Arabella Martelli (CERN)

ALORIMETRI FASE 2

CÉRN

Performance e impatto sulla fisica

CMS Italia 2017 29 November to 01 December 2017 - Piacenza

d limits have been placed on it. The equiling to the ten evenly through the $t\overline{t}II$

Physics in Phase2

- Ingredients to pursue searches and precision SM measurements
 - boosted topologies => increase granularity for reconstruction/ID of collimated objects
 - forward boosted production => good performance at high η coverage/reconstruction/ID/ resolution + complement tracker upgrade ($|\eta|$ <4 and reduced material budget)
 - exploit VBF production => jet reco/ID also at trigger level

• High luminosity

- high pileup => need clever ideas to select good events in harsh HL-LHC environment
- higher rate => refurbish triggers (hardware and software) to profit from more data
- high radiation => rad hard technologies

- Overall CMS upgrade plan to achieve the goal
 - => tracker + muon chambers + precision timing (see previous talks)
 - calorimetry: discussed here

CMS

The calorimetry upgrade program

- Physics requirements for operation at high luminosity drive the upgrade choices
 => Maintain Run2 performance also at HL-LHC + improve (where possible)
- Assure radiation hardness of components
 - => replace damaged detectors (EE + ES + HCAL endcaps)
 - => **operate EB colder** to reduce APD noise (18 °C to 9 °C, option for 6 °C)
 - => SiPMs in HCAL barrel to replace HPDs
- Account for high demanding L1: 12.5µs latency and 750kHz rate
 => new on-detector and off-detector electronics
- Exploit precision timing
- Increase granularity

• Phase2 detector upgrade, both a challenge and an opportunity

ECAL BARREL for Phase2

• New electronics and operation at lower temperature (same crystals, same APDs)

- Main element is the upgrade of the electronics: FE and VFE
- Phase1: VFE preamplifiers provide shaping of signal & digitization
 => Replacement with trans-impedance-amplifiers (TIA)
 - Digital design focused on achieving optimal time resolution
 - Two gain ranges (G1,G10) & 2 TeV dynamic range with 50 MeV LSB
- Phase1: FE providing TPG with 5x5 crystals granularity
 => FE moved off-detector
- Baseline for upgrade studies: adopt same reconstruction as in Phase1
 > optimisation needed for PU mitigation and integration in particle-flow

APD spikes in EB

- Phase1: VFE preamplifiers provide shaping of signal & digitization
- Opportunity to improve the spike rejection online and offline
 => rate from APD spikes already critical during current operations
- Projection at 200PU with Phase1 VFE electronics (43ns shaping time)
 - rate above max threshold for $E_{\rm T}>20GeV$
 - rate dominated by "spikes", scintillation (genuine signal) contribution at permill level

(new VFE) faster shaping time

- 20ns shaping time for **spike rejection**
 - exploit intrinsic difference peaking time between APD and scintillation

new discrimination based on pulse shape

• E_T>10GeV full efficiency and rate from spike < few Hz (above few MHz before upgrade)

(new VFE) increas

- x4 increase (160MHz) in readout sampling to allow **precision timing**
 - thanks also to reduced shaping time

160MHz enough to preserve precision timing

 measurements at test beam using prototype TIA
 C ≈20ps and N ≈ 6ns/(S/N)
 where N ~7 with 200PU found in simulation

30ps resolution at S/N = 250, @HL-LHC

precision timing for EB

- Precision limited by noise contribution => expect lower S/N with radiation
 - larger APD noise
 - lower crystal transparency

30ps resolution at S/N = 250

- 20GeV beginning (noise ≈100MeV)
- 50GeV end (noise ≈200MeV)

• Impact of precision timing,

=> in H $\gamma\gamma$ help to triangulate the vertex in high PU

Contribution from EB only

- => useful for high $\Delta \eta$
- => limited otherwise
- 4D vertex for $\Delta\eta$ <0.8
- hermetic coverage

(see previous dedicated talk)

