

Pixel, tracking e btagging 2017

A. ROSSI

Pixel Phase 1 detector

Old detector 1444 modules – 66M pixels R~4.4cm 150MHz/cm² @ 1.4x10³⁴ cm⁻²s⁻¹

New detector 1760 modules – 117M pixels R~2.9cm 580MHz/cm² @ 2x10³⁴ cm⁻²s⁻¹ Requirements for the new detector

- No bandwidth limit and reduced dynamic inefficiency up to PU~110: beyond L~2*10³⁴ cm⁻²s⁻¹
- Layer 1 closer to the beam pipe: 4.4 cm \rightarrow 2.9 cm
- 4 layers and 3+3 disks
- Fully functional up to LS3
- o New ASICs
 - PSI46dig (BPIX L2-L4, FPIX): larger buffers, digital data transmission
 - PROC600 (BPIX L1): different double column readout
- New DAQ system

Reduced material: CO2 cooling, DCDC converters

Installation and Commissioning

NEW (!!) Pixel detector commissioning:

- Phases readout and control links
 - New 400 MHz data links
- Readout chip shaper tuning
- Pulse height and gain tuning
- Thresholds tuning
 - FPIX profited of pre-installation calibration
 - BPIX L1 with conservative thresholds

Cosmic runs:

- Verify detector(s) tuning
- DAQ in global runs with the whole detector(s)
- Coarse time alignment
- First space alignment
- MAJOR RESULT: found and fixed a serious bug in the pixel geometry

- Power delivered through on detector DCDC converters
 - 11-11.5V \rightarrow 2.4-3.5 V
 - On-detector protection fuses will be removed during LS2
 - No incident in the detector...up to October 5th
 - Turned out to be ideal for the power cycles to recover modules affected SEUs
 - It is enough to disable/re-enable single DCDC converters
- CO₂ 2-phase cooling: a new entry in CMS
- Completely new DAQ system
 - New readout links: 400 MHz fully digital
 - New back end standard: uTCA
 - New back end boards: FEDs, FECs, AMC13
 - Bandwidth limit improved with respect to old detector: ~80 pileup events at 100 kHz
 - New f/w in development to go over PU=100 (Heavy lons)

Commissioning: Detector Issues

- PROC600 (BPIX L1) main source of problems
 - o Rate-dependent cross-talk noise observed during module test
 - Thresholds set, conservatively higher than planned (~3000-4000 e-). In time thresholds depend also on timing setting
 - Different clock phase w.r.t. PSI46dig (BPIX L2)
 - Not possible to choose optimal timing setting both for BPIX L1 and L2: observed with first collisions
 - Phase difference had to be corrected in the clock distribution circuits
 - Higher than expected dynamic inefficiency (rate-dependent data losses)
 - Exact cause(s) not yet understood fully
 - Several adjustments and studies done to mitigate and understand it
 - Larger spread in pixel signal gain and pedestals
 - Require careful pulse height tuning and high granularity offline corrections
 - Postponed during commissioning without beam and completed during TS1
- Observed "unrecoverable" SEUs in Token Bit Manager (TBM)
 - Mostly in BPIX L1 because of the higher particle rate
 - It requires a power cycle (DCDC converter dis/re-enabled)

CMS

CMS ITALIA, PIACENZA 29 NOVEMBRE - 1 DICEMBRE

Commissioning : Timing Scan

Different approach tested in order to get the best

Dynamic inefficiency

- Dynamic inefficiency is smaller than in the old detector
- Expected to be even smaller
 - 98% at 2x10³⁴ cm⁻²s⁻¹
- Source not completely understood

Impact of detector tuning

Perge

- i.e. : Cluster Charge
 - Pulse height and gain calibration

HV increase recover steady signal loss

Temporarily inactive channels

- Single Event Upsets (SEUs) affect ROC, TBM and portcard
 - ~2ROC (1/8 module) inactive every 10 minutes at L~10³⁴cm⁻²s⁻¹
 - Mainly on Bpix Layer1
 - Some SEUs on TBM are not recover with a reset ("stuck" TBM)
 - power cycle needed
- Automatically masked without affecting data taking
- Soft Error Recovery attempted when 20^d channels affected (15 in L1, 8 in central L1)
 - Firstly by reprogramming the modules
 - Modules not recovered at first attempt are power cycled
 - SEUs in port cards (~10 modules) are detected and recovered by reprogramming

