Direct measurement of the 64.5 keV resonance strength in the ¹⁷O(p,α)¹⁴N reaction at LUNA

Carlo G. Bruno

Edinburgh University

5 Ottobre 2017 GIANTS - Bologna

ASTROPHYSICAL MOTIVATION

Giant Branch stars

• Burn hydrogen via CNO cycle in the core (T=0.03-0.1 GK)

 CNO signature = isotopic abundance pattern at equilibrium

• CNO signature observed in outer layers!

ASTROPHYSICAL MOTIVATION

• Giant Branch stars

• Burn hydrogen via CNO cycle in the core (T=0.03-0.1 GK)

- CNO signature = isotopic abundance pattern at equilibrium
- CNO signature observed in outer layers!
- Convective / recirculating processes carry CNO products to outer layers
- Physical nature often unknown
- Affect reliability of stellar evolution models

MIXING PROCESSES

- How can we study these unknown mixing processes?
- Trace them with CNO isotopes
- ¹⁷O is an ideal tracer for HBB / CBP

AIMS

• Stellar models are affected by uncertainties in ¹⁷O/¹⁶O and uncertainties come primarily from **destruction** rate of ¹⁷O

• ¹⁷O(p,α)¹⁴N

• **Our aim**: study this reaction at relevant energies to reduce the uncertainties in the ¹⁷O isotopic abundances

- Very low counting rates expected: ~1 count/h
- Natural background will be a problem. How do we solve this?

THE LUNA EXPERIMENT

will be significantly reduced, allowing a direct measurement.

REACTION CHAMBER

THE FOILS

Back-scattering protons will hit the silicon detectors

- 1. Will damage detectors
- 2. Will increase background
- Foils mounted to shield detectors

• Foils must be:

- 1. Thick to stop protons
- 2. Thin to let alphas through
- 3. Homogeneously thick, rugged, free of pinholes ...

• Finding a compromise was difficult

- Aluminised Mylar, roughly 2.4µm thick, was chosen
- For ${}^{17}O(p,\alpha){}^{14}N$: 200 keV protons stopped and 1 MeV alpha particles detected at 200-250 keV

THE FOILS

THE FOILS

BACKGROUND REDUCTION IN SI DETECTORS

- Advantage of moving underground for gamma spectroscopy is well-established
- What about alpha spectroscopy?
- Does a lead castle help?
- We compared the background in Edinburgh and Gran Sasso

EDINBURGH

BACKGROUND REDUCTION

Eur. Phys. J. A (2015) **51**: 94 DOI 10.1140/epja/i2015-15094-y

Regular Article – Experimental Physics

THE EUROPEAN PHYSICAL JOURNAL A

Resonance strengths in the $^{17,18}{\rm O}({\rm p},\alpha)^{14,15}{\rm N}$ reactions and background suppression underground

Commissioning of a new setup for charged-particle detection at LUNA

LUNA Collaboration

C.G. Bruno¹, D.A. Scott¹, A. Formicola², M. Aliotta^{1,a}, T. Davinson¹, M. Anders³, A. Best², D. Bemmerer³, C. Broggini⁴, A. Caciolli^{4,5}, F. Cavanna⁶, P. Corvisiero⁶, R. Depalo^{4,5}, A. Di Leva⁷, Z. Elekes⁸, Zs. Fülöp⁸, G. Gervino⁹, C.J. Griffin¹, A. Guglielmetti¹⁰, C. Gustavino¹¹, Gy. Gyürky⁸, G. Imbriani⁷, M. Junker², R. Menegazzo⁴, E. Napolitani⁵, P. Prati⁶, E. Somorjai⁸, O. Straniero^{2,12}, F. Strieder¹³, T. Szücs³, and D. Trezzi¹⁰

¹⁷O(p,α)¹⁴N

NUCLEAR PHYSICS ASPECTS

- Q-value = 1.2 MeV. Alpha energy at emission = 1 MeV
- After foils: alpha energy = 200 250 keV
- Two narrow resonances at 70 and 193 keV (Lab. frame)
- Resonances dominant at astrophysical temperatures
- AIMS: measure E_p=70 and 193 keV resonances

FINDING THE REGION OF INTEREST

- Counting rate at E_p=193 keV -> 8000 counts/C (OK!)
- Counting rate at $E_p = 70 \text{ keV} \rightarrow \text{few counts/C (very low!)}$
- How do we find the signal at $E_p = 70 \text{ keV}$?

