Measurement of the ⁷Be(p,γ)⁸B cross section

A. Di Leva - Università di Napoli Federico II and INFN for the ERNA Collaboration

ERNA @ CIRCE

European Recoil Separator for Nuclear Astrophysics

$^{7}Be(p,\gamma)^{8}B$

Direct measurements: p beam on ⁷Be target Indirect measurements: ⁸B Coulomb break-up

$^{7}Be(p,\gamma)^{8}B$

Direct measurements: p beam on ⁷Be target Indirect measurements: ⁸B Coulomb break-up

Direct Measurements		Indirect Measurements	
Strieder et al. NuPhA 696(2001) – Bochum	S(0) = 18.4 ± 1.6 eVb	Azhari et al. PRL 82 (1999) - ANC	S(0) = 17.8 ± 2.8 eVb
Hammache et al. PRL 86(2001) – Orsay	S(0) = 18.8 ± 1.7 eVb	Tabacaru et al. PRC 73(2006) - ANC	S(0) = 18.0 ± 1.8 eVb
Jumgans et al. PRC 68(2003) – Seattle	S(0) = 21.4 ± 0.6 ± 0.6 eVb	Schumann et al. PRC 73(2006) - CD	S(0) = 20.6 ± 0.8 ± 1.2 eVb
Baby et al. PRC 67 (2003) – Weizmann	S(0) = 21.2 ± 0.6 eVb		

⁷Be RIB production

The number of incident projectiles, including lithium contamination, is monitored on line through elastic scattering.

Windowless gas target

seen in the yield of the 478 keV γ -ray line from the ⁷Li(p, p)⁷Li

Target density $N_T = (7.22 \pm 0.15) \cdot 10^{18} \text{ at/cm}^2$ D. Schürmann et al., Eur. Phys. J. A 49 (2013) 80

Stopping power & charge states

Acceptance

⁷Be(p, γ)⁸B with ERNA

Typical ionization chamber telescope E-ΔE spectrum. The ⁸B recoils are well separated from the primary beam residues.

⁷Be(p, γ)⁸B with ERNA

Conclusions

- A very intense ⁷Be beam, up to 3x10⁹ pps, is routinely produced and characterized at CIRCE laboratory
- All the ancillary measurements (target characterization, tunings, charge state distributions) are completed for the measurements in the $E_{cm} = 350$ to 800 keV range
- The measurements of absolute cross section trough the 629 keV resonance and up to 800 keV have been performed and analysis is complete
- The measurement at 350 keV closed the measurement campaign, data analysis is ongoing
- Experimental results and their impact on the extrapolation of the cross section are expected to be submitted within this year

Perspectives

- we have recently put online the ⁴He jet gas target chamber, more details in D. Rapagnani talk
- soon target will be equipped with an array of Nal scintillators and several e+e- pair spectrometers for measurements in coincidence with recoils
- we plan to fit an H₂ extended target cell in the newly installed jet gas target chamber
- there is thus the possibility of measuring radiative capture reaction cross section on ¹H or ⁴He
- we are interested in exploiting the possibilities of the intense ⁷Be RIB available at CIRCE, at present:

⁷Be(p,p)⁷Be already started in collaboration with Edinburgh group $^{7}Be(\alpha,\alpha)^{7}Be$ in planning stage