

Nuclear Astrophysics at SPES

Daniele Mengoni Università di Padova e INFN

GIANTS, October 5-6, 2017 - Bologna

Daniele Mengoni

Astrophysics@SPES

SPES - Infrastructure

Daniele Mengoni

Astrophysics@SPES

SPES - Layout

Yield

UCx Target (... + not fissile also foreseen)

Expected intensity for reaccelerated beams

MCNPX Calculation

BERTINI - ORNL (FF cross- sections)

Release & ionization efficiency in agreement and rescaled on HRIBF experimental values and currents (200µA/5µA)

Daniele Mengoni

Astrophysics@SPES

SPES - Timeline

- •
- Phase 2. 2018-19 From C.B. to RFQ + SPES target, LRMS, 1+ Beam Lines
- Phase 3. 2020 21 HRMS-BeamCooler + RFQ to ALPI

Astrophysics@SPES

SPES – Astrophysics

Daniele Mengoni

Astrophysics@SPES

Fission products @SPES

β decay faster then n capture
 Neutron density 10⁶⁻⁷n/cm³
 Branching points: τ and n capture rate of the same order of magnitude
 key reaction: (n,γ)

In capture faster than β decay

Neutron density 10²⁰ n/cm³

Dripline and waiting points: plenty of ... nuclear structure information needed

 τ , masses, energy levels, J^π, s.p. strengths, (n,γ)

indirect methods for RIB (TH, SR, ANC)

Reactions of interest

- → collaboration with INFN Pg and INAF Teramo
- ➔ 2 Lols presented at the 3rd SPES workshop in 2016
- ➔ Commissioning tests needed with stable beam
- Collaboration with ORNL/Rutgers Univ. (exp) and NSCL (theory)
- ➔ 2 Lols presented at the 3rd SPES workshop in 2016
- Commissioning tests needed with stable beam

SPES – indirect methods

Daniele Mengoni

Astrophysics@SPES

Techniques for astrophysics

DIRECT Techniques: (LUNA, ERNA, DRAGON, ...): .. at relevant (stellar) energy range \rightarrow low cross section (...pB/keV) but model independent

INDIRECT Techniques^(*): .. at lab energies ($... \rightarrow$ stellar energies) but always model dependent

- ✓Coulomb dissociation
- ✓Transfer reaction
- Breakup of loosely bound nuclei
- Trojan Horse method
- ✓Resonant spectroscopy y decay, resonant elastic scattering, etc
- ✓ANC methods
- Surrogate reaction method (SRM)

^(*)Presentation by M. La Cognata at the last SPES workshop – 2016 LNL

determining cross section of CN reactions difficult to measure directly.

Various direct-reaction mechanisms can be employed to create the compound nucleus of interest

Different "compound-nuclear" decays can be considered

J.E.Escher, J.T.Burke, F.S.Dietrich, N.D.Schielzo, Rev. of Mod. Phys. 84 (2012)

Daniele Mengoni

Entry level in the neutron capture

Spin distribution generally different from direct and surrogate reaction (*s*,*p* waves for the neutron). Mitigation still possible in the case of deuteron.

Compound nucleus or resonances can be formed

benchmarks for (n,γ) cross sections (3He,4He)

Disagreement with the measure radiative capture data
 "complex" reaction mechanism

G.Boutoux et al., PLB 712 (2012), 319

Astrophysics@SPES

(d,p) benchmark for (n, γ) cross sections 171,173Yb(d,p γ) $\sigma_{n\gamma}^{WE}(E_n) = \sigma_n^{CN}(E_n)G_{\gamma}^{CN}(E_n) = \sigma_n^{CN}(E_n)$

Spin dependence heavily affects the level of agreement: from 60% to 15% Different gamma transitions sample different parts of the cascade Disregarding the contribution of higher spin states brings the observed spin distribution closer to that of the neutron capture (low *l* transfer)

N(d,p)

A.Ratkiewicz, J.A. Cizewski et al., EPJ Conf 93, 02012 (2015) R.Hatarick et al., PRC81, 011602(R) (2010)