FINDING THE REGION OF INTEREST

- Counting rate at E_p=193 keV -> 8000 counts/C (OK!)
- Counting rate at E_p=70 keV -> few counts/C (very low!)
- How do we find the signal at $E_p = 70 \text{ keV}$?
- Define a ROI at E_p=193 keV
- Use ROI defined at $E_p = 70$ keV (small correction needed)

RAW SPECTRA

- On-resonance and natural background in agreement
- Natural background is the main source of background
- Large reduction compared with overground

SUBTRACTED SPECTRA

- Clear peak in the green region of interest
- Shape looks reasonable
- No obvious structures in the off-resonance
- Maximum Likelihood employed to extract counts

REACTION RATE

- Compared with Iliadis 2010 compilation and Buckner 2015
- Same input file, changed only 70 keV resonance

PRL 117, 142502 (2016)

PHYSICAL REVIEW LETTERS

Improved Direct Measurement of the 64.5 keV Resonance Strength in the ${}^{17}O(p,\alpha){}^{14}N$ Reaction at LUNA

C. G. Bruno,^{1,*} D. A. Scott,¹ M. Aliotta,^{1,†} A. Formicola,² A. Best,³ A. Boeltzig,⁴ D. Bemmerer,⁵ C. Broggini,⁶ A. Caciolli,⁷ F. Cavanna,⁸ G. F. Ciani,⁴ P. Corvisiero,⁸ T. Davinson,¹ R. Depalo,⁷ A. Di Leva,³ Z. Elekes,⁹ F. Ferraro,⁸ Zs. Fülöp,⁹ G. Gervino,¹⁰ A. Guglielmetti,¹¹ C. Gustavino,¹² Gy. Gyürky,⁹ G. Imbriani,³ M. Junker,² R. Menegazzo,⁶ V. Mossa,¹³ F. R. Pantaleo,¹³ D. Piatti,⁷ P. Prati,⁸ E. Somorjai,⁹ O. Straniero,¹⁴ F. Strieder,¹⁵ T. Szücs,⁵ M. P. Takács,⁵ and D. Trezzi¹¹

(LUNA Collaboration)

ASTROPHYSICAL IMPLICATIONS

- Oxygen-rich Group II pre-solar grains
- Tentative origin: low-mass AGB stars and CBP mixing
- CBP is introduced ad-hoc.

ASTROPHYSICAL IMPLICATIONS

- Oxygen-rich Group II pre-solar grains
- New production site: massive AGBs
- Excellent agreement with Hot Bottom Burning models
- No need for ad-hoc Cool Bottom Process
- First evidence of pre-solar grains from massive AGBs!

Origin of meteoritic stardust unveiled by a revised proton-capture rate of ¹⁷O

M. Lugaro^{1,2*}, A. I. Karakas²⁻⁴, C. G. Bruno⁵, M. Aliotta⁵, L. R. Nittler⁶, D. Bemmerer⁷, A. Best⁸, A. Boeltzig⁹, C. Broggini¹⁰, A. Caciolli¹¹, F. Cavanna¹², G. F. Ciani⁹, P. Corvisiero¹², T. Davinson⁵, R. Depalo¹¹, A. Di Leva⁸, Z. Elekes¹³, F. Ferraro¹², A. Formicola¹⁴, Zs. Fülöp¹³, G. Gervino¹⁵, A. Guglielmetti¹⁶, C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁰, V. Mossa¹⁸, F. R. Pantaleo¹⁸, D. Piatti¹¹, P. Prati¹², D. A. Scott^{5,†}, O. Straniero^{14,19}, F. Strieder²⁰, T. Szücs¹³, M. P. Takács⁷ and D. Trezzi¹⁶

A&A 598, A128 (2017) DOI: 10.1051/0004-6361/201629624 © ESO 2017

Astronomy Astrophysics

The impact of the revised ${}^{17}O(p, \alpha){}^{14}N$ reaction rate on ${}^{17}O$ stellar abundances and yields

O. Straniero^{1,2}, C. G. Bruno⁵, M. Aliotta⁵, A. Best⁶, A. Boeltzig³, D. Bemmerer⁴, C. Broggini⁷, A. Caciolli^{7,8}, F. Cavanna⁹, G. F. Ciani³, P. Corvisiero⁹, S. Cristallo^{1,16}, T. Davinson⁵, R. Depalo^{7,8}, A. Di Leva⁶, Z. Elekes¹⁰, F. Ferraro⁹, A. Formicola², Zs. Fülöp¹⁰, G. Gervino¹¹, A. Guglielmetti¹², C. Gustavino¹³, G. Gyürky¹⁰, G. Imbriani⁶, M. Junker², R. Menegazzo⁷, V. Mossa¹⁴, F. R. Pantaleo¹⁴, D. Piatti^{7,8}, L. Piersanti^{1,16}, P. Prati⁹, E. Samorjai¹⁰, F. Strieder¹⁵, T. Szücs⁴, M. P. Takács⁴, and D. Trezzi¹¹

THANK YOU FOR YOUR ATTENTION

Detectors and TA_2O_5 target

- 8 silicon detectors (Canberra PIPS)
- Surface: 9 cm²
- Thickness: 5x300 μm, 3x700 μm
- Dead layer: ~20-50nm
- Resolution: 40 keV for the Am peak (5486 keV)

- 5 (or 15) keV thick for 200 keV protons
- Stable under beam bombardment (up to 20C)
- $H_2^{17}O$ water at ~95% enrichment
- $H_2^{18}O$ water at ~95% enrichment

$E_P = 193 \text{ KeV}$ resonance

• Clear peak in the green region of interest determined from 193 keV resonance

SPARE