(new FE) increased granularity to L1

- Phase1: FE providing TPG with 5x5 crystals granularity
- Opportunity to increase the granularity at L1 to the crystal level
 - 61200 crystals in EB, [0.0174x0.0174] vs [0.087x0.087]
 - => better isolation and position resolution for track-calo matching (track trigger)
 - => topological spike tagging available at L1
- L1 decision from EG+track trigger
 - EG inputs: pT > 1GeV crystal to seed cluster $3\eta x 5\Phi$ + isolation in E_{cluster}/E_{27x27}
 - shower shapes in the 3x5 core crystals
- Performance based on single crystal information with electron gun

-HO

Hadron barrel for Phase2

- Replace light detector HPD with SiPM
 - data taken in early 2017 suggest that signal loss in hadron calorimeters is from radiation damage of HPD rather then scintillator
- **ÀCAL** MAGNET COIL SiPM: high gain, higher S/N wrt HPD (SiPM S/N≈4.5 for single photoelectron) => possible segmentation in the barrel HCAL-HB - reduced response of individual tiles (better tolerance of rad CMS Phase-2 Simulation **CMS** Phase-2 Simulation 14 TeV 14 TeV - can mitigate individual 🗐 p_{T}^{GEN} HCAL non-aged - HCAL non-aged (high eta in particular) **HCAL** aged HCAL aged $\sigma(p_T/p_T^{GEN})/\langle p_{T'}$ **HCAL+SiPM** aged **HCAL+SiPM** aged Anti-k_T, R=0.4 PF Anti-k_T, R=0.4 PF GEN 0<nGEN<0.5 0.5<ŋ^{GEN}<1.3 μ=0 μ**=0** J(p_/ 4500/fb 4500/fb • Longitudinal segmentat 0.1 0.1 => useful for particle-flc - improved tracking for h 0 - shower profile, help in (200 100 1000 2000 100 200 1000 2000 40 40 p_GEN (GeV) (GeV) - help pileup mitigation

Endcap calorimeters for Phase2

High Granularity Calorimeter: fine grain for a 3D shower reconstruction

=> Silicon/scintillator sampling calorimeter, including both em and had parts

Key Parameters:

- HGCAL covers 1.5 < η < 3.0
- Full system maintained at -30°C
- ~600m² of silicon sensors
- ~500m² of scintillators
- 6M Si channels, ~22000 Si modules
- Power at end of HL-LHC: ~110 kW per endcap

Active Elements:

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H
- High granularity against congestion
 - to help "features" extraction
 - suited for pf and imaging reconstruction

Silicon for radiation hardness (and granularity)

 radiation level similar to that experienced in the inner tracker

Silicon for high granularity

• **longitudinal** => can be made in thin layers + **transversal** => can be shaped in small pads

• Hexagon shape choice

- cut from Si circular wafers => to save material and cost
- geometry more natural to describe shower process
- increase difficulty for readout electronics, due to non-standard shape

Example here 128 channels Si sensors (6" wafer) 200µm depleted region, 1cm² cell-size

- Baseline choice:
 - 192 (or 432) channels from 8" wafers, p-type

Active	Cell	Cell	Bulk	Expected
thickness	size	capacitance	polarity	radiation fluence
(µm)	(cm ²)	(pF)		(n_{eq}/cm^2)
300	1.18	44	p / (n)	$1-5 imes 10^{14}$
200	1.18	65	р	$0.5 - 2.5 imes 10^{15}$
120	0.52	48	р	$0.2-1 imes10^{16}$

Si thickness (μ m)	300	200	120
Area (m ²)	245	181	72
Largest lifetime dose (Mrad)	3	20	100
Largest lifetime fluence (n_{eq}/cm^2)	6×10^{14}	2.5×10^{15}	1×10^{16}
Largest outer radius (cm)	~ 180	~ 100	~ 70
Smallest inner radius (cm)	~ 100	\sim 70	~ 35
Cell size (cm ²)	1.18	1.18	0.52
Initial <i>S</i> / <i>N</i> for MIP	11	6	4.5
Smallest $S/N(MIP)$ after 3000 fb ⁻¹	4.7	2.3	2.2