DCDC Issue

Pengia

- DCDC stop working without (apparently) no reason
- First event on October 5th
- Almost all of them after a dis/en-able cycle or a power cycle
 - Only one hours after the last power cycle and one during stable beams
- Both digital (3.3/3.5V) and analog (2.4V) DCDC converters are affected
- Both Bpix and Fpix
- Power cycle or dis/en-able many of them in any case
 - o to recover modules affected by the "unrecoverable" SEUs in the TBM
 - To investigate the problem
 - Because of global power cycles of the detector
 - LHC and beam conditions
- Failures almost continously up to now
 - Rate slightly decrease in the last 2 weeks

Investigations

• Task Force in place

UNF

- <u>https://twiki.cern.ch/twiki/bin/view/CMS/PixelPowerProbl</u>
 <u>ems</u>
- Daily Pixel Operation meeting : <u>https://indico.cern.ch/category/1732/</u>
- Technical Incident Panel
 - https://indico.cern.ch/event/677774/
- Explanation and solution not yet found

Failure statistics

- All DCDC power cycles
 from October 5th
 - Manual dis/en-abling to recover "stuck TBM"
 - Full detector power cycle (5)
 - Fpix D1+D3 massive power cycles (10)
 - Automatic PC
 - Re-enable for few hours
- 55 DCDC converter failures
 - <u>Few of them restart to</u> work (spontaneously)
 - 5 Analog, 4 Digital
 - o 3 unstable
 - 2 provide limited analog current

CMS

SEUs and loose rate estimation

- Inactive channels build up because of "stuck TBM" and no automatic power cycle
- Interfill power cycles recover them but can break DCDC converters
 - DCDC failure proportional to luminosity

SEUs and loose rate estimation

INFN

1-5

5-10

10-15

15-20

20.25

25-30

30-35

35-40

40.45

45.50

Days

CMS

Inactive channels 2017

 Clearly visible the moment when automatic Software Recovery was disable

Conclusion from statistical analysis

- No correlation between the number of power cycle and broken DCDC
 - All the DCDC have experienced almost the some number of power cycle (mainly in April/May)
- No patterns in the distribution of the broken DCDC converters
- The failure rate per power cycle almost steady
 - Cause is not radiation or (unsafe) operations ?

- 1. Understand the source of the problem
 - Main goal is to stop the problem
 - No success \rightarrow Detector will be extracted
 - Find some hints in order to understand where to look once the detector will be out
 - Check all the procedure for 2018
- 2. Finish the 2017 data taking in good condition
 - Keep the number of power cycle as low as possible
- 3. Assumptions (continuously stressed)
 - Problem on DCDC board
 - Common component of Bpix and Fpix
 - Also not connected DCDC failures
 - Module not compromised by these failures
 - Everything works fine on recovered DCDC modules
 - Module cannot be replaced

Tested possible cause

- Something change on October 5th
 - Nothing has been identify
- Blow fuse at DCDC input
 - Evidences exclude this
- Overvoltage at DCDC input
 - ASIC could break
 - DCDC failure reproduced in lab only with OV
- Failure of components on DCDC board
 - Test ongoing
- Mechanical failure
 - Not compatible with recovered DCDC
 - Any kind of short should blow the fuse or trigger power supply protection

- Problem in the DCDC enable line form CCU
 - Not obvious how this can break DCDC
 - No anomaly observed due to radiation or GND level differences
- Noise in/from power system
 No evidence on both Lab and UXC
- External causes
 - Radiation, high luminosity
 - No changes on failure rate
 - Magnetic field
 - No evidence from Lab test inside magnetic field