Daniele Mengoni

Weisskopf-Ewing approximation

 $\sigma_{\alpha\chi}(E_a) = \sum_{J,\pi} \sigma_{\alpha}^{CN}(E_{ex}, J, \pi) G_{\chi}^{CN}(E_{ex}, J, \pi) \xrightarrow{\text{W-E approximation}} \sigma_{\alpha\chi}^{WE}(E_a) = \sigma_{\alpha}^{CN}(E_{ex}) G_{\chi}^{CN}(E_{ex})$ Weisskopf-Ewing approximation: probability of γ decay independent of J,π

Daniele Mengoni

Astrophysics@SPES

Basics of theory from and experimentalist

Gregory Potel Anguilar (NSCL/FRIB) et al, Phys. Rev. C92.034611

Daniele Mengoni

Astrophysics@SPES

Theory to predict J,π distribution

Gregory Potel Anguilar (NSCL/FRIB) et al, Phys. Rev. C92.034611

Spin-parity distribution for the compound nucleus
 Contributions from elastic and non elastic breakup disentangled
 Extendable to transfer of light clusters

SPES – Lols (q⁺,1⁺)

Dedicated Nuclear Astrophysics
 Nuclear physics → Nuclear Astrophysics

Daniele Mengoni

THIRD INTERNATIONAL SPES WORKSHOP

October 10-12, 2016 Laboratori Nazionali di Legnaro (Padova), Italy

46 LoI presented from around the world

GS properties

Daniele Mengoni

Astrophysics@SPES

Nuclear Astrophysics

Measurement of the decay characteristics of nuclei around A=90 relevant to the r-process nucleosynthesis [T. Kurtukian-Nieto et al.]
 Letter of Intents for measurements at SPES on beta-decay properties of nuclei belonging to the s-process path [S. Cristallo et al.]
 Study of beta-decay properties of neutron-rich isotopes approaching the r-process path [D. Testov et al.]

Measurement of astrophysical relevant reactions induced by alpha, protons and neutrons at the Gamow peak using the Trojan Horse method [M.La Cognata. et al.]

Direct Reactions at SPES: Shell Evolution and Nuclear Astrophysics around Z~50 and N~82 [D. Mengoni et al.]

Letter of Intent for transfer reaction measurements at SPES for r-process nucleosynthesis [S.D. Pain et al.]

Measurements at SPES of n-capture cross sections on radioactive nuclei interesting for s-process nucleosynthesis [O. Trippella et al.]

β –decay station

Struttura nucleare alla frontiera

TRACE-MUGAST:

Nuclear structure by detecting light-charged particles

Science campaign with AGATA at GANIL (>20 physics Lols/proposals)

Daniele Mengoni

Astrophysics@SPES

Pure targets

- Hydrogen (h,d) target in a solid phase near triple point (~17K)
- Thickness 50 200 μm
- No window C free
- Continuous flow in vacuum 2-10mm/sec
- Compatible with particle detection

- H, D, ^{3,4}He
- Dense: up to ~10¹⁹ nuclei/cm²
- Iocalized: target size ~ beam spot size, and thin to prevent energy loss and straggling
- windowless
- Cmpativle with particle det.

Daniele Mengoni

Astrophysics@SPES

ACTIVE TARGET demonstrator

20 40 60 80 Astrophysics@SPES

GIANTS2017

lig

7964

79.78

64.57

11.99

19.84

7964

Daniele Mengoni

Conclusions

Daniele Mengoni

Astrophysics@SPES

SPES is a unique opportunity for the nuclear and astrophysics community

- Lols submitted for key nuclei in the s and r process
- Commissioning run under discussion to check the validity
 - of the surrogate approach
- Ongoing open collaborations: any new idea is much appreciated and very welcome!!