• Cell size

- physics performance considerations as the lateral spread of the showers
- constraints imposed to keep the cell capacitance within a reasonable range
 - => guarantee ability to calibrate detector throughout its life

Advantage of high granularity

- Enhanced pattern recognition "imaging-calorimeter"
 - Good separation of nearby showers

14GeV pT photons at η 2.4 [80GeV] with ΔR 0.05 separation

- Radial containment for photon shower
 - ~68% energy within 2.8cm around layer 15
 - spatial resolution < 1cm in first layers (at OPU)

at high PU

- Energy deposition from pileup 200 is ~200GeV E_T per unit area
 => mandatory to exploit granularity and segmentation
- Test reconstruction potential with calorimeter alone
 - Jet reconstructed with anti-kT on recHits

=> *development for coming years*

- quark jets vs PU jets (mix gluon and soft jets clustered together)

Longitudinal segmentation helpful against pileup, also granularity

balance is needed between integration of pileup energy

Indication to exploit a dynamic definition of R, layer dependent

useful also for L1 (see later)

 $\sigma(t)$ (ns) = $\frac{A}{S/N} \oplus C$

Si 100µm and 200µm

10²

Q (fC) ^{10³}

Si 300um

Precision timing

 Single cell performance (HGCROC + Si cell), from electronics simulation shows A = 5ns, C = 20ps

10-

 10^{-2}

1

• Precision timing for showers, exploiting hit multiplicity

- Study based on the hits within $\rho{<}2\text{cm}$ from shower axis
 - photon: 100% efficiency, σt ≤ 20ps for pT≥ 2GeV
 => electromagnetic component ≈ 30% for hadron showers
 - K^0_L : efficiency > 90%, $\sigma t \le 30$ ps for pT > 5GeV

selections:

12fC threshold

10

- consider events non interacting in
- the tracker volume
- require ≥ 3hits
 with time per shower

Reconstruction

• Major impact on the detector performance: new detector = new reconstruction

=> need is to separate individual particles in high pile-up environment

- Opportunity to develop/tune algorithms that best exploit the high level of information
- Some highlights, by using the calorimeter information on its own

3D imaging clustering*

- Algorithm best suited for the high granularity offered by the HGCal
- Current development in 2 steps:
 - builds 2d-clusters on each layer
 based on the energy-density
 of the cells (energy and distance)
 - associate 2d-clusters aligned along the shower axis over different layers

- Extendable to more than two dimensions:
 - direct 3D exploit full spatial correlation of the shower development
 - direct 3D + timing

* inspired by: [A. Rodriguez, A. Laio, "Clustering by fast search and find of density peaks", Science 344 (6191), 1492-1496. (June 26, 2014)]

p_{_} (GeV)

3D imaging clustering

• Good performance for electromagnetic showers

HGCAL G4 standalone

benefit of fine granularity

p_ (GeV)

HGCAL G4 standalone

• Further collection of 3D lumpy clusters from hadronic showers

Trigger primitives L1

• 2-stage structure for TPG in off-detector BE dedicated boards

=> inputs from 14 layers from CE-E and all from CE-H readout for TPG

- 1st => 2D cluster + η - ϕ E_T maps for E_T ≥2MIP_T
- 2nd => 3D cluster E_T≥1GeV sent to L1 correlator [1-400GeV full range, 100MeV precision]
 + extra cluster-variables for ID and energy corrections (length, start layer, maxE layer, width)
- TPG delivers primitives to the central L1 correlator

=> aim at 3D clustering running in FPGAs (*full development for coming years*)

– currently in place for e/ $\!\gamma$ trigger, missing for jet trigger

• HGCAL-only performance for e/γ trigger (3D clustering on FPGA)

with L1 correlator

=> Segmentation and gra.

