo (p,n) attraverso acceleratori di bassa energia
 - > Distribuzioni delle energie -> TAGGING (ToF, angolo,...)

REAZIONI INVERSE

Rivelazione dei neutroni difficile (efficienza <30%)</p>

Il metodo del Cavallo di Troia

 $x + A \rightarrow c + C$ $a + A \rightarrow c + C + s$

VANTAGGI:

✓ Deuterio sorgente di neutroni virtuali;
 ✓ Funzione di eccitazione fino a 500 keV
 con una singola energia di fascio;
 ✓ Superamento degli effetti dovuti alla

barriera centrifuga;

✓ Semplice configurazione del setup sperimentale.

 $\frac{d^3\sigma}{d\Omega_c d\Omega_c dE_c} \propto KF \cdot \left|\Phi(p_s)\right|^2 \cdot \frac{d\sigma_{Ax}}{d\Omega}$

Il primo approccio/test ⁶Li(n,α)³He tramite ²H(⁶Li,α³He)p

Table 1. Details of the set-up used for the two different measurement runs.

	First run	Second run
Beam energy	14 MeV	17 MeV
Target thickness	$150 \mu g cm^{-2}$	$100\mu{ m g~cm^{-2}}$
ΔE Si detector thickness	$20\mu\mathrm{m}$	_
E Si PSD detector thickness	$1000\mu\mathrm{m}$	$1000\mu\mathrm{m}$
Detection angular ranges	18–28°	22–25°
	43–53°	36–39°
Angular resolution	$\pm 0.1^{\circ}$	$\pm 0.05^{\circ}$
Relative energy $(E_{6\text{Li}-n})$ range	0–1.5 MeV	0-0.3 MeV
Experimental $E_{^{6}\text{Li}-n}$ uncertainty	$\pm 60 \text{keV}$	$\pm 15 \mathrm{keV}$
(resolution of the method)		

Tumino A. et al., EpJ A, 2005 Gulino M. et al., JPG, 37, 2010

- R. M. Sanders, Phys. Rev., 104, 1434 (1956) REAZIONE INVERSA ¹⁴C(α,n)¹⁷O
 - * P.E.Koehler & S.M.Graff, Phys. Rev., C44(6), 2788 (1991)
- H. Schatz et al., Astroph. J., 413, 750 (1993)
- △ J. Wagemans et al., Phys. Rev., C65(3), 34614 (2002)

E _{c.m.} (keV)	¹⁸ O* (MeV)	Jπ
 -7	8.039	1 ⁻
75	8.125	5 ⁻
166	8.213	2+
236	8.282	3-

F. Ajzenberg-Selove, Nucl. Phys., A475, 1 (1987)

Setup Sperimentale

> La reazione¹⁷O(n, α)¹⁴C è stata studiata attraverso la ²H(¹⁷O, α ¹⁴C)p , V_{coul}=2.3 MeV; > Il deuterio è il nucleo TH. Struttura n⊕p; B=2.2 MeV, |p_s|=0 MeV/c .

- ✓ Esperimento effettuato all'ISNAP della University of Notre Dame (USA) e ai LNS;
- ✓ E_{fascio}(¹⁷O)= 43.5 MeV;
- ✓ Spessore bersaglio CD₂ ~150 µg/cm²;
- IC contenenti ~50 mbar isobutano;
- Disposizione simmetrica dei rivelatori per raddoppiare la statistica.

i)¹⁴C è stata studiata i¹⁴C)p, V_{coul}=2.3 MeV; leo TH. Struttura n⊕p; eV/c.

- ✓ Esperimento effettuato all'ISNAP della University of Notre Dame (USA) e ai LNS;
- ✓ E_{fascio}(¹⁷O)= 43.5 MeV;
- ✓ Spessore bersaglio CD₂ ~150 µg/cm²;
- IC contenenti ~50 mbar isobutano;
- Disposizione simmetrica dei rivelatori per raddoppiare la statistica.