Daniele Mengoni

Astrophysics@SPES

THIRD INTERNATIONAL SPES WORKSHOP

Dipartimento di Fisica e Astronomia Galileo Galile

UNDER THE PATRONAGE OF

Università degli Studi di Padova

ORGANIZING COMMITTEE

G. DE ANGELIS	LEGNARC
A. BONACCORSO	PISA
G. CASINI	FIRENZE
G. COLÒ	MILANO
A. DI PIETRO	CATANIA
A. GARGANO	NAPOLI
S.M. LENZI	PADOVA
S. PIRRONE	CATANIA
G. POLLAROLO	TORINO
G. PRETE	LEGNARC

LOCAL ORGANIZING COMMITTEE

J.J. VALIENTE DOBÓN M. CINAUSERO	LEGNARO LEGNARO
E. FIORETTO	LEGNARO
F. GRAMEGNA	LEGNARO
M. MAZZOCCO	PADOVA
D.R. NAPOLI	LEGNARO
F. RECCHIA	PADOVA
A. VITTURI	PADOVA

CONFERENCE SECRETARIES

ANNA D'ESTE INFN LNL ADRIANA SCHIAVON UNVERSITY OF PADOW

CONTACT

SPESZOTOPUNU INFNJI HTTP://Addinda.infnut/Event/Speszot6 Laboratori Nazionali di Leknaro

VALE DELL'UNIVERSITÀ 2 35020 LEGNARO PD - ITALY

October 10-12, 2016 Laboratori Nazionali di Legnaro (Padova), Italy

cerlikon

PFEIFFER VACUUM

Daniele Mengoni

Astrophysics@SPES

High-efficiency gamma detectors PARIS, HECTOR+, HELENA

Cluster PARIS

Science campaign
GANIL: 4 proposals accepted
Orsay – IPNO : 6 proposals accepted
7 Lols at SPES

Daniele Mengoni

Astrophysics@SPES

				T _{1/s} (s)	l@5µ	ιA	E_{max}	SI	S		
				LIS	FEBIA	D					
					(cr	s)	MeV)			
Be*	7	4	3	4.60E+06	2.E+07 **	9		2		•	2
Be*	10	4	6		3.E+07 **	13		2		•	2
F*	17	9	8	6.48E+01	2.E+07 **	15		94		0	4
F*	18	9	9	6.58E+03	2.E+06 **	14		94		0	4
Na*	21	11	10	2.25E+01		18	5				
Na*	22	11	11	2.60E+00		17	95				
Mg*	22	12	10	3.86E+00		17		95		0	4
Mg*	23	12	11	1.13E+01		16		95		0	4
Al*	24	13	11	2.05E+00		16	1	1			
Al*	25	13	12	7.18E+00	1E+04 **	15	1	1			
Al*	26	13	13	6.35E+00	1E+04 **	15	1	1			
Si*	26	14	12	2.21E+00	1E+03 **	17				0	4
Si*	27	14	13	4.16E+00	1E+03 **	16				\bigcirc	4
P*	29	15	14	4.10E+00		15				\bigcirc	4
Cl*	34	17	17	1.53E+00	5E+03 **	15				0	4

Daniele Mengoni

Astrophysics@SPES

Nuclear physics \rightarrow Astrophysics

Nuclear physics problem	Astrophysical application	
Thermodynamical behavior of hot and deformed n-rich systems (isospin dependence of the nuclear EOS)	Physics of neutron stars and mechanism of explosion of supernovae and X-ray bursts	 Lifetime Masses Energy levels
Superheavy nuclei (existence, lifetime, decay mode)	The r-process is probably halted by fission occurring in the region of unknown heavy nuclei with a large neutron excess	 J, π Spectroscopic factors
Clustering aspects in N≠Z nuclei	Influence on nucleosynthesis during explosive and quiescent burning stages	nuclear structure
Modification of the shell model for N/Z far from stability (e.g. persistence of the N = 82 closure below Z = 50?)	Explosive neutron-capture nucleosynthesis processes	
Nuclear spectroscopy, ANC, level energies and spectroscopic factors	Calculation of the reactions rates of processes of astrophysical relevance when measurements are not possible	
Daniele Mengoni	Astrophysics@SPES	GIANTS2017

SPES⁺⁺ – Future

Disclaimer : this is a very personal view

Daniele Mengoni

Indirect Studies of Key Astrophysical Resonances

In-ring target chamber & heavy-ion e.g. d(^{26m}Al, p)²⁷Al recoil detection system in UHV destruction of ²⁶Al in core collapse supernovae - meteoritic abundances electron resonator cooler injection Heidelberg extraction

Daniele Mengoni

Astrophysics@SPES