- PUjetID [Iso(0.1,0.4) + $E_{10layers}/E_{jet}$]

PU 140 and anti-k_T on recHits

Reconstruction vs performance

- Good potential for improved performance with upgrade elements (timing, granularity)
 => shown by calo-only based reconstruction (previous slides)
- Important to tune particle-flow reconstruction

=> physics performance can get maximum profit from the upgrade

- true also for L1: high granularity expected to help L1 correlator with improved track-calo matching, isolation, particle ID
 - => VBF production tag (critic for calo-only at 200PU)
 - => help MET and HT triggers, that are then exploited to trigger soft lepton...

• Reconstruction for the Phase2 detector is not optimal, several key points missing:

- tuned clustering in EB against pileup, clustering for hadron showers in HGCAL
- exploit timing EB and HGCAL , exploit segmentation in HB
- calibration of electromagnetic and hadronic objects
- pf reconstruction for best track-calo-muon (timing) matching
- Physics performance studies *very preliminary* (checks ongoing)
 => potential performance is satisfactory for physics

- Vertex ID in high PU: benefit from timing (and VBF tag production)
- Un-tuned clustering: consider 3x3 to minimize PU $c_{\mu}^{0.22}$ $\gamma + PU 200$ => Run2 improved Myy resolution with MVA from r = 26 mm

0.0.

expect same performance for $\gamma\gamma$ pairs in HGCAL

 Clear benefit for HH->γγbb, together with improved performance on b tag/acceptan

very preliminary

b tagging

• Main impact from tracker performance

Improved particle-flow reconstruction can bring further gain

=> particle-flow reconstruction currently used for HGCAL TDR studies

- ideal track-cluster matching + realistic merging of clusters

- indication that the ingredients to improve the performance are available
- Clear benefit for HH-> $\gamma\gamma$ bb
- Benefit also for HH->bbbb and for VH, ttH

Н->тт

CMS

Tagging boosted topologies

- High granularity helps to identify boosted W,Z,H and top from ordinary gluon/quark initiated jets
 - soft QCD radiation removed from the jet before calculating its invariant mass
 - n subjet axis within a fat jet

In summary

- Granularity/segmentation and precision timing are expected to give a major improvement to objects reconstruction and ID, in 200PU
- Positive indications of detector performance
 - as obtained from preliminary reconstruction
- Improved particle-flow can bring major gain to physics performance
 - => all the ingredients are there
 - => the pf reconstruction (not fully in place) is definitely worth investing
- Phase2 calorimeters contribute to potential improved L1 trigger performance
 - => improve and extent calo algorithms to provide the highest level of information to the L1 correlator
 - => most of the tasks in charge of the L1 correlator

• Very interesting phase to develop creative new ideas

=> fundamental for (calorimeter performance) Physics results in 10years of HL-LHC

- TDR for Phase2 CMS detectors
 - HGCAL
 - barrel calorimeters
 - tracker

- Performance studies within the CMG-HGCAL group
- Performance studies within the UPSG group
- DISCLAIMER: many plots are just preliminary and/or not the most updated

BACKUP

Silicon for radiation hardness

- Silicon can sustain high radiation levels
 - Fluence at η=3 in HGCAL ~ same as pixel inner layer
 => profit from extensive R&D in the past 20 years
 for Trackers and Pixels
 - complementary studies for neutrons irradiation up to 10^{16} n/cm^2
 - Fluence dominated
 - by charged hadrons in the tracker,
 - while by neutrons in the HGCAL

 Radiation effects are well understood and reproducible and can be partly mitigated by low T operation (-30 °C for full HGCAL)

Longitudinal segmentation

Longitudinal segmentation

- Mixed scintillator-silicon geometry to guarantee calibration with MIPs throughout its life
- Plastic scintillator tiles used in low radiation area, with cell size function of R:
 - to maximize signal at highest radiation where SiPM noise is bigger
 - match the EB 5° cells and 4 cm² trigger cells in the Silicon HGCAL
 - guarantee Silicon coverage for $|\eta| > 2.4$