Tests with detector

- Try to understand what is broken
 - DCDC converter IV curves of several power groups
- Monitor the input voltage on DCDC
 - DCDC chip designers suggest to check for Over Voltage
 - Installed scopes to monitor power supply outputs during dis/enable cycles: no anomaly observed
- Modify conditions to modify failure rate
 - o Statistical analyses
 - Reduced input voltage (11V \rightarrow 9V) in 50% analog converters
 - No failure of ANY analog converters since then...
- Some DCDC on Bpix are unused, stress test on those
 ~500 dis/en-able cycles: no failure
- Stress test of four DCDC converter sets (8 converters) in FPIX
 - One failure after ~250 power cycles (for each converter), digital converter
 - after ~3300 power cycles no other failure show up
- Failure rate measured at different temperatures
 - Failure rate per power cycle close to the one observed in standard conditions in the first 30 days

Perugia INEN Mente Restored

Probability to lose a DCDC - Warm test

Tests in Lab

- A lot of different tests in Lab
 - Try to reproduce the failure
 - Very frequent dis/en-abling sequence
 - No failure up to 1000's cycles and passive loads
 - No failure up to 100's cycles and real modules
 - Look for anomalies (spikes, oscillations...) in the power system
 - Nothing observed
 - DCDC behavior inside magnetic field (3T)
 - No failure observed with 500Hz dis/en-able cycles and different orientations
 - Radiation
 - Old results on irradited converter show no anomalies
 - New irradiation with X-rays (1.5Mrad, CMSx2) has the some conclusions (same chip but different boards)

Tests in Lab (cont'd)

- Fast dis/en-abling sequence (enabling before voltage is 0)
- Pruga INFN

- No failure
- Back power from neighbour DCDC
 - No failure
- Anomalous signal on enable line
 - No failure
- Attempt to break DCDC
 - Only two possible scenarios found up to now
 - Input voltage exceed 17-18V
 - Input capacitor removed (or damaged)

Performances: Alignment

p-p collisions 2017

 $u = 47 \pm 11 m$ $\sigma = 358 \pm 0.8 u$

a = -0.0 ± 0.1 μm, σ = 4.7 ± 0.1 μm

BPIX

10

median(y'pred-y'hit)[µm]

20

 Many alignment campaigns

CMS Preliminary

-20

-10

0

with 3.8T coamin

240

220

200

160

140F

120

100

En

number of modules / 1.2

• Primary Vertex

- Position of PV as a function of track coordinates is very sensible to the pixel part of the tracker
- PV performance got a lot of improvement during the year

Performances: Hit Resolution

 Layer 2-4 and Fpix good MC matching and as expected resolution

- L1 ~50% worse than expected
 - Reproduced by MCv2 with increased threshold

- Changes on L1 HV affect Lorentz Angle
- Impact on clusters position

Performances:Tracking

- Despite the not optimal performance of BPIX1 and the larger than expected number of inactive components, Physics in 2017 is not compromised
 - Mitigations already in place, more foreseen
 - Performance better than 2016 even in the toughest conditions
 - Improvements expected with ultimate alignment and calibration

- Tracking and BTV POG are working on estimates and corresponding plots derived by simulations
 - Also others POG are working on the Pixel failure impact (not reported here)
- Some preliminary results shown here
 - o ttbar RelVal
 - Scenarios from data
 - Run 304366 : reference
 - Run 305044 : Permanently BAD DCDC
 - Run 305064 : Large overlap hole in Fpix
 - Run 305081 : Two FEDs with errors
 - Run 305366 : Highest number of BAD components
 - V6 : estimated 2017 end scenario
 - Maps in backup

Tracking

- Overall efficiency decrease by up to 4% with a increase on fake rate up to 3%
- Vertex efficiency decreases by up to 3 %
- Also IP resolution and Vertex resolution are affected

B-tagging

- Impact of DCDC issue on btagging efficiency is present
 - Some region on φ more affected

C. Collard

Intervention during YETS2017

Peruga

- Needed to understand the cause of (and the solution to) the problem and repair the broken DCDC converters
- Requested one week earlier start of YETS to extract FPIX+ before Christmas
- In meantime some work on DCDC to be ready for replacement
 - Change the input fuse on DCDC spares:
 - 1.5A --> 4A (Digi) 3A (Ana)
 - Input voltage could me further decreased
 - Build new DCDC with the available componets
 - 4A/3A fuses and 25V capacitors