La reazione ¹⁷O(n,α)¹⁴C Selezione del Canale di Peazio

Selezione del Canale di Reazione

» Selezione del carbonio nello stato finale attraverso la tecnica ΔE-E

» Picco stretto e isolato nello spettro di Q_{value} (-0.4±0.8 MeV) in accordo con quello teorico » Dati sperimentali (in rosso) in accordo con il risultato di una simulazione (punti neri)

4.3<θ₁₄_C<10.3

14.5<θ_a<20.5

E_α (MeV)

Per avere informazioni sulla natura dei livelli è stata studiata la correlazione tra la yield di coincidenza e l'impulso del protone non rivelato in accordo con la PWIA:

La reazione $^{17}O(n,\alpha)^{14}C$

$$\left(\frac{\frac{d^{3}\sigma}{\frac{dE_{c}d\Omega_{c}d\Omega_{c}}{KF}}}{KF} \propto \left|\Phi(p_{S})\right|^{2} \cdot \frac{d\sigma}{d\Omega}\right)$$

Riportando la sezione d'urto a tre corpi in funzione della $E_{c.m.}$ con Q_{2corpi} =1.817 MeV

$$E_{c.m.} = E_{{}^{14}C-\alpha} - Q_{2corpi}$$

(MeV)

-20<p<20

La reazione ¹⁷O(n,α)¹⁴C

Selezione del Meccanismo Quasi-Libero

Dalle ipotesi della PWIA:

M. Jain et al., Nucl. Phys.,

La reazione $^{17}O(n,\alpha)^{14}C$

Distribuzioni Angolari

Momento angolare *l*=2: nessuna distribuzione presente in letteratura

Momento angolare ℓ=1: consistente con le misure presenti in letteratura

-1

Gulino et al., PRC 87, 012801 (2013)

n

 $\cos \theta_{c.m.}$

0.5

-0.5

$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} E_{xA} \mathrm{d} \Omega_s} = \mathrm{NF} \sum_i \left(2\mathrm{J}_i + 1 \right)$ $\left \sqrt{\mathrm{Ir} \left(E_{xA} \right)} \sqrt{2P_i \left(k_s \sigma R_s \sigma \right)} M_i \left(n_s A R_s A \right) \gamma^i \sigma \gamma^i t \right ^2}$						
$\times \left \sqrt{\frac{\kappa_{\rm f}(E_{xA})}{\mu_{cC}}} \frac{\sqrt{2\pi t_i(bcCACC)} \mu_i(p_{xACxA}) + cC + xA}}{D_i(E_{xA})} \right $						
_{cm} (keV)	Γ _n (eV)	Γ _α (eV)	Г _{тот} (eV)	Γ _{wag.} (eV)		
-7	0,01±0,001	2362±307	2362±307	2400		
75	0,05±0,006	36±5	36±5	-		
166	86±11	2171±282	2257±293	2258±135		
236	1714±446	13021±3386	14735±3832	14739±590		

StroFlsig

Guardo et al., Phys. Rev. C, 95, 025807, 2017 La Cognata et al., ApJ, 777, 143, 2013

La reazione ¹⁷O(n,α)¹⁴C

Rate astrofisico

Guardo et al., Phys. Rev. C, 95, 025807, 2017

Conseguenze astrofisiche da valutare

Altre reazioni studiate... ¹⁰B(n,α)⁷Li

Primo run effettuato al Departamento de Fisica Nuclear (DFN) in Sao Paolo, Brazil dedicato alla misura della ${}^{10}B(p,\alpha){}^{7}Be \rightarrow CANALE PARASSITA$

Lamia et al., Nuovo Cimento C31, 423 (2008)

Altre reazioni studiate... ¹⁰B(n,α)⁷Li

PSD3

Secondo run dedicato effettuato a Laboratori Nazionali del Sud

Incremento della risoluzione grazie a:

- 1. Target sottile
- 2. Rivelatori a grande distanza
- 3. Risoluzione angolare
- 4. Minimizzazione straggling

<u>stro</u>F

Altre reazioni studiate... ¹⁴N(n,p)¹⁴C tramite ²H(¹⁴N,α¹⁴C)p

- ✓ First ¹⁴N beam @LNS
- ✓ Beam energy: 40 MeV
- \checkmark ¹⁴C detected via DSSSD
- \checkmark 2 PSD for alpha detection
- ✓ ΔE-E range 3°-7°
- $\checkmark\,$ PSD range 20°-30° and 35°-45°

Altre reazioni studiate...

⁷Be(n,α)⁴He

Applicazione del THM con fasci esotici e/o nuclei instabili → The BeLiCos experiment @ INFN-LNL

TANDEM ACCELERATOR

Experimental study of the ⁷Be(n,α)⁴He at astrophysical energies by means of the Trojan Horse Method applied to the ²H(⁷Be, α⁴He)p reaction

L. Lamia^{1,2}, M. Mazzocco^{3,4}, C. Spitaleri^{1,2}, M. La Cognata², R. G. Pizzone², X. Aslanouglu⁵, Ch. Betsou⁵, A. Boiano⁶, C. Boiano¹⁴, C. Broggini⁴, A. Caciolli^{4,3}, S. Cherubini^{1,2}, G. D'Agata^{1,2}, R. Depalo^{4,3}, A. Di Pietro², P. Figuera², M. Fisichella², G.L. Guardo^{1,2}, S. Hayakawa⁷, N. Iwasa¹⁶, S. Kubono^{8,15}, M. La Commara^{6,9}, M. Lattuada^{1,2}, A. Pakou⁵, C. Parascandolo⁶, R. Menegazzo⁴, P. Pierroutsakou⁶, S. Romano^{1,2}, G. G. Rapisarda¹, K. Sakaguchi⁷, M.L. Sergi², O. Sgoure, T. Soramel^{3,4}, V. Soukeras⁵, E. Stiliaris¹⁰, E. Strano^{3,4}, D. Torresi^{1,2}, A. Tumino¹¹, H. Y. Sp³, F.L. Villante^{12,13}

Altre reazioni studiate... ¹⁸F(n,α)¹⁵O

Applicazione del THM con fasci esotici e/o nuclei instabili →

The ²H(¹⁸F,α¹⁵O)p experiment @ CRIB-RIKEN

Sorgenti di neutroni... ¹³C(α,n)¹⁶O

Esperimento effettuato alla FSU attraverso la reazione ¹³C(⁶Li,n¹⁶O)d

La Cognata et al., Phys. Rev. Lett., 109, 232701, 2012 La Cognata et al., ApJ, 777, 143, 2013 Trippella and La Cognata, ApJ 837, 1, 2017

Sorgenti di neutroni... ²²Ne(α,n)²⁵Mg

The ²²Ne(α,n)²⁵Mg reaction at astrophysical energies studied via the Trojan Horse Method applied to the ²H(²⁵Mg, α²²Ne)¹H reaction

R. Spartà¹, M. La Cognata¹, C. Spitaleri^{1,2}, S. Cherubini^{1,2}, A. Cvetinovic¹, G. D'Agata^{1,2}, G.L. Guardo¹, M.Gulino^{1,3}, I. Indelicato¹, L. Lamia¹, S. Palmerini⁴, R. G. Pizzone¹, O. Trippella⁴, S.M.R. Puglia¹, G. G. Rapisarda¹, S. Romano^{1,2}, M.L. Sergi¹, A. Tumino^{1,3}

Conclusioni

- L'estensione del THM alle reazioni indotte dai neutroni permette di superare gli effetti della barriera centrifuga
 - 1. Evidenza di livelli soppressi nelle misure dirette
 - 2. Possibilità di misurarne distribuzioni angolari e proprietà nucleari
 - 3. Applicazione dell'approccio R-matrix per ricavare le strenght dei livelli
- L'utilizzo del deuterio come sorgente di neutroni virtuali permette di superare i problemi sperimentali nella produzione di fasci di neutroni
 - 1. Riduzione costi della ricerca
 - 2. Semplice setup sperimentale
 - 3. Unica energia di fascio per un ampio spettro energetico
- Applicazione ai nuclei esotici

The AsFiN group

C. Spitaleri, A. Anzalone, S. Cherubini, A. Cvetinovic, G. D'Agata, G.L. Guardo, M. Gulino, I. Indelicato, M. La Cognata, L. Lamia, R.G. Pizzone, S.M.R. Puglia, G.G. Rapisarda, S. Romano, M.L. Sergi, R. Spartà, A. Tumino INFN-LNS, Università di Catania & UniKore Enna

> S. Palmerini, O. Trippella Università di Perugia & INFN-Sezione di Perugia

Collaborations

D. Balabanski, S. Chesnevskaya, C. Matei, Y. Xu Extreme Light Infrastructure – Nuclear Physics

nuclear physics

M. Mazzocco Università di Padova & INFN-Sezione di Padova M. La Commara, D. Pierroutsakou Università di Napoli «Federico II» & INFN-Sezione di Napoli S. Hayakawa, H. Yamaguchi University of Tokyo V. Burjan, J. Mrazek Nuclear Physics Institute of ASCR N. Soic Rudjer Boskovic Institute, Zagreb C. Bertulani, A. Mukhamedzhanov, G. Rogachev Cyclotron Institute & Texas A&M A. Coc, F. Hammache, N. deSereville CSNSM Orsay, France

M. Wiescher Notre Dame University N. Burtibaiev RSE INP Almaty Kazakhstan