	C el m L'11 e Lo m	C:	C:	
	Scintillator	51	51	
Sensor thickness	3 mm	300 µm	200 µm	
Area (m ²)	480	71	15	
Largest lifetime dose (Mrad)	< 0.3	30	100	
Largest lifetime fluence (n_{eq}/cm^2)	8×10 ³	6×10^{14}	2.5×10^{15}	
Largest outer radius (cm)	Status of EK+HE R235	HE Reco	i mechar	nics a second
Smallest inner radius (cm)	Upgrade TP meeting On behalf of the GED working team 900 H/H/ 26/11/14	$^{\scriptscriptstyle m is}\sim 80$	~ 45	
Cell size (cm ²)	$2 \times 2 t^{2611/14}$	1.18	1.18	-
	5.5 imes 5.5			9=1.4
Initial S/N for MIP	≫ 5	11	6	p=1.48
Smallest $S/N(MIP)$ after 3000 fb ⁻¹	5	4.7	2.3	
				n = 1.6
				p=1.8
			🏹	9-20
				<i>q</i> =21 <i>q</i> =22
				9-24 p-24
			FH Laver 9	p=27 $p=2.0$ BH Layor 2

Scintillator readout with SiPMs coupled directly to scintillating tiles
 => same SiPM as for Barrel HCAL upgrade => profit from experience and tests

HGCAL beam test

• 2016 campaign: test Si (200µm) performance with electron showers

• Response and resolution for quark jets (small degradation, but compatible for gluon jets)

Muon ID (2 < $|\eta|$ < 2.8)

- Match track propagation with signal in 1 or 1+6 cells
 - 0.5 < charge per cell < 3MIP and summed charge per layer < 3MIP
 - ask for a minimum of consecutive layers in BH
- Study with muons pT > 5GeV and plateau efficiency 97% (99% from tracking efficiency)

 results solid against readout threshold (0.5MIP to 0.75MIP) and S/N with aged detector

Effect of slow neutrons evaluated with simulation and calculation with first principle
 => found negligible (≈ few permill probability)

Tracker material budget

EB VFE and FE

ECAL energy resolution

• Energy resolution with upgraded detector

EB election - ^{10²} Proceeding (GeV) rformance

Same performance as in Run2 at high pT
 => deficit for electrons at low pT, due to un-tuned reconstruction

• Resolution for single photons

* V					
Detector conditions	Photon category	$\frac{\sigma_{\rm eff}(E)/E}{p_{\rm T}^{\gamma} = 50{\rm GeV} p_{\rm T}^{\gamma} = 100{\rm GeV}}$			
Bildup 200 200 fb ⁻¹ againg	$E3 \times 3$, unconverted photons	1.8%	1.5%		
Flieup 200, 300 lb ageing	max15, all photons	2.5%	1.6%		
Bildup 200 1000 fb ^{-1} againg	E3 \times 3, unconverted photons	2.1%	1.6%		
Flieup 200, 1000 lb ageing	max15, all photons	2.7%	1.7%		
$Piloup 200, 2000 fb^{-1} againg$	$E3 \times 3$, unconverted photons	3.0%	2.2%		
Flieup 200, 3000 lb ageilig	max15, all photons	4.8%	2.5%		
Piloup 200 4500 fb^{-1} agoing	E3 \times 3, unconverted photons	3.9%	2.8%		
Theup 200, 4000 lb ageing	max15, all photons	6.0%	3.6%		

Vtx efficiency

• Gain at low pT, improved particle-flow (reject fakes) in particular at high eta

b/c tagging efficiency

• Improved efficiency with PU and at low pT, in particular in the very forward region

HH->yybb (EB-TDR)

- Account for pileup to worsen the isolation efficiency, for both signal and background
 - a reduction of 2.3% in identification efficiency for prompt photons applied in the barrel
 - a 10% reduction has been applied in the endcaps
- b tagging efficiency from 69% to 74% per jet => increase of the signal efficiency by 15%, as well as of VH, ttH and bbH backgrounds
- The $M\gamma\gamma$ observable allows to separate the signal from non-resonant background but not form resonant single H boson background
- The Mjj observable improves the separation between single H and HH signal