Conclusions

Progra

- Very challenging year for new Pixel detector
- Faced different issues from commissioning to DCDC problem
 - A working solution for almost everything has been addressed
 - DCDC converters issue is the most problematic and the most difficult to face
 - Constant work during the last 2 month
 - Cause not yet understood, tests still ongoing
 - Detector extraction during YETS with two main focus
 - Understand what has been broken
 - Apply some modifications to have a safe 2018
 - Impact on tracking, b-tagging, physics still under study
- Detector performances during 2017 have been good (at least up to October 5th) and they have a continuous improvement during the year
- Plans to replace Layer1 modules (new sensors, new TBM, new PROC600) during LS2

Backup

Commissioning : Timing Scan

	NER	ALE C	VIA
1	5	13	
		1	
1	EA F	1	5
	A.D.	MCCC	VIII
-		aces	

 Last timing scan performed at the end of October (150b fill)
 Setting confirmed

	July	July Aug					Sep						
Wk	21	28	29	30	31	32	33	34	35	36	37	38	39
Мо	3			24	31	7	14	21	28	4	11	18	25
Tu				MD 2								TS2	
We	TS1			VdM run -	-								
Th				- TONTON						Jeune G			
Fr											MD 3		
Sa													
Su													

Commissioning: Detector Tuning

Dead Time

- Continuous balance between higher detector efficiency, higher uptime, and lower dead time
 - Introduced periodic (70Hz/100Hz) ROC reset to mitigate dynamic inefficiency
 - Unavoidable dead time to readout the pipelines before the reset: reduced to 0.7% from 1.3%
 - New Soft Error Recovery procedure
 - Negligible dead/downtime (at L~10³⁴cm⁻²s⁻¹)
 - With old procedure about 1-2% dead time (at L~1.5*10³⁴cm⁻²s⁻¹)
 - Power cycle took ~5 minutes, now ~20-30 seconds
 - Optimized detector configurations (Pixel+Strip) when HV is on
 - Reduced by 50% by performing a single pause and resum
 - Pixel configuration now in parallel: pause and resume reduced to only 5 seconds

IV measurement

- FEAST2 designers suggested to measure the IV curve to see the DCDC linear regulator switch on
 - Voltage on DCDC from 0 to 4.7V (output not enable)
 - Every linear regulator should drain 3mA

- When all DCDC converter are good the behavior is as expected
- When there are broken DCDC an ohmic behavior show up
 - Similar behavior of lab DCDC broken with over voltage

CMS

Performance: Charge Collection

- Charge Collection
 - Loss of charge collection efficiency probably due to radiation damage

Tracking: PixelPairs

Fake rate vs p

D,

- Preliminary test to automated PixelPair mitigation
 - PixelPair originally used to cover BPix-FPix transition region covered only by 3 layers and the region with inactive areas in BPix layers 2 and 3
 - erriciency vs akerate vs 0 0.6 0. 0.4 0. 0.2 Ratio Ratio 0.9 102 p_ (GeV)3 10 10 track p_ (GeV) 10-
 - Noticeable improvement

Efficiency vs p

• Big part of the PixelPair improvement goes to reduction of strip seeds

37

• October 4th

Failure Scenario Ideal

• SiPixelQuality v10

• October 13th

Failure Scenario Run 305081

• October 15th

October 15th

Failure Scenario Run 305366

• October 21th

ROC /

Failure Scenario v6

• (gu)Es(s)timated 2017 end

YETS Schedule

- Dec 22nd FPIX+ (2 quadrants) is extracted
 - o US crew will be present
- Dec 22nd-23rd : broken DCDC converter(s) will be investigated
 Aachen team at CERN, US crew, possibly FEAST designers
- Dec 27th-29th: tests and investigations of converters and one FPIX+ quadrant. Dismantling of the DCDC converters from 2nd quadrant
- Jan 2nd-20th: continue investigation, reworking and testing of FPIX+
- Jan 20th: BPIX and FPIX- are extracted
- ~Jan 20th: reworking of DCDC converters from the detector
 Technician(s) from the company working at P5
- Jan 20th- Feb 4th: investigation, reworking, and testing of FPIX- and BPIX
- Feb 5th 12th : reinstallation starts
- To be noted
 - The plan depend heavily on the findings when the first DCDC converters are available
 - BPIX and FPIX- will be repaired in parallel in the two labs at P5: second lab being prepared